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Abstract
Relatively little is known about the seminal genetic events that trigger the development of low-grade
gliomas in children. Genetically engineered mouse models of the neurofibromatosis-1–inherited
tumor predisposition syndrome have identified key intracellular growth control pathways, defined
the contribution of the tumor microenvironment to glioma growth, and helped researchers understand
the genetic basis for glioma susceptibility. In addition, genetically engineered mouse low-grade
glioma models have recently been used in preclinical therapeutic studies to evaluate the efficacy of
particular biologically based therapies and to define outcome measures.
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Introduction
Low-grade gliomas represent the most common brain tumor in the pediatric population,
accounting for 30% of all central nervous system primary tumors in individuals younger than
20 years of age.1 Both grade I (pilocytic astrocytomas) and grade II (diffuse fibrillary
astrocytomas) tumors are included within the World Health Organization group of low-grade
glial neoplasms.2 Pilocytic astrocytomas are the more common histologic subtype (15%-20%
of all primary central nervous system neoplasms) and are generally circumscribed, slow-
growing tumors composed of neoplastic glial fibrillary acidic protein (GFAP)–immunoreactive
cells. These tumors may arise anywhere within the neuroaxis but are most commonly seen in
the optic pathway, cerebellum, and brainstem. Microscopically, these tumors are characterized
by a biphasic cellular appearance, in which areas composed of compacted bipolar cells with
Rosenthal fibers alternate with areas composed of loose textured multipolar cells with
microcysts and eosinophilic granular bodies. Consistent with their slow growth rates, pilocytic
astrocytomas have rare mitotic activity; however, despite their benign nature, significant
microvascular proliferation may be seen.

In contrast to pilocytic astrocytomas, World Health Organization grade II astrocytomas are
usually diffusely infiltrative neoplasms. They may develop in any region of the central nervous
system but are most commonly located in the cerebral lobes and brainstem. Microscopically,
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diffuse fibrillary astrocytomas are composed of well-differentiated neoplastic glial fibrillary
acidic protein–immunoreactive cells, with moderately increased cellularity and occasional
nuclear atypia. Necrosis and microvascular proliferation are not usually found in these tumors.
It is worth noting that grade II astrocytomas in adults typically progress to higher grade
malignancies over time, whereas in children, grade II astrocytomas exhibit a more generally
benign clinical course. In this regard, the 10-year overall survival for children and young adults
with pilocytic astrocytoma or fibrillary astrocytoma is greater than 90% and 80%, respectively.
1

Treatment for pediatric low-grade glioma has more recently focused on the use of
chemotherapy, owing to the neurocognitive and endocrine sequelae associated with radiation
therapy.3,4 However, most of the agents currently in clinical use are antineoplastic drugs that
have been used for the treatment of adult brain tumors and do not specifically target the unique
biochemical or cellular abnormalities found in pediatric low-grade glioma. Unfortunately,
efforts to develop such drugs are limited by the relative lack of information regarding the key
genetic changes important for pediatric low-grade glioma formation and growth.

One approach to identifying the seminal molecular changes that drive low-grade glioma
development and continued growth involves the study of inherited cancer syndromes in which
affected individuals are prone to low-grade glioma formation. The most common of these
pediatric syndromes is neurofibromatosis type 1, also known as von Recklinghausen's
disease5: 15% to 20% of children with neurofibromatosis type 1 develop low-grade gliomas
affecting the optic nerves, optic chiasm, and hypothalamus (optic pathway gliomas).6,7 Most
of these gliomas are classified as World Health Organization grade I tumors with intense glial
fibrillary acidic protein immunostaining and low proliferative indices.8,9 Interestingly, in the
context of neurofibromatosis type 1, optic pathway gliomas typically develop in young children
(mean age = 4 years), exhibit indolent growth patterns, and have even been reported to regress
spontaneously.10

Examination of pilocytic astrocytomas from children with neurofibromatosis type 1 has
confirmed biallelic NF1 gene inactivation and loss of NF1 protein (neurofibromin) expression.
8 In contrast, sporadic pilocytic astrocytomas do not harbor inactivating NF1 mutations and
likely result from different genetic changes.11,12 Despite the fact that only 15% of all pilocytic
astrocytomas result from loss of NF1 function, it is highly likely that pilocytic astrocytoma
formation in the general population reflects deregulation of growth control pathways similar
to those modulated by NF1. Support for this notion derives from studies demonstrating that
neurofibromin is a negative regulator of the RAS proto-oncogene in vitro and in vivo, such that
NF1 inactivation leads to increased activation of RAS and RAS downstream effectors.13-15
Similar to neurofibromatosis type 1–associated pilocytic astrocytomas, sporadic pilocytic
astrocytomas also exhibit increased activation of RAS downstream effectors,16 suggesting that
molecular changes that mimic NF1 loss may contribute to gliomagenesis in sporadic pilocytic
astrocytomas. One of these changes is mutational activation of RAS, resulting in a RAS
molecule that is constitutively activated, similar to the effects of neurofibromin loss. Recently,
there have been two reports of KRAS oncogenic mutations in sporadic pilocytic astrocytoma.
16,17

In many respects, neurofibromatosis type 1 represents a tractable model system to study the
molecular and cellular pathogenesis of pediatric low-grade glioma. Importantly,
neurofibromatosis type 1 is an excellent genetic model with which to study low-grade glioma
formation and growth, since the initiating molecular event (loss of NF1 function) is well
established. Using neurofibromatosis type 1 as a portal into sporadic gliomagenesis, we will
discuss how cell-based and genetically engineered mouse studies have defined some of the key
intracellular signaling pathways responsible for low-grade glioma growth, elucidated the role
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of the tumor microenvironment in gliomagenesis, and uncovered the contribution of “modifier
genes” to glioma formation (Figure 1). Lastly, we will discuss how genetically engineered
Nf1 mouse optic glioma models can be used for both therapeutic discovery and candidate drug
evaluation prior to human clinical trials.

Intracellular Signaling Pathways
With the identification of the NF1 gene in 1990,18,19 it became possible to define the
mechanism underlying NF1 tumor suppressor function. Analysis of the predicted NF1 protein
sequence revealed that neurofibromin contains a small domain remarkably similar in structure
to the functional domain of a family of proteins that negatively regulate RAS proteins.20 These
negative RAS regulators, termed guanosine triphosphatase (GTPase)–activating proteins,
inactivate RAS by accelerating the conversion of active, GTP-bound RAS to inactive, GDP-
bound RAS.21 Active RAS in many cell types drives cell proliferation by initiating a cascade
of protein phosphorylation events that culminate in increased cell proliferation and/or
decreased cell death. Moreover, activating RAS mutations are oncogenic and lead to tumor
formation in mice. In this regard, loss of neurofibromin expression in neurofibromatosis type
1–associated tumors leads to increased RAS activity, which likely initiates the process of tumor
formation.

The observation that RAS hyperactivation results from NF1 inactivation in tumors prompted
investigators to inhibit RAS activity in cells and tumors lacking neurofibromin expression.
These in vitro experiments clearly demonstrated that RAS inhibition, either pharmacologically
or genetically, reversed the growth advantage conferred by NF1 loss. Based on these exciting
preliminary preclinical data, a series of human clinical studies using RAS inhibitors to treat
neurofibromatosis type 1–associated tumors was initiated. RAS activation requires a
posttranslational lipid modification that facilitates the insertion of RAS into the plasma
membrane and allows RAS to efficiently activate its downstream effects and promote cell
growth.22 This lipid modification (farnesylation) is inhibited by farnesyltransferase inhibitors
that had been developed to treat other cancers.23 Unfortunately, treatment of neurofibromatosis
type 1 patients harboring peripheral nerve tumors (plexiform neurofibromas) with
farnesyltransferase inhibitors has not resulted in reproducible tumor shrinkage to date.24

These seemingly disappointing clinical trial results may have been foreshadowed by elegant
genetically engineered mouse studies by Mahgoub and colleagues.25 Using their Nf1 leukemia
mouse model, they found that RAS inhibition by farnesyltransferase inhibitors attenuated the
growth of Nf1-deficient mouse leukemic cells in vitro, but had no effect on leukemia
development in vivo. One possible explanation for these results is preferential regulation of
specific RAS isoforms by neurofibromin. Using Nf1-deficient mouse astrocytes, we first
demonstrated that neurofibromin loss results only in K-RAS activation, despite the fact that
all three RAS isoforms (H-RAS, K-RAS, and N-RAS) are expressed in astrocytes.26
Moreover, optic glioma formation in Nf1+/− mice is induced by K-RAS (but not H-RAS)
activation in astroglial cells in vivo. Recent studies have now shown that neurofibromin
selectively regulates specific RAS isoforms in other cell types,27,28 suggesting that future
therapeutic approaches will need to target the RAS isoform that is specifically hyperactivated
in any given cell as a result of neurofibromin loss.

To identify other signaling intermediates activated by neurofibromin loss in primary mouse
astrocytes, we used a proteomics-based approach. We found that a large number of proteins
involved in ribosomal biogenesis and protein translation control were increased in Nf1−/−
astrocytes relative to wild-type controls.29 Consistent with this observation, protein translation
was increased fivefold to eightfold in Nf1-deficient astrocytes. One of the major signaling
pathways responsible for regulating protein translation is the mammalian target of rapamycin
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(mTOR) pathway (Figure 2). mTOR is a large serine/threonine protein kinase molecule that
integrates a diverse number of extracellular cues (eg, hypoxia, amino acid availability).30,31

Recent studies have shown that one way mTOR regulates ribosomal biogenesis and protein
translation is by modulating the synthesis of a nucleolar shuttling protein called
nucleophosmin.32,33 In part, nucleophosmin functions to chaperone newly synthesized
ribosomal subunits from the nucleolus to the cytoplasm, where protein translation occurs.34
In this fashion, mTOR regulation of nucleophosmin controls the rate of protein synthesis at
the level of the ribosome. We have shown that neurofibromin regulates nucleophosmin levels
in astrocytes in a mTOR-dependent, rapamycin-inhibitable fashion in vitro and in vivo.33
Moreover, inhibition of nucleophosmin nuclear shuttling reverses the abnormal cellular
phenotypes (proliferation, motility, and actin cytoskeleton organization) found in Nf1-deficient
astrocytes. Studies are ongoing to determine precisely how nucleophosmin regulates protein
translation at the ribosome and to identify specific translationally regulated transcripts that
underlie the various Nf1-deficient cellular phenotypes.

Similar to deregulated RAS activity, mTOR activation is a common feature of sporadic low-
grade glioma. In this regard, several key glioma-associated genetic changes result in increased
mTOR activity (Figure 2). The inherited tumor predisposition syndrome, tuberous sclerosis
complex, results from inactivating mutations in the tuberous sclerosis complex genes, TSC1
and TSC2.35,36 The gene products of TSC1 (hamartin) and TSC2 (tuberin) form a single
signaling complex that functions to negatively regulate the small RAS-like protein, Ras
homolog enriched in brain (Rheb), which in turn binds to and activates mTOR.37-39 Loss of
TSC function results in increased Rheb activity and high levels of mTOR pathway activation.
Moreover, inhibition of mTOR function using rapamycin results in decreased growth of human
tuberous sclerosis complex–associated brain tumors.40

Mutational inactivation of the PTEN gene is a common genetic signature of high-grade glioma.
41 PTEN is a negative regulator of the phosphoinositol-3-kinase protein,42 such that PTEN
loss in human and mouse tumors leads to high levels of Akt activity. Akt can either directly or
indirectly activate mTOR by phosphorylating tuberin to result in loss of TSC complex function,
high levels of Rheb activity, and mTOR activation.43-45 Lastly, mutational activation of
EGFR is also observed in many high-grade gliomas.46 Increased EGFR signaling leads to
increased RAS and phosphoinositol-3-kinase activity, which culminates in increased mTOR
activation. Taken together, while NF1 loss only accounts for a small fraction of all low-grade
glioma-associated genetic changes, the identification of mTOR as a target for neurofibromin
growth regulation has expanded our understanding of the key growth control pathways
operative in glioma, and suggests that additional low-grade glioma genetic changes will be
identified by virtue of their ability to result in increased mTOR pathway activation.

Stromal Influences
As does the developing brain, neoplastic glial cells respond to both positive and negative signals
that emanate from cells in the local tumor microenvironment. In addition to non-neoplastic
glial cells and neurons, at least two other important cell types (endothelial cells and microglia)
that can influence tumorigenesis and growth derive from the normal brain (Figure 3).
Endothelial cells lining the tumor vasculature not only produce a vast number of growth-
promoting molecules but may also create a specialized cellular niche for progenitor cells
important for tumor viability.47 In addition, immune system macrophage-like cells (microglia)
are also found in human brain tumors.48,49 These cells likewise elaborate a large number of
growth factors and cytokines that could potentially dictate when and where tumors form.50,
51 Collectively, these findings support the notion that low-grade gliomas represent complex
cellular microcosms composed of neoplastic glial cells nested within an environment rich in
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growth factors that recapitulate some of the cues that regulate normal brain development during
embryogenesis.

Insights into the role of the tumor microenvironment have derived from experiments in which
mice were engineered to lack Nf1 expression in astrocytes or Schwann cells. Because optic
gliomas and neurofibromas in humans are associated with NF1 loss in glial and Schwann cells,
respectively, mice lacking neurofibromin in these cell types might be predicted to develop
gliomas and neurofibromas. While these mice had increased numbers of glial and Schwann
cells, they did not develop gliomas or neurofibromas.52,53 Because individuals with
neurofibromatosis type 1 start life with one mutated (nonfunctional) NF1 gene in all cells of
their body and lose the one remaining functional allele only in select glial or Schwann cells to
result in glioma or neurofibroma formation, Nf1+/− mice (harboring one mutated and one
wild-type Nf1 gene) that lack neurofibromin expression in glial or Schwann cells were
developed. Nf1+/− mice with Schwann cell neurofibromin loss developed neurofibromas,52
while Nf1+/− mice with neurofibromin loss in glial cells formed optic gliomas.54 These results
strongly suggested that Nf1+/− cells in the tumor microenvironment are crucial for tumor
formation in both the central and peripheral nervous system.

Based on the observation that microglia are found in human low-grade gliomas as well as in a
genetically engineered Nf1 mouse optic glioma model,55 studies were designed to address the
possibility that Nf1+/− microglia have unique properties relevant to promoting the growth of
Nf1−/− astrocytes.56 First, Nf1+/− microglia were shown to proliferate faster than wild-type
microglia in vitro. Second, inactivation of microglia in Nf1 genetically engineered mice
resulted in reduced optic glioma proliferation in vivo. Third, Nf1+/− microglia elaborate
paracrine factors that increase the proliferation of Nf1−/− but not wild-type, astrocytes in vitro.
One of these factors was hyaluronidase, an enzyme that degrades hyaluronan, a component of
the extracellular matrix, and influences both cell proliferation and motility.57 Lastly,
hyaluronidase promotes Nf1-deficient astrocyte proliferation by signaling through the
neurofibromin-regulated mitogen-activated protein kinase (MAPK) pathway. Taken together,
these data support a clear role for microglia in neurofibromatosis type 1–associated glioma
growth and suggest therapeutic approaches that target either microglia or microglia-produced
growth factors should be considered.

In addition to hyaluronidase, Nf1+/− microglia also produce increased levels of a cytokine
termed CXCL12 or stromal-derived growth factor-1α (SDF-1α) that modulates both RAS
activity and cyclic AMP levels.58 Previous studies have shown that another function of
neurofibromin is regulation of intracellular cyclic AMP levels, such that loss of neurofibromin
in astrocytes and other cell types leads to reduced cyclic AMP generation.59,60 Examination
of both neurofibromatosis type 1–associated human and mouse optic gliomas revealed that
CXCL12 was not only produced by microglia but also by endothelial cells and neurons.61
Interestingly, in these studies, CXCL12 expression was found to be highest along the optic
pathway in young mice. This regional and spatial pattern of expression raises the possibility
that glioma formation in the optic pathway in young children with neurofibromatosis type 1
may reflect the availability of a critical ligand, CXCL12, that dictates where and when tumors
grow. Support for this hypothesis derives from the observation that CXCL12 promotes Nf1−/
− astrocyte survival in a cyclic AMP-dependent fashion, whereas CXCL12 treatment leads to
cell death (apoptosis) in wild-type astrocytes.

Lastly, the tumor microenvironment might not only influence glioma formation by providing
critical developmentally regulated growth-promoting signals but also by generating cellular
niches for specific cell types important for tumor maintenance. Recent studies have shown that
a small proportion of cells present in human gliomas have stem cell-like properties and may
be critical for the generation (or maintenance) of the tumor.62 In this regard, glioma stem cell-
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like cells can be isolated and shown to have properties attributed to normal neural stem cells
(the ability to undergo self-renewal and multilineage differentiation).63,64 Moreover,
transplantation of these cells into naïve mouse brains leads to the formation of a glioma that is
histologically identical to the original tumor.65

Neural stem cells reside in specialized cellular compartments rich in blood vessels, suggesting
that endothelial cells might provide unique signals important for stem cell maintenance.
Support for this idea derives from elegant experiments by Calabrese and colleagues in which
they demonstrate that glioma stem cell-like cell survival in vitro and in vivo is enhanced by
endothelial cells.47 Because pilocytic astrocytomas are rather vascular tumors, it is possible
that therapeutic agents that target the tumor vasculature will have the added effect of
eliminating the cells in the tumor most responsible for tumor growth and maintenance.66

Genomic Influences
Epidemiologic studies focused on identifying environmental causes for brain tumors have
largely been negative, with the notable exception of radiation exposure. While there may be
no discernible connections between environmental exposure and glioma development, recent
investigations have found that polymorphisms in the mouse genome may account for
differences in glioma susceptibility. Seminal studies by Reilly and colleagues have shown that
mice heterozygous for mutations in the Nf1 and p53 genes (NPCis mice) are prone to the
development of malignant peripheral nerve sheath tumors or gliomas, depending on the genetic
background of the mice.67 In this regard, NPCis mice maintained on a 129 inbred background
do not develop gliomas, whereas NPCis mice on the C57BL/6 background develop gliomas
(Figure 4). The investigators used advanced mouse genetic mapping techniques to localize a
mouse glioma susceptibility gene to mouse chromosome 11.68 These exciting findings suggest
that one important determinant influencing glioma formation is the genetic background,
namely genetic polymorphisms in the genome that modify the effects of glioma-causing genetic
changes. Future work in both mice and humans may lead to predictive testing for glioma
susceptibility.

Preclinical Mouse Glioma Models
The development of robust small-animal models of neurofibromatosis type 1–associated optic
glioma provides unique opportunities not only to define the molecular and cellular pathogenesis
of gliomagenesis but also to improve the treatment of individuals with these low-grade brain
tumors (Figure 5). Investigations focused on identifying the critical molecular signals and
participating cells in glioma formation and growth provide exceptional opportunities for
discovery-based activities. As described above, future therapies may result from targeting
different cell types within the tumor microcosm, including glioma stem cell-like cells,
microglia, and endothelial cells as well as neutralizing or inhibiting stroma-derived signals that
emanate from the tumor microenvironment (eg, hyaluronidase, CXCL12). These newly
identified therapeutic targets can subsequently be evaluated in preclinical genetically
engineered mouse treatment studies to determine their efficacy in the intact animal under
conditions that most closely recapitulate glioma formation in humans.

Importantly, small-animal low-grade glioma models may be used to identify surrogate markers
of tumor progression or response to therapy. Current endpoints in human clinical trials of low-
grade glioma employ changes in overall tumor size as measured by magnetic resonance
imaging (MRI). Given the slow growth rate and infiltrative nature of these tumors, a reduction
in overall tumor volume may not be an adequate endpoint measure. Advances in small-animal
imaging now provide opportunities to exploit MRI to obtain information about the efficacy of
chemotherapy using diffusion-based methods. While this has not been applied to low-grade
glioma, experiments initially performed in rodent high-grade glioma models and later in human
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malignant gliomas have shown that changes in water diffusion significantly predate changes
in tumor size.69,70 The ability to use MRI as a predictive measure of tumor response to therapy
affords unprecedented opportunities to change therapy early during the course of treatment.

In addition to radiologic biomarkers, small-animal models allow investigators to obtain body
fluids for analysis. The identification of serum or cerebrospinal fluid biomarkers of glioma
disease activity would likewise provide surrogate measures of tumor growth and/or response
to therapy. As a proof of concept exercise, we studied our Nf1 optic glioma mouse model to
identify cerebrospinal fluid proteins overexpressed in tumor-bearing, but not in control, mice.
One such marker, methionine aminopeptidase-2, was shown to be overexpressed in optic
gliomas from both mice and children with neurofibromatosis type 1.71

Genetically engineered mouse models also can be used to evaluate candidate therapies.72
Using the Nf1 optic glioma mouse model, we have recently shown that temozolomide
monotherapy results in decreased glioma proliferation, increased glioma apoptosis, and
decreased tumor volume.73 Because optic gliomas can be detected in these mice using MRI,
74 tumor-bearing mice can be randomly assigned to treatment or control arms, and the effect
of therapy on tumor growth assessed. Current studies in our laboratory and others using
biologically based therapies (eg, rapamycin) highlight some of the important information that
can be derived from preclinical studies using Nf1 genetically engineered mouse models. First,
one can determine whether the drug reaches its target and inhibits the molecule against which
it is primarily designed (“target validation”). Second, the ability of the drug to inhibit other
pathways against which the drug was not originally designed can be assessed (“off-target
effects”). Third, the mechanism underlying reduced tumor growth can be determined. For
example, the ability of the drug to cause cell death (apoptosis) versus reversible effects on cell
proliferation can be measured. Similarly, the effect of the drug on stromal cells and glioma
stem cell-like cells can be determined to identify the true cellular target of the drug. As such,
it is possible that a drug could effectively inhibit differentiated glioma cell growth with little
or no effect on cancer-generating cells. Similarly, a drug could target the endothelial cells
without a demonstrable impact on neoplastic tumor cells.

Lastly, it is important to use small-animal models to determine why certain therapies might
fail. In addition to the reasons outlined above, defining tumor escape mechanisms (eg, feedback
loops, activation of other signaling pathways) are critical to the design of future anticancer
drugs.75-77 As we move into an era of personalized medicine, it is important to begin to
develop therapies that maximally inhibit tumor growth by disabling the cells most essential
for continued glioma growth, blocking the intracellular and stroma-derived signals that drive
glioma growth and preventing or minimizing the ability of the tumor cell to evade the effect
of the anti-cancer drug.
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Figure 1.
Low-grade glioma formation represents the composite effects of molecular changes that reflect
deregulated intracellular growth control pathways (intracellular changes), important cellular
and biochemical signals that emanate from the tumor microenvironment (stromal influences),
and modifier genes in the genome (genomic contributions).
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Figure 2.
Activation of the mammalian target of rapamycin (mTOR) pathway can result from numerous
glioma-associated genetic changes. Inactivation of the NF1 gene results in increased RAS
activity, which in turn leads to activation of phosphoinositol-3-kinase and Akt. Increased Akt
activity leads to increased mTOR activation, either by direct activation of mTOR or via
phosphorylation and inactivation of the TSC signaling complex. Loss of TSC gene function
results in increased RAS homolog enriched in brain activity, which in turn results in increased
mTOR activity. In addition, the PTEN tumor suppressor gene is frequently mutationally
inactivated in gliomas, leading to increased phosphoinositol-3-kinase activity and mTOR
activation. Similarly, mutational activation or constitutive signaling through receptor tyrosine
kinases, such as EGFR, results in RAS and phosphoinositol-3-kinase hyperactivation and
downstream increased mTOR pathway activation.
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Figure 3.
The low-grade glioma microcosm is composed of numerous distinct cell types that each may
contribute uniquely to tumorigenesis and continued glioma growth. For example, microglia
and endothelial cells provide important stroma-derived signals that promote glioma growth.
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Figure 4.
Glioma susceptibility in mice is determined by modifier genes in the mouse genome. Studies
by Reilly and coworkers67 have shown that mice harboring the identical glioma-causing
genetic changes (combined Nf1 and p53 heterozygosity; NPCis mice) exhibit different
susceptibilities to glioma formation that reflects the presence of a glioma susceptibility locus
on mouse chromosome 11.
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Figure 5.
Genetically engineered mouse (GEM) glioma models provide unique opportunities to discover
and evaluate new therapies for human low-grade gliomas (for details, refer to the text).
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