
Achieving behavioral control with millisecond resolution in a high-
level programming environment

Wael F. Asaad* and
Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, 02114, USA

Emad N. Eskandar
Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA

Abstract
The creation of psychophysical tasks for the behavioral neurosciences has generally relied upon low-
level software running on a limited range of hardware. Despite the availability of software that allows
the coding of behavioral tasks in high-level programming environments, many researchers are still
reluctant to trust the temporal accuracy and resolution of programs running in such environments,
especially when they run atop non-real-time operating systems. Thus, the creation of behavioral
paradigms has been slowed by the intricacy of the coding required and their dissemination across
labs has been hampered by the various types of hardware needed. However, we demonstrate here
that, when proper measures are taken to handle the various sources of temporal error, accuracy can
be achieved at the one millisecond time-scale that is relevant for the alignment of behavioral and
neural events.

Keywords
Neurophysiology; Psychophysics; Matlab; Behavioral Control; Software; Cognition; Human;
Monkey

INTRODUCTION
Carefully designed and precisely executed behavioral tasks are the bedrock of modern
cognitive and systems neuroscience. Because of the crucial requirement for temporal precision,
the construction of these tasks has generally relied upon low-level programs written to function
on very specific video presentation and data acquisition hardware (Hays et al., 1982; White et
al., 1989–2008; Ghose et al., 1995; Maunsell, 2008). When this hardware becomes obsolete
or is discontinued, researchers must invest significant amounts of time re-writing the core, low-
level programs. Meanwhile, many researchers are comfortable with high-level programs, such
as Matlab, for data analysis, and would appreciate being able to code behavioral tasks in the
same, flexible manner. However, most share reasonable suspicions about the ability of such a
highly abstracted programming environment executing on a non-real-time operating system to
deliver temporally precise control over behavior. Fortunately, as we show here, when the
relevant issues are managed appropriately, behavioral control software written in a high-level

*Corresponding Author, Address: Department of Neurosurgery, Edwards Building, Room 426, Massachusetts General Hospital, Boston,
MA, 02114, E-mail: wfasaad@alum.mit.edu, Phone: 617-905-7691, Fax: 617-726-2310.
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
J Neurosci Methods. Author manuscript; available in PMC 2009 August 30.

Published in final edited form as:
J Neurosci Methods. 2008 August 30; 173(2): 235–240. doi:10.1016/j.jneumeth.2008.06.003.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



programming environment can achieve the performance necessary for millisecond-scale
temporal accuracy and reproducibility.

Below, we identify several potential obstacles to precise and reliable timing in a high-level
software environment, and show data to determine which of these represent true problems; we
then present our solutions to these problems as they arise. Some issues presented here are well
known and have generally accepted solutions. Others have been appreciated in a qualitative
sense, but have not been quantitatively characterized, if at all. A few issues have not been
previously discussed in the literature, and may affect some software systems currently in use
for behavioral control. Our treatment of these issues is intended to apply in a general manner
to anyone who is considering writing behavioral control software in a high-level programming
environment.

MATERIALS AND METHODS
Our test system was composed of a Dell Computer with a Pentium Core 2 Duo processor (model
6300) running at 1.86 GHz and containing 1 GB of RAM (Dell Inc, Round Rock, TX). The
operating system was Microsoft Windows XP, service pack 2 (Microsoft, Redmond, WA).
The graphics hardware in this machine consisted of an nVidia Quadro NVS 285 with 256 MB
of video RAM. Output from this dual-headed graphics card was split to a subject display
running in full-screen mode at a pixel resolution of 800 × 600, and an experimenter’s control
display, running in windowed mode at a resolution of 1024 × 768. The displays were standard
cathode-ray tubes measuring 15 inches in the diagonal, also from Dell. For the tests reported
here, the displays refreshed at 60 Hz.

Data acquisition boards consisted of two PCI-6229 multi-function devices (a.k.a., DAQ
boards), each connected to a BNC-2090a break-out box (National Instruments, Austin, TX).
We also tested two National Instruments USB-6009 devices, for comparison. A Plexon neural
data acquisition system (Plexon Inc, Dallas, TX) was used to compare time-stamps sent
digitally by these boards with a signal from a photoresistor positioned against the subject’s
display.

Matlab software (version r2007b, The Mathworks Inc, Natick, MA), including the Data
Acquisition Toolbox and the Image Processing Toolbox, was used to write the behavioral
control software tested here, and to analyze timing data, as described below. Matlab was run
in the default, non-multi-threaded mode. Matlab figures (those created using the built-in
graphics functions) relied upon OpenGL with hardware acceleration enabled. Low-level
routines for video control (based on DirectX from Microsoft Corp.) were obtained through the
generosity of Jeffrey S. Perry at the University of Texas at Austin. All tests were run within
Matlab with the Java Virtual Machine disabled (launched by typing “matlab–nojvm” at the
windows command prompt).

To optimize performance, a streamlined system profile was created from which unnecessary
devices (i.e., network, security, and printer-related devices) were removed. For the timing tests
described here, Matlab was the only application running. In addition to essential windows
system processes and one Matlab process (matlab.exe), processes running at the time these
tests were carried out included ten from National Instruments (nidevmon.exe, nimxs.exe,
nidmsrv.exe, nitcidl5.exe, lkads.exe, lktsrv.exe, lkcitdl.exe, nipalsm.exe and nisvcloc.exe), and
two related to the Intel Application Accelerator (IAAnotif.exe and IAANTmon.exe).

RESULTS
In order to have true millisecond-level temporal resolution on standard PC with off-the-shelf
video display and data acquisition hardware, and running a modern multi-tasking operating

Asaad and Eskandar Page 2

J Neurosci Methods. Author manuscript; available in PMC 2009 August 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



system, several potential obstacles must be overcome or at least managed appropriately: 1)
Video displays are updated (refreshed) with a relatively slow periodicity that is not in any way
synchronized to a subject’s time-varying behavioral output; 2) Most data acquisition hardware
have on-board data buffers that temporarily store acquired analog samples before transferring
them to motherboard memory at relatively infrequent intervals, and so these data are not
available for behavioral monitoring until the transfers have taken place; 3) High-level
programming environments, such as Matlab, trade ease of coding for high costs in execution
speed, and furthermore run atop operating systems which are not are not “hard” real-time
capable. Therefore, they may be interrupted by competing processes and applications,
potentially resulting in unexpected delays in behavioral monitoring and control. Here we
examine each of these three issues in turn, and describe our solutions in each case.

Video Timing Issues
The first timing issue is a property of standard video display hardware. Strictly periodic video
refreshes result in relatively poor predictability of video stimulus timing relative to a subject's
time-varying behavior. In other words, if a visual stimulus is to be turned on after some
specified behavioral event (e.g., the subject fixates), and that behavioral event occurs 2
milliseconds after the latest refresh, the stimulus will not appear for another 8 milliseconds (on
a monitor running at 100 Hz, and disregarding the vertical blank interval). If, on the other hand,
the subject had fixated slightly later, say 7 milliseconds after the latest refresh, that stimulus
will appear only ~3 milliseconds later. (This does not take into account the position of that
stimulus on the screen when using a CRT: an image in the center of the screen will require
another n milliseconds for the raster beam to reach that point, where n is the refresh period
minus the vertical blank duration, multiplied by the fraction of the total raster travel distance
to the object, here 0.5). One way around this limitation (still used by many labs) is to employ
an LED array. However, many experiments designed to examine higher level sensori-motor
or cognitive behaviors require the ability to display more complex stimuli. In such cases, the
timing of the refresh (i.e., vertical blank) can be time-stamped to give an accurate indication
of when a visual stimulus was presented, even though this specific instant itself cannot be pre-
determined. We found that such a time-stamp generated from within Matlab had an accuracy
that was within one-millisecond of the actual appearance of the stimulus on the video display,
as determined using a photoresistor (standard deviation = 0.3 ms).

Furthermore, in order to minimize the lag between the software call to activate a stimulus and
its appearance, the relatively slower steps of creating a video memory buffer and copying image
data into that buffer can be performed in advance (e.g., during the inter-trial interval). Then,
during trial execution, the appropriate buffers can be “blitted” to the video back-plane (a very
fast operation on modern graphics hardware). Once this back-plane has been fully populated
with those stimuli that are intended to appear simultaneously, this back-plane can be “flipped”
into the active (visible) position. While this preemptive strategy may necessitate copying
images into video memory that, depending on the subject’s behavior, may not actually be used,
the large amount of video RAM available on modern graphics cards allows more than sufficient
memory for hundreds, if not thousands, of images, depending on the size of each.

Data Acquisition Issues
The second timing limitation results from the manner in which analog data is transferred from
a data acquisition device (DAQ) to the PC. If the DAQ is set to acquire and store a continuous
stream of data (e.g., eye- or joystick-position data), this data is stored initially in a buffer on
the device itself and then uploaded to the PC in chunks at regular intervals. If one
simultaneously attempts to sample this analog input stream for on-line behavioral control, only
the last uploaded data point will be available. Therefore, if these uploads occur every 50
milliseconds (a value we found to be typical, using default settings in Matlab), the on-line

Asaad and Eskandar Page 3

J Neurosci Methods. Author manuscript; available in PMC 2009 August 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



sampled data will lag the actual signal by up to that amount of time. Nevertheless, in Matlab,
data is returned to the user at a much faster rate (at least 1500 samples per second can be
retrieved, and often many more, depending on the system configuration); however, the
retrieved data values will simply be copies of the last transferred data point until the next upload
(Figure 1). Thus, the raw number of samples retrieved is deceiving, and may have confounded
previously published attempts to achieve high-level behavioral control with millisecond
temporal resolution (Meyer and Constantinidis, 2005). We found that even if the buffer size is
shrunk so that these transfers are forced to occur more frequently, there was a ceiling to the
benefit provided by this tactic. Specifically, even after setting a buffer size that should allow
only one data point, gaps between transfers of around 15 milliseconds were still common
(Figure 1d), corresponding to a sampling rate of under 70 Hz (far less than is ideal for tracking
eye movements or other analog behavioral data).

One way around this problem would be simply to avoid logging analog input data to memory.
In this situation, one can sample data from many types of data acquisition devices even when
they are in a “free-running” state (i.e., not set to log data to memory or disk), and the values
returned will reflect the most recent state of the analog-to-digital converters. However, the
inability to store acquired data for post-hoc analysis is severely limiting. In such a case, no
continuous, regularly-sampled record of the behavioral signals will be available for post-hoc,
off-line analysis; this is because the data points sampled on-line (i.e., under software control)
will not be strictly clocked, but will instead occur at irregular, sub-millisecond intervals.
Therefore, we devised a simple solution to this problem: we split the analog input signal into
two identical data acquisition boards. One is set to log data to memory whereas the other is left
in a free-running state for on-line sampling. With this configuration, we found that unique data
samples could be retrieved at a rate well above 1 kHz (Figure 1c). In contrast, the rate of unique
sample retrieval with only one acquisition board was limited to 20–70 Hz (Figure 1b).

Under our conditions, and qualitatively agreeing with a previous report (Meyer and
Constantinidis, 2005), we found no temporal cost associated with sampling one vs. eight analog
channels. Thus, with two data acquisition boards, it is possible to sample and simultaneously
to store multiple behavioral signals with millisecond precision.

Importantly, we found that accessing data samples from USB DAQ devices took significantly
longer than from PCI devices. Specifically, using two USB-6008 devices from National
Instruments, the maximum number of unique samples retrievable per second was only 200 to
400 (compared with at least 1–2 kHz for PCI devices, above), despite the 10 kHz maximum
sampling rate of these devices. So, although these devices tend to be several hundred dollars
cheaper than the PCI devices, their slower performance may make them less suitable for real-
time behavioral control.

As an aside, we found that for sending digital event markers to separate neural data acquisition
systems, parallel ports were generally faster than the digital lines on the DAQ device. On our
test system, this difference was large: The per-operation time was 0.4 ms for the parallel port
versus 4 milliseconds for the DAQ digital subsystem. However, newer machines can achieve
significantly better performance: ~0.1 ms for the parallel port versus ~0.2 ms for the DAQ
(David Freedman, personal communication). Thus, because it takes two operations to send
each number (one to set the value bits, another to trigger the strobe bit), it is preferable on older
systems to use a parallel port for these operations.

Software Issues
Many behavioral researchers have significant concerns regarding the use of a high-level
programming environment running on a non-real-time operating system (e.g., Matlab on
Microsoft Windows) to control behavior with reliable millisecond temporal resolution. These

Asaad and Eskandar Page 4

J Neurosci Methods. Author manuscript; available in PMC 2009 August 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



concerns may be classified broadly into three categories: 1) concerns about the adequacy of
the average cycle-rate performance of such a system (that is, its ability to perform the basic
steps required for behavioral monitoring and control sufficiently rapidly to be able to repeat
these steps about every millisecond); 2) concern that there is simply too much temporal jitter
in a high-level application such as Matlab to provide accurate time-stamps; and 3) concerns
about the possibility of rare, unpredictable highlatencies introduced by software events
external to the experimental environment (e.g., the stealing of CPU time by background
applications). These are serious issues that must be resolved in order to have confidence that
behavior is being sampled with sufficient speed and without unexpected delays so that critical
measures such as movement and reaction times – in which milliseconds matter – are not
distorted.

The first concern, regarding the average speed of execution within a high-level programming
environment is easily allayed. Matlab running in an empty-loop (whose only function is to
time-stamp each successive cycle) can execute several hundred thousand cycles per second on
a modern PC running Windows (and over one million cycles per second have been measured
on the newest machines). Even when code is added to check analog inputs, transform these
into calibrated x-and-y coordinates, and check these coordinates against multiple possible
targets, the average cycle rate still approaches or surpasses one kilohertz on modern, multi-
core PCs (Figure 2). Thus, despite the use of a high-level, interpreted programming
environment such as Matlab, more than adequate average performance can be achieved using
standard computer hardware.

The second issue, concerning the degree of temporal jitter observed in time-stamps generated
by a high-level application such as Matlab, also turns out not to be significant. Using a separate
data acquisition system running at 40 kHz, we tested the jitter in the arrival times of 1000 event
markers sent one-at-a-time every 100 milliseconds. We found that 99.7 percent of time-stamps
arrived within 0.1 millisecond of their intended times (Figure 3). The largest error observed
was only 1.2 milliseconds.

The third concern, regarding the possibility of rare, unpredictable delays resulting from non-
experiment-related software events competing for CPU time, can also be shown to be
inconsequential in practical application. Specifically, we allowed Matlab to run an empty loop
continuously for one hour, time-stamping each cycle. We performed this test three times at
each of three process priorities allowed by Windows: “Normal,” “High,” or “Real
Time” (Figure 4). Setting the priority for matlab.exe as “High” or “Real Time” resulted in zero
latencies above one millisecond. Even at the lowest priority setting tested, no latencies were
measured to be above 1.3 ms over the entire hour this test was run. At the highest priority
setting, the longest observed latency was only half of this value, 0.6 milliseconds. These longer
latencies would occur relatively rarely: For example, at the highest priority setting, latencies
greater than 0.2 ms would be encountered only once every 8.2 seconds, on average. In practice,
we use software to increase the priority setting during the execution of a trial and decrease it
during the intertrial-interval. This is to allow background processes to use CPU time
preferentially during the inter-trial-interval, thereby hopefully lessening competing demands
on processor time during the trials themselves (this is borne out by a slight increase in the
number of cycles executed per second when a 2-second, low-priority “pause” is inserted
between 10 second epochs running at the highest priority).

While these three concerns are the ones most commonly raised regarding software timing
issues, there are at least a couple of other software-related timing matters that are must be
appreciated: 1) a slightly slower speed is consistently measured for the first versus all
subsequent trials; 2) there is a temporal cost of accessing the experimenter’s display to update
the behavior trace (e.g., a moving dot corresponding to eye or joystick position).

Asaad and Eskandar Page 5

J Neurosci Methods. Author manuscript; available in PMC 2009 August 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



First, an added temporal cost is associated with the initial execution of a software function in
an environment such as Matlab. This cost comes as a result of the time it takes to load the
function into memory, parse the commands in its script, and compile these commands into a
machine-executable format. Subsequent executions of the same function can rely in some part
on these pre-compiled sections of code. The practical result of these events is that the execution
speed of events within the first trial is somewhat slower than in subsequent trials. The exact
cost will vary greatly from task to task, depending on the type and number of sub-functions
called. To minimize this effect, one can load the function into memory and initialize its sub-
functions by running a “dummy” trial (executing a trial with null stimuli and subsequently
discarding any behavioral signals acquired). For example, in a task in which we were able to
initialize all top-level sub-functions, we found that the first trial was 3.6 +/− 2.5 (mean +/−
standard deviation) percent slower than the subsequent ones, whereas the same task showed a
7.3 +/− 1.6 percent first-trial cost when those functions were not initialized (t-test comparing
the means of the percent differences across the two cases: p < 0.01).

Second, because most users will want some sort of graphical feedback about the subject’s
behavior in near-real-time, there could be a temporal cost associated with these video activities,
even if this feedback takes the form of something as simple as a moving dot corresponding to
instantaneous eye-or joystick position. To assess the cost of this added functionality, we tested
the time required for periodic updates of the position of a dot in a Matlab figure window
(updated by issuing a “drawnow” command every 50 or 100 milliseconds), reflecting a varying
analog signal. We found that there is a fixed, one-time cost associated with accessing this
window (Figure 5). Subsequent updates do not result in similar time gaps. While the time lost
is relatively large (23 milliseconds, on our test machine), it occurred at a pre-determined
latency: that of the first update. Therefore, to minimize the impact of this phenomenon, it is
possible to perform the first graphical update upon the first cycle of the behavioral monitoring
loop, and thereby be confident that subsequent updates are not interfering with the millisecond-
by-millisecond sampling of behavior. Importantly, recognize that the “lost” time here results
simply in the lack of behavioral data sampling during that interval, not in the slippage of
temporal measurements or in erroneous time-stamps.

Note that drawing to the experimenter’s display window was accomplished by calls to Matlab’s
built-in graphics routines rather than through calls to the low-level graphics functions that
controlled the subject’s display in full-screen mode. Thus, a screen update resulting from the
“drawnow” command would appear at some later time, as allowed by OpenGL (the graphics
library used by Matlab) and the screen refresh rate. This delay was acceptable because updating
the experimenter’s (not subject’s) display had a relatively low-priority; all that was required
was the subjective impression that the eyeor joystick-position trace was moving smoothly. The
advantages of using Matlab’s high-level graphics functions included the ability to construct,
very simply, an information-rich display to aide the experimenter’s interpretation of behavioral
events in real-time, during task performance.

DISCUSSION
The potential timing limitations that must be overcome in order to monitor and control behavior
in a temporally precise manner can be handled effectively with a few simple strategies. In these
ways, one can achieve millisecond-level temporal precision and reliability for behavioral
experiments even when working in a high-level programming environment such as Matlab
running on a non-real-time operating system, using a relatively modest computer with off-the-
shelf graphics capability and commonly available data acquisition hardware.

Because a millisecond is a relatively course unit of measure by electronic standards, temporal
precision within this scale can be achieved on most occasions when the proper precautions are

Asaad and Eskandar Page 6

J Neurosci Methods. Author manuscript; available in PMC 2009 August 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



taken. Nevertheless, on a non-“hard”-real-time system, such as Matlab on Windows, no
guarantees can be made about timing, even at the 1 ms scale, because the predictability of
software events is limited by the design of the Windows operating system. Specifically, even
those processes designated as having a “real-time” priority can be pre-empted by both kernel-
level events and by interrupt requests, as well as by other processes with equally high-priority
(Ramamritham et al., 1998). While using systems with multiple processors may provide some
benefit, they do not alter the fundamental problem. Therefore, several steps can be taken to
minimize these temporal intrusions. First, because they are a source of interrupt requests,
unnecessary device drivers should be avoided (for example, by creating a hardware profile that
excludes them). Importantly, this includes network-related devices. Second, applications other
than Matlab should be closed (not simply minimized). Inspecting the list of running
applications and processes in the Windows Task Manager for unneeded activities is one way
to make certain the operating environment is streamlined. Lastly, because different behavioral
tasks can potentially place heavy demands on different aspects of the operating system and
hardware (e.g., varying graphics, disk and memory use), end-users should not take observed
timing accuracy in one task as direct evidence of satisfactory accuracy in another; thorough
testing must be performed to assess the performance of new behavioral paradigms and new
hardware configurations.

The occurrence of temporal “slips” (unexpectedly increased latencies) often can be detected
using time-stamps placed after critical behavioral events. These mark an event with reference
to the deterministic system clock. A delay in the appearance of an expected time-stamp can
then be used to reject trials in which timing constraints were not met. Of course, a delayed
time-stamp could also represent a “false-alarm” when the delay occurred in the processing of
that time-stamp itself and not in the preceding event. Fortunately, as we found above, such
temporal slips can be made very infrequent, and are rarely longer than a millisecond.

Once appropriate care has been taken to ensure accuracy in the three domains that are most
likely introduce temporal jitter and error (video output, data sampling, and software), the
reliance on a high-level language for behavioral control offers numerous benefits aside from
simply the ease of task coding and portability across a wider range of hardware platforms. In
particular, the simplicity with which new features can be coded encourages the development
of new functions that improve usability and record keeping. While in principle such benefits
could be realized in a low-level language, in practice, the difficulty and time-consuming nature
of programming in such a language hinders their development by those who would like to
spend their time designing and carrying out experiments rather than tweaking software. We
hope the ability to code at a higher level of abstraction will permit more careful attention to
task design and execution, thereby increasing the quality and range of behavioral paradigms
in-use.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGEMENTS
The authors thank David Freedman, Andrew Mitz, Ming Cheng, Tim Buschman, John Gale, Earl Miller and Camillo
Padoa-Schioppa for helpful discussions regarding the design and testing of our behavioral control software. We also
thank Jeffrey Perry for making the low-level graphics drivers publicly available and for his advice regarding their
implementation. Funding was provided by a Tosteson Fellowship from the Massachusetts Biomedical Research
Council (WFA), NEI 1R01DA026297 (ENE), NSF IOB 0645886 (ENE) and the HHMI (ENE).

Asaad and Eskandar Page 7

J Neurosci Methods. Author manuscript; available in PMC 2009 August 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



REFERENCES
Ghose GM, Ohzawa I, Freeman RD. A flexible PC-based physiological monitor for animal experiments.

J Neurosci Methods 1995;62:7–13. [PubMed: 8750079]
Hays, AV.; Richmond, BJ.; Optican, LM. A UNIX-based multiple-process system for real-time data

acquisition and control; WESCON Conference Proceedings; 1982. p. 1-10.
Maunsell, JHR. LabLib. 2008. http://maunsell.med.harvard.edu/software.html
Meyer T, Constantinidis C. A software solution for the control of visual behavioral experimentation. J

Neurosci Methods 2005;142:27–34. [PubMed: 15652614]
Ramamritham, K.; Shen, C.; Sen, S.; Shirgurkar, S. Using Windows NT for Real-Time Applications:

Experimental Observations and Recommendations; IEEE Real Time Technology and Applications
Symposium; 1998.

White, TM.; Norden-Krichmar, TM.; Benson, J.; Boulden, E.; Macknik, S.; Mitz, A.; Mazer, J.; Miller,
EK.; Bertini, G.; Desimone, R. COmputerized Real-Time Experiments (CORTEX). 1989–2008.
http://www.cortex.salk.edu/

Asaad and Eskandar Page 8

J Neurosci Methods. Author manuscript; available in PMC 2009 August 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://maunsell.med.harvard.edu/software.html
http://www.cortex.salk.edu


Asaad and Eskandar Page 9

J Neurosci Methods. Author manuscript; available in PMC 2009 August 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1. Analog Input Sampling and Aliasing
A 60-Hertz sinusoid resulting from ambient noise was amplified and fed into the data
acquisition system. (a) The original signal sampled at 1 kHz as logged to memory. (b) The
same signal simultaneously sampled by Matlab as fast as software allowed (~1.8 kHz). (c) The
same signal split and fed into a second data acquisition board, sampled while that board was
left in a non-logging (“free-running”) state. These figures demonstrate that when an acquisition
board is set to log data to memory or disk, that data becomes available to Matlab only after it
has been uploaded in chunks to motherboard memory. Attempting to simultaneously sample
this data, as in (b), results in the retrieval of the last uploaded data point, even that sample is
tens of milliseconds old. This produces an aliased image of the signal which is not adequate
for real-time behavioral control. Instead, data sampled from a second acquisition board, set
not to log data, provides an accurate, immediate record of the signal. In this way, data can both
be logged for post-hoc analysis and used for on-line behavioral control. (d) With the DAQ set
to acquire data at 1 kHz, the number of samples uploaded to memory is plotted against time
for two settings: the result using the default buffer size set by Matlab is depicted by the dotted
line, and result using the minimum allowable buffer size is depicted by the solid line. Shrinking
the DAQ’s buffer size provided a significant but limited benefit (gaps between uploads still
occurred, lasting about 15 ms). Thus, the two-DAQ solution offered the best performance.

Asaad and Eskandar Page 10

J Neurosci Methods. Author manuscript; available in PMC 2009 August 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. Cycle Rates Achieved on Different Machines
The ranges of observed frequencies at which computers with different levels of processing
power were able to execute the behavioral monitoring loop are shown. This loop involves signal
sampling, signal calibration, and target-checking. Included here, also, are periodic updates to
the control screen (to redraw the position of the eye-trace, visible only to the experimenter),
occurring every 50 to 100 ms. A) Intel Pentium 4 running at 2.4 GHz with an 800 MHz FSB.
B) Intel Core 2 Duo running at 1.86 GHz with an 800 MHz FSB. C) Intel Core 2 Duo running
at 3.4 GHz with an 800 MHz FSB. D) Intel Core 2 Duo running at 3 GHz with a 1333 MHz
FSB. Note that the bars around each point represent the approximate observed ranges, not
standard deviations. The exact value that would be observed within this range depends on the
particular task being run.

Asaad and Eskandar Page 11

J Neurosci Methods. Author manuscript; available in PMC 2009 August 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3. Event Timing
The temporal jitter obtained by time-stamping 1000 events, each 100 ms apart. The three dots
mark the three occurrences of jitter beyond 0.1 ms, the greatest of which was 1.2 ms late.

Asaad and Eskandar Page 12

J Neurosci Methods. Author manuscript; available in PMC 2009 August 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4. Process Priority and OS Delays
Latencies encountered within Matlab at three different process priorities on our test system
(see Methods for specifications), each tested over one continuous hour. Latency is plotted
against the number of events on a logarithmic scale. Note that as the process priority was
increased (the second and third graphs), the distribution of latencies shifted to the left.
Concomitant with this decrease in latencies, the number of cycles completed increased from
~566,000 to ~574,000 to ~587,000 as the Matlab priority was increased from “Normal” to
“High” to “Real Time.” In no case were there any latencies greater than 1.3 ms. At the highest
priority setting, latencies greater than 0.2 ms would be encountered only once every 8.2
seconds, on average. Because of the large number of samples collected over the course of each

Asaad and Eskandar Page 13

J Neurosci Methods. Author manuscript; available in PMC 2009 August 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



hour (yielding too many data points to hold all at once in memory), the following procedure
was used to generate these graphs: A time-stamp was retrieved at the beginning of each cycle
of a loop. The preceding time-stamp was then subtracted from the current one and the difference
was rounded to the nearest 0.1 ms. Then, the corresponding bin of a histogram vector
encompassing all time differences up to 100 ms (in 0.1 ms steps) was incremented (1000 bins
total). Importantly, any delays greater than 100 ms were put into the highest bin so as not to
be missed. This vector could then be used to generate directly these bar graphs. These measured
latencies, therefore, include these processing steps.

Asaad and Eskandar Page 14

J Neurosci Methods. Author manuscript; available in PMC 2009 August 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5. Actual Within-Task Behavioral Monitoring Performance
Plotted here is cycle number versus time, in milliseconds, on our test system (see Methods for
specifications). There is a linear relationship between these variables, demonstrating roughly
equal time intervals between samples. The one exception to this linearity occurs at the time of
the first call for a control-screen update (the issuing of a “drawnow” command at 50 ms for
the blue line and 100 ms for the red line); at that time, a gap of approximately 23 milliseconds
was measured, meaning the software was blind to changes in the behavioral signal during this
time. Importantly, no further such gaps are seen afterward, despite continued calls for updating
the control screen at regular 50 or 100 ms intervals. Note that the actual screen update is not
expected to occur at these times because of the slower refresh rate (60 Hz) and potential delays
within OpenGL (the graphics library used by Matlab). Unlike the subject’s display, the
experimenter’s display is low-priority (all that is required is a subjective sense of smooth
motion), so these delays were not considered problematic. In contrast to what is depicted here,
within our software, this first update is called in the first cycle, thereby fixing the expected
“blind” interval to the very beginning of the behavioral tracking period. Note also that there is
a slight difference in slope between the 50 and 100 ms conditions, reflecting fewer cycles
executed in the former case. This likely reflects added background cost when there is an
increased frequency of control screen updates (here, this cost is only on the order of 2 to 3
percent).

Asaad and Eskandar Page 15

J Neurosci Methods. Author manuscript; available in PMC 2009 August 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


