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The calcineurin/NFAT (nuclear factor of activated T-cells)
signalling pathway is essential for many aspects of vertebrate
development and is the target of the widely used immuno-
suppressive drugs FK506 and cyclosporine A. The basis for the
therapeutic specificity of these drugs has remained unclear, as
calcineurin is expressed ubiquitously. By inactivating calcineurin
during haematopoietic development, we found that although this
signalling pathway has an important, non-redundant role in the
regulation of lymphocyte developmental checkpoints, it is not
essential for the development of blood myeloid lineages. These
studies have shown that the specificity of calcineurin inhibitors
arises from the selective use of calcineurin at distinct develop-
mental stages. The requirement for calcineurin/NFAT in the
development of the adaptive but not of the innate immune system
is consistent with the idea that the evolutionary appearance of
this pathway was involved in the emergence of vertebrates.
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INTRODUCTION
The calcineurin/NFAT (nuclear factor of activated T-cells) signal-
ling pathway, originally discovered in lymphocytes, is important
in many aspects of vertebrate development, including axonal
guidance, vasculogenesis and cardiac morphogenesis. Ligation of
many receptors leads to a rise in intracellular calcium concentra-
tion and to the activation of calcineurin phosphatase by Ca2þ -
bound calmodulin. Dephosphorylation of the cytoplasmic sub-
units (NFATc) of NFAT transcription complexes by calcineurin

reveals the nuclear localization sequence and results in their
import into the nucleus, where they bind to DNA and regulate
transcription cooperatively with other transcription factors
(Crabtree & Olson, 2002). The important role of calcineurin/
NFAT signalling in the regulation of immune function is shown by
the fact that this pathway is the common target of two of the most
effective immunosuppressive drugs, FK506 and cyclosporine A
(Flanagan et al, 1991). The molecular basis of specificity of these
drugs in blocking immune responses is not clear; however, two
theories have been advanced. Specificity might arise from the
selective use of the ubiquitous pathway for specific developmental
steps. Alternatively, the main gain-of-function mechanism of
action of both cyclosporine A and FK506 would render cells with
lower concentrations of calcineurin paradoxically more sensitive
to the drugs. We investigated the role of this pathway in the
development of the haematopoietic system by deleting
the regulatory subunit calcineurin B1 (Cnb1) specifically in bone
marrow-derived stem cells. In adult mice all blood cells derive
from haematopoietic stem cells (Iwasaki & Akashi, 2007); there-
fore, deletion of a genomic locus in these cells results in deletion
in all haematopoietic lineages, thereby allowing identification of
the steps requiring a specific gene.

RESULTS AND DISCUSSION
Expression of Cnb1 and Cnb2 in haematopoietic lineages
The calcineurin complex is composed of a catalytic subunit,
calcineurin A (CNA), and a regulatory subunit, calcineurin B (CNB).
Three genes encode catalytic subunits (CnAa, CnAb and CnAg),
and two genes encode regulatory subunits (Cnb1 and Cnb2; Rusnak
& Mertz, 2000). Although CnAa, CnAb and Cnb1 are expressed
ubiquitously, expression of CnAg and Cnb2 is restricted to the germ
line. Deletion of Cnb1, therefore, results in a lack of calcineurin
enzymatic activity in non-germline cell types. Expression of NFATc,
CnA and CnB genes was verified by using reverse transcription–
PCR (RT–PCR) in several blood lineages (Fig 1A). Although Cnb1
was expressed in all cell types analysed, expression of Cnb2 was
detected, as expected, only in testis. This indicates that genetic
inactivation of Cnb1 would eliminate all calcineurin enzymatic
activity in bone marrow-derived blood lineages.
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Inducible deletion of Cnb1 in bone marrow cells
Cnb1 conditional knockout mice (Cnb1flox/flox; Neilson et al,
2004) were crossed with mice expressing the Cre recombinase
gene under the control of the interferon-inducible Mx-1 promoter
(Kuhn et al, 1995). This promoter drives deletion in all
haematopoietic cells and is induced by the administration of viral
mimics such as poly inosilic acid (poly I:C). After treatment, whole

or sorted bone marrow fractions from CD45.2þ control or CNB1-
deficient donors were isolated and transplanted into congenic
CD45.1þ recipients (B6.SJL; Fig 1B). The mismatched surface
markers CD45.1 and CD45.2 were used to monitor the efficiency
of reconstitution.

Whole bone marrow from mice treated with poly I:C was
analysed to assess deletion of the Cnb1 genomic locus. The Cnb1
locus was completely deleted in CNB1-deficient bone marrow
(Fig 1C). Control and experimental mice treated with poly I:C
showed no sign of toxicity and survived for more than 6 months
after treatment (data not shown).

CNB1 is not required for myeloid development
Traditionally, blood cells are categorized into lymphoid and
myeloid lineages. The lymphoid lineage comprises T, B and
natural killer cells. The myeloid lineage includes granulocytes,
monocytes, erythrocytes and megakaryocytes. Dendritic cells can
derive from both pathways (Iwasaki & Akashi, 2007). To analyse
the role of calcineurin in the development of myeloid lineages,
CD45.1þ lethally irradiated B6.SJL mice were injected with
CD45.2þ control or CNB1-deficient bone marrow. All trans-
planted chimaeras survived with no sign of disease and were
analysed 4 months after transplantation. All principal myeloid
blood lineages were effectively reconstituted by control and
CNB1-deficient bone marrow (Fig 2A–C).

When tissues obtained from mice reconstituted with CNB1-
deficient bone marrow were analysed, we observed complete
deletion of the Cnb1 genetic locus and a lack of protein expression
in bone marrow and spleen (Fig 2D,E). This indicated that cells that
escaped deletion were not responsible for the observed reconstitution.

We also examined the ability of CNB1-deficient bone marrow
to reconstitute myeloid lineages in a competitive setting by
transplanting CD45.2þ control or CNB1-deficient bone marrow
in a ratio of 1:1 with CD45.1þ B6.SJL whole bone marrow into
irradiated B6.SJL mice. Chimaeras were analysed 5–6 months
after transplantation. CNB1-deficient bone marrow competed
efficiently with wild-type bone marrow to generate granulocytes,
megakaryocytes, early erythroblasts and dendritic cells (Fig 2F).

CNB1 is required for B- and T-cell development
Common lymphoid progenitors can give rise to both T cells, in the
thymus, and B cells, in the bone marrow (Iwasaki & Akashi, 2007).
B-cell precursors at all stages of development can be found in the
adult mouse bone marrow and categorized into several fractions
designated A to F according to the expression of cell surface
markers (Hardy & Hayakawa, 2001). Two principal checkpoints
exist in B-cell development (Fig 3A). The first corresponds to the
rearrangement and selection of the immunoglobulin heavy chain
by pairing with the surrogate light chain to form the pre-B-cell
receptor (BCR; transition from Hardy’s fraction C to D). The
second corresponds to rearrangement and pairing of the
immunoglobulin light chain with the immunoglobulin heavy
chain to form the BCR (transition from Hardy’s fraction E to F;
Hayakawa & Hardy, 2000).

The development of immature T cells, or thymocytes, closely
parallels that of B cells (Melchers, 2005; Fig 3A). For thymocytes,
the first developmental checkpoint corresponds to rearrangement
of the T-cell receptor b-chain (TCRb) and pairing with the pre-Ta
to form the pre-TCR. Similar to the pre-BCR, the pre-TCR delivers
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Fig 1 | Inducible deletion of Cnb1 in bone marrow-derived lineages.

(A) Expression of components of the calcineurin/NFAT pathway was

analysed by RT–PCR on sorted cell populations. (B) Cnb1 conditional

knockout Mx-1Cre mice were treated with poly I:C to induce the

expression of Cre; whole or sorted bone marrow fractions from Cnb1-

deficient and control donors were transplanted into irradiated CD45.1þ

B6.SJL congenic recipients alone or in conjunction with CD45.1þ helper

B6.SJL bone marrow. (C) PCR of genomic DNA from tail or Cnb1-

deficient and control bone marrow after treatment with poly I:C.

BM, bone marrow; NFAT, nuclear factor activating T-cells; poly I:C,

poly inosilic acid; RT–PCR, reverse transcription PCR.
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survival/differentiation signals that allow the transition to the next
developmental stage (transition from the double negative 3/4 stage
to the double positive stage; Bhandoola et al, 2007). The second
checkpoint corresponds to rearrangement and expression of the
TCRa chain to form the abTCR. At this stage, thymocytes are
positively and negatively selected by peptide-major histocompati-
bility complex molecules, a process unique to developing
T cells (Starr et al, 2003).

First, we examined the role of calcineurin/NFAT signalling
in the development of B and T cells in a non-competitive
transplantation experiment, by transplanting whole CD45.2þ

control or CNB1-deficient bone marrow in CD45.1þ lethally
irradiated B6.SJL mice. As reported previously (Neilson et al,
2004), the deletion of Cnb1 resulted in a block of positive
selection, and impaired transition between the double-negative
and double-positive stages of development of thymocytes,
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but it had no major effect on B-cell development in the bone
marrow (Fig 3B–D).

To minimize the possible confounding effect of long-lived
B-cell precursors transplanted with unsorted whole bone marrow,
B- and T-cell development was also analysed by transplanting
sorted CD45.2þ control and CNB1-deficient progenitors (LSK,
Lineage�/lowSca1highcKithigh) mixed with CD45.1þ helper bone

marrow. Chimaerism was analysed 4–6 months after trans-
plantation. As the amount of chimaerism varied between animals,
the data were normalized to the percentage of chimaerism in the
myeloid compartment. In this setting, a clear impairment in the
progression past the pre-BCR (Fig 4A,B) and pre-TCR (Fig 4C,D)
checkpoints was observed in B- and T-cell precursors that
developed in the absence of calcineurin activity. Consistent with
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defective signal transduction downstream from the ab TCR, the
development of natural killer T cells, but not natural killer cells, was
also impaired in the absence of calcineurin (Fig 5A).

We also examined the development of gd T lymphocytes, a
subset of lymphocytes the lineage of which diverges from that of the
ab T-cell lineage at the double-negative 3 stage (Hayday, 2000).
CNB1-deficient gd T cells developed normally in the thymus, but

were absent in the spleen of transplanted animals, suggesting
that calcineurin might be required for gd T-cell survival and/or
proliferation in the periphery (Fig 5B,C). This is analogous to what
we and others have found when examining the effects of
inactivation of calcineurin on peripheral ab T cells (Fig 5D,E;
supplementary Fig 1 online; Manicassamy et al, 2008). The
delayed deletion of the Cnb1 locus by means of a Cre recombinase
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PE, phycoerythrin; TCR, T-cell receptor.
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driven by the CD4 promoter (Cnb1lox/lox;CD4cre) only mildly
affects thymic selection (supplementary Fig 1 online). However,
Cnb1lox/lox;CD4cre animals show severely reduced numbers of
peripheral ab T cells. Notably, the effects of calcineurin deletion in
peripheral ab T-cell activation and proliferation phenocopy the
effects of calcineurin inhibition by treatment with cyclosporine A
(Fig 5E; supplementary Fig 1 online).

Taken together, these data show that calcineurin is not essential
for the development of myeloid lineages, whereas it is selectively
required for the development of B and T cells. The development of
both B and T cells is impaired at the checkpoint that is regulated
by functionally related ‘pre-receptors’ (Melchers, 2005), the
pre-BCR and pre-TCR, respectively. In addition, the deletion of
calcineurin blocks positive selection of thymocytes. It has been
proposed that positive selection provides the same ‘proofreading’
function that is performed by the surrogate light chain during
B-cell development (Melchers, 2005). It is interesting to observe
that both processes depend on calcineurin/NFAT signalling
(Fig 3A, solid bars indicate developmental steps that require
calcineurin). The observation that calcineurin is not required
for the generation of gd T cells in the thymus is consistent
with the recent finding that ligand-dependent signalling by
the gd TCR is dispensable for the development of these cells
( Jensen et al, 2008).

The calcineurin inhibitors FK506 and cyclosporine A are
among the most effective of immunosuppressants and their
introduction in the 1980s revolutionized transplant therapy.
Although these drugs are relatively selective for the immune
system, they show mechanism-based toxicity in the kidney and
cardiovascular systems (Dumont, 2000); the basis of their
selective action on lymphocytes remains unknown. One
theory is that, as both drugs bind to intracellular receptors
producing a composite surface that blocks activity of calcineurin,
high levels of calcineurin might make cells paradoxically less
sensitive to the drugs; indeed this seems to be the case with
neurons (Graef et al, 2003). By contrast, the biologic and
therapeutic selectively might simply be a matter of use of the
ubiquitous pathway only by specific receptors. Our studies
show that the latter is the case for the haematopoietic system, as
we find only minor variations in the levels of calcineurin in
haematopoietic lineages (Fig 1A).

In summary, calcineurin/NFAT signalling seems to have an
important non-redundant role in the regulation of developmental
checkpoints of the lymphocyte, but it is not required for the
development of blood myeloid lineages. It is possible, however,
that the function of these cells might be compromised when the
calcineurin/NFAT pathway is inhibited.

Interestingly, the calcineurin/NFAT pathway is required for the
development of osteoclasts, which represent a vertebrate-specific
myeloid-derived lineage (reviewed in Takayanagi, 2007). These
findings are consistent with the idea that the emergence of
the calcineurin/NFAT pathway might have provided a new
signalling pathway for the development of vertebrate-specific
organs such as the combinatorial immune system and skeletal
system (Wu et al, 2007).

METHODS
Mice. Cnb1 conditional knockout mice (Neilson et al, 2004) and
Mx-cre mice (Kuhn et al, 1995) have been characterized. For the

induction of the Mx-cre recombinase in vivo, mice were treated
with five i.p. injections of 250 mg of poly-inosilic acid (poly I:C;
Invivogen, San Diego, CA, USA) every other day for 10 days.
Two days after the last injection, the mice were killed and
bone marrow cells were prepared using standard protocols. No
consistent differences were observed among mice transplanted
with bone marrow obtained from mice of the following genotypes:
Cnb1þ /þ -MxCre; Cnb1flox/þ -MxCre; Cnb1D/þ -MxCre; Cnb1flox/flox

or Cnb1flox/D; therefore, they are collectively referred to as ‘control
mice’. In addition, no differences were observed between mice
transplanted with bone marrow from Cnb1flox/flox-MxCre and
Cnb1flox/D-MxCre, and these mice were used interchangeably for
the experiments described in this study. Bone marrow derived
from these mice is referred to as ‘CNB1-deficient’ bone marrow.
Mice that express the cre recombinase under the CD4 promoter
(CD4cre; Lee et al, 2001) were purchased from Taconic (Hudson,
NY, USA) and crossed with Cnb1 conditional knockout mice.
Genomic PCR. Genomic PCR was performed on DNA extracted from
various tissues using standard protocols. The primers used for Cnb1
genomic PCR have been described previously (Neilson et al, 2004).
Bone marrow transplantation. CD45.1þ B6.SJL mice were
purchased from The Jackson Laboratory (Bar Harbor, ME, USA).
Bone marrow chimaeras were prepared using standard protocols.
Lethally irradiated (1250 rad) CD45.1þ B6.SJL mice were
reconstituted with 5–10 million bone marrow cells from sex-
matched CNB1-deficient and littermate control mice, alone or in a
1:1 mixture with CD45.1þ bone marrow from B6.SJL mice, as
indicated. For the analysis of lymphoid development, the Lineage
(Gr1, CD11b, CD3, B220, Ter119)� Sca1highcKithigh (LSK) fraction
of CNB1-deficient and control bone marrow was sorted on
BD FACSArias and transplanted together with helper CD45.1þ

bone marrow from B6.SJL mice (B10,000 LSKs per mouse;
2:1 LSK equivalents).
Immunoblotting of total cell lysate. CNB1-deficient and control
bone marrow cells and splenocytes were obtained by standard
procedures. Cells were lysed in lysis buffer (50 mM Tris, pH 8,
150 mM NaCl, 1% Triton X-100 and 1 mM dithiothreitol contain-
ing a mixture of protease inhibitors). SDS–polyacrylamide gel
electrophoresis and immunoblotting were carried out by standard
procedures. The following antibodies were used for immunoblo-
tting: anti-CNB1 (Upstate, Billerica, MA, USA), anti-Actin (Sigma,
St Louis, MO, USA).
Flow cytometry and peripheral T-cell activation. Single cell
suspensions from bone marrow, thymus and spleen were prepared
and stained using standard protocols for flow cytometry. Antibody
conjugates were purchased from eBioscience. Cellular subsets
were identified as follows: granulocytes, Gr1þCD11bþ ; mono-
cytes, Gr1�CD11bþ ; dendritic cells, MHC-IIþ CD11cþ ; erythro-
cyte progenitors, Ter119þ ; megakaryocytes, CD41þ ; bone marrow
B-cell subsets: fraction A, B220þCD43þ CD24�BP-1�; fraction B,
B220þCD43þ CD24þBP-1�; fraction C, B220þCD43þ CD24þ

BP-1þ ; fraction D, B220þCD43� IgM�IgD�; fraction E, B220þ

CD43� IgMþ IgD�; fraction F, B220þCD43� IgMþ IgDþ ; T-cell
subsets: double negative 1, Lineage�CD8�CD117þCD44þCD25�;
double negative 2, Lineage�CD8�CD44þCD25þ ; double negative 3,
Lineage�CD8�CD44�CD25þ ; double negative 4, Lineage�CD8�

CD44�CD25�; double positive, CD4þCD8þ ; CD4SP, CD4þ

CD8�TCRbhigh; CD8SP, CD4�CD8þTCRbhigh; natural killer
T cells, NK1.1þ TCRbþ ; natural killer cells, NK1.1þ TCRb�; gd
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T cells; gd TCRþ CD3eþ . Samples were acquired on BD LRSs,
and/or BD FACSArias, and analysed using FlowJos software.

CNB1-deficient and control thymocytes and splenocytes
were enriched for analysis of gd T cells with phycoerythrin (PE)-
conjugated gd TCR antibody (eBioscience, San Diego, CA, USA)
followed by anti-PE magnetic beads (Miltenyi Biotech, Auburn,
CA, USA) according to the manufacturer’s instructions.

For analysis of peripheral T-cell activation, cells were
stimulated with plate-bound anti-CD3 (10 mg ml�1) and anti-
CD28 (50 mg ml�1) for 48 h in the presence or absence of
cyclosporine A (100 nM). Cells were pulsed with 5-bromodeoxy-
uridine (BrdU; 10 mM) for the last 24 h of stimulation. BrdU
staining was performed with a BrdU BD Pharmingen kit according
to the manufacturer’s instructions.
Analysis of chimaerism in mice transplanted with LSK
progenitors. CD45.1þ B6.SJL lethally irradiated mice were
injected with CD45.2þ control or CNB1-deficient sorted LSK
progenitors together with helper CD45.1þ bone marrow from
B6.SJL mice. Mice were analysed 4–6 months after trans-
plantation. The following formula was used to indicate CD45.2
chimaerism normalized to chimaerism in the myeloid compart-
ment: (%CD45.2 in indicated population�%CD45.2 in Gr1þ

granulocytes)/%CD45.2 in Gr1þ granulocytes.
RNA isolation and RT–PCR. Total RNA was collected from sorted
populations with Trizols, followed by purification and on-column
DNase digestion with RNeasy mini kit (Qiagen, Valencia,
CA, USA) according to the manufacturer’s recommendations.
Complementary DNA was generated with SuperScripts II RT
(Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s
recommendations. Primers used for amplification of cDNA are
described in supplementary Table 1 online.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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