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ABSTRACT

Changes in gene expression play an important role in species’ evolution. Earlier studies uncovered
evidence that the effect of mutations on expression levels within the primate order is skewed, with many small
downregulations balanced by fewer but larger upregulations. In addition, brain-expressed genes appeared to
show an increased rate of evolution on the branch leading to human. However, the lack of a mathematical
model adequately describing the evolution of gene expression precluded the rigorous establishment of
these observations. Here, we develop mathematical tools that allow us to revisit these earlier observations in a
model-testing and inference framework. We introduce a model for skewed gene-expression evolution within
a phylogenetic tree and use a separate model to account for biological or experimental outliers. A Bayesian
Markov chain Monte Carlo inference procedure allows us to infer the phylogeny and other evolutionary
parameters, while quantifying the confidence in these inferences. Our results support previous observations;
in particular, we find strong evidence for a sustained positive skew in the distribution of gene-expression
changes in primate evolution. We propose a ‘‘corrective sweep’’ scenario to explain this phenomenon.

THE genetic mechanisms underlying the pheno-
typic evolution of species are still poorly under-

stood. More than 30 years ago, it was proposed that
regulatory changes may have played a major role in the
evolution of species and in particular in the rapid
emergence of human-specific traits (King and Wilson

1975). It appears likely that in general, gene-expression
levels are more closely related to the phenotypes upon
which selection acts than the DNA sequence itself, mo-
tivating the study of their evolution. With the advent of
microarray technology, the measurement of transcript
levels on a genomewide scale and across species and
individuals is now economical, opening the way for a
systematic study of gene-expression evolution.

Quantitative traits such as transcript expression levels
pose specific challenges. In contrast to sequence data,
the variance of quantitative traits includes components
of experimental error, and environmental and genetic
variation, besides the evolutionary component of in-
terest here. Separating these components is problem-
atic, making it difficult to establish in particular cases
whether or not the expression level of a gene has under-
gone a mutation. This difficulty may have contributed to
the fact that previous studies have arrived at different

conclusions as to the major modes of evolution of gene
expression, ranging from neutral evolution (Khaitovich

et al. 2004; De Meaux et al. 2005; Keightley et al. 2005),
to stabilizing selection (Denver et al. 2005; Gilad et al.
2005; Lemos et al. 2005), to directional selection (Gilad

et al. 2006).
Most recent studies of expression-level evolution have

compared variances within and between species and clas-
sified genes as either differentially expressed or un-
changed on the basis of thresholds of P-values obtained
from multifactorial linear modeling of fluorescent probe
log-intensity readings (Hsieh et al. 2003; Rifkin et al.
2003; Nuzhdin et al. 2004; Denver et al. 2005; Gilad

et al. 2006; Oshlack et al. 2007). The loss of information
inherent in such a dichotomous classification reduces
the power of this approach. In addition, the environ-
mental and genetic within-population components of
the variance of these log-intensity readings may differ
between species or experiments. These variance com-
ponents can be difficult to measure (Gilad et al. 2006),
but affect the power of the statistical tests and therefore
weaken the conclusions reached by these studies.

A more principled approach to study quantitative
traits is to explicitly model their evolution. In primates
and flies, it was observed that the squared deviation of
expression phenotypes increases linearly with diver-
gence time (Rifkin et al. 2003; Khaitovich et al. 2004,
2005b). This observation is compatible with neutral

1Corresponding author: MRC Functional Genetics Unit, Department of
Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1
3QX, United Kingdom. E-mail: gerton.lunter@dpag.ox.ac.uk

Genetics 180: 1379–1389 (November 2008)



diffusion-type models for quantitative trait evolution
(Edwards and Cavalli-Sforza 1964; Felsenstein

1973; Lande 1976; Lynch and Hill 1986; Turelli

et al. 1988; Lemos et al. 2005) as well as with directional
and stabilizing selection over sufficiently short time-
scales (Felsenstein 2004; Khaitovich et al. 2004;
Lemos et al. 2005). However, two aspects of gene-
expression evolution are not very well captured by these
diffusion-type models. First, while the traits themselves
are continuous, their heritable component is encoded
in DNA, and mutations may therefore be supposed to
occur as discrete events rather than as a continuous
diffusion. Although a continuous approximation is
justifiable over long times, for evolution over short time
intervals the granularity of the process might conceiv-
ably have an impact on observables. Second, the
spectrum of expression-level changes exhibits a skew,
so that while expression levels remain constant in
expectation, this appears to be brought about by many
small downregulations combined with fewer upregula-
tions of a larger average magnitude (Khaitovich et al.
2005b), a feature not accounted for in existing diffusion-
type models.

Here we introduce a new probabilistic model of gene-
expression evolution that incorporates these character-
istics. While probabilistic approaches have been used
extensively to study nucleotide and amino acid sequences
in an evolutionary perspective (methods reviewed in
Durbin et al. 1998; Felsenstein 2004), relatively few
authors have considered analogous methods, and in
particular likelihood models, to investigate the evolu-
tion of expression data, the characteristics of which
render the standard discrete-state models for nucleo-
tide evolution inadequate (Felsenstein 1973; Oakley

et al. 2005). Advantages of a probabilistic approach
include the ability to do parameter inference with con-
fidence intervals, to test the goodness-of-fit of alterna-
tive models, and to test hypotheses such as the existence
of a phylogenetic signal.

We are particularly interested in investigating whether
in recent evolution, more expression-level mutations
have occurred in the human or in the chimpanzee
branch. An analysis of gene-expression levels from hu-
man, chimpanzee, orangutan, and rhesus macaque
samples previously suggested that more changes have
occurred on the lineage leading up to humans (Enard

et al. 2002b; Khaitovich et al. 2005b, 2006; Lemos et al.
2005). Here, we revisit these original observations, both
the skew in the expression-mutation process and the
excess of mutations in the human branch.

Our model has a number of features that distinguish it
from previous approaches. One often-made assumption
is that mutations cause changes in the relative transcript
abundance, independent of the absolute level of expres-
sion. This would imply that the spectrum of expression
changes on a logarithmic scale is independent of the
absolute expression; however, we do not observe such

independence. Here, instead of making this assumption,
we replace the log transformation with a variance-
stabilizing transformation that explicitly accounts for
any level dependence of the interspecific variance, ex-
tending an approach introduced by Huber et al. (2002).
In addition, we account for intraspecific variance and
measurement errors by modeling the observed expres-
sion by a Gaussian distribution.

A second feature of our model is that we explicitly
model outliers. Since the evolutionary model is rela-
tively constrained, this outlier model ensures that
nucleotide mutations resulting in mismatching probes,
annotation errors, or indeed genes that have under-
gone strong directional selection do not dominate the
final likelihood and thereby unduly influence parame-
ter estimates. The proportion of genes that are deemed
to be outliers is estimated alongside the other model
parameters and provides an indication of the model fit
and data quality. We chose the infinite-variance Cauchy
distribution on a star-tree topology to model outliers, as
this heavy-tailed distribution allows wide outliers to have
relatively little effect on the likelihood.

To model the evolution along branches of the
phylogenetic tree, we use the compound Poisson model
introduced by Khaitovich et al. (2005b). In this model,
mutations are modeled as discrete events that occur at a
constant rate, and each mutation changes the intensity
by a random amount that is drawn from a specified
‘‘jump-size’’ distribution. This distribution, which has
mean 0, has two parameters determining its variance
and skewness. A nonzero skewness confers a direction to
the evolutionary process, and this time irreversibility
allows us to infer rooted phylogenies without reference
to an outgroup, even when expression profiles for only
two species are available. We compute the likelihood of
the data given the model and its parameters using an ex-
tension of Felsenstein’s pruning algorithm (Felsenstein

1981). The fast Fourier transform algorithm allows an
implementation that is efficient enough to use the
Bayesian Markov chain Monte Carlo approach to infer
parameters and credible intervals.

The expression level of a single gene, measured
across a number of species, does not contain sufficient
information to infer all model parameters. We therefore
combine data across many genes by making two addi-
tional assumptions: that expression levels evolve in-
dependently for each gene, and that the evolutionary
model is the same for all genes. While independence of
expression will not hold in general, we show by simu-
lation studies that the inference procedure is robust
against quite substantial departures from indepen-
dence. The second assumption, that genes in different
categories (for example, those expressed in the brain vs.
the liver) evolve according to the same rule, is not
satisfied (see, e.g., Khaitovich et al. 2005a; Voolstra

et al. 2007). Here, we have chosen not to complicate our
analysis by differentiating between classes of genes, but

1380 R. Chaix et al.



rather to provide an initial, broad view of gene-expres-
sion evolution. Nevertheless, the variation of mutations
rates and other evolutionary parameters across gene
type is a topic that clearly warrants further investigation.

Here, we test the ability of our method to estimate
branch lengths of two-species and three-species trees in
a simulation study. We find that our model is indeed
able to infer the correct phylogeny and branch lengths
within their confidence intervals. We then apply our
method to published sets of expression-profile data
on the brain of humans and related primates, to infer
the characteristics of the evolutionary process and the
branch lengths of the phylogenetic tree relating these
primates.

MATERIALS AND METHODS

Interspecies variance-stabilizing transformation: The model
defined below describes the evolution of a gene’s ‘‘trans-
formed expression,’’ E, rather than of the observed normal-
ized intensity I. This transformed expression E is related to the
observed intensity I through a transformation (unique up to a
linear change of scale) that renders the interspecific variance
vE independent of the expression level. If the transformation
from normalized intensity is E ¼ E(I), then vE ¼ vIð@E=@I Þ2,
so that vE is constant if EðI Þ ¼ c

Ð I
I0

v�1=2
I dI , with c and I0 arbi-

trary constants. For convenience, we first applied a log trans-
formation to reduce the range of v and fitted a piecewise
analytic function to the interspecific variance in log-transformed
coordinates to compute E(I); this is where we depart from
Huber et al. (2002), who use a two-parameter family for fitting.
To simplify comparisons, we chose c so that the range of
transformed expression levels roughly coincided with the
range of log-transformed raw intensities (�1–45). The same
transformation was used for all species, and we ensured that no
systematic across-species deviations remained by equalizing
the within-species medians.

Expression evolution along a branch: The evolution of
expression levels along a branch of the phylogenetic tree is
described by a compound Poisson process, with the rate
parameter fixed to 1 so that branch lengths are measured in
units of expected number of mutation events. This model was
proposed by Khaitovich et al. (2005b); however, rather than
using an extreme-value distribution to describe the changes of
expression due to a single mutation (the jump-size distribu-
tion), we here use a two-parameter distribution consisting of
an exponential distribution with density pE(x) ¼ (1/a)e�(x1a)/a

(x . �a if a . 0; x , �a if a , 0) convoluted with a Gauss
kernel with density pGðxÞ ¼ ð1=

ffiffiffiffiffiffiffiffiffiffiffi
2ps2
p

Þe�x2=2s2

. The resulting
distribution pD ¼ pE * pG, which has mean 0, variance s2 1 a2,
and skewness 2a3(a2 1 s2 )�3/2, has properties similar to the
extreme value distribution (in particular, it has a one-sided
heavy tail) but allows a better control of the skewness and
simplifies the application of the Fourier transform.

Starting from an initial expression of 0, the distribution of
expression levels pY,t after the compound Poisson process Y
has been allowed to run for a time t is calculated as pY,t ¼
F�1{exp[t(F(pD) �1)]}, where F and F�1 are the Fourier and
inverse-Fourier operators defined by F ðpÞ ¼

Ð ‘

�‘
eiuxpðxÞdx

and F �1ðqÞ ¼ ð2pÞ�1 Ð ‘

�‘
e�iuxqðuÞdu. To derive this, note that

the probability that n mutations occur in the time interval [0,
t] is e�ttn/n!, and the sum of n independent expression changes
drawn from D is distributed as pD* . . . *pD (n times), where * is
the convolution operator. Using F( f *g) ¼ F( f )F(g), the

distribution pY,t may be written as pY;t ¼ F �1fe�t
P‘

n¼0 tn

ðF ðpDÞÞn=n!g ¼ F�1fexp½tðF ðpDÞ � 1Þ�g. Evaluating the Four-
ier transform, we obtain

pY ;t ¼ F �1 e�t exp
t

1� iau
e�iau�u2s2=2

� �h i
: ð1Þ

Expression evolution in a phylogeny: To calculate the
likelihood of a configuration of expression levels on a binary
phylogenetic tree, we use a reverse traversal algorithm anal-
ogous to Felsenstein’s peeling algorithm. The algorithm com-
putes partial-likelihood densities La(xa) representing the
likelihood density of the observed transformed expressions at
the collection of node a’s descendant leaf nodes, conditional
on its expression level xa. To compute these, we denote the
immediate descendants of a by b and c. Let L9iðxaÞ; i ¼ b; c, be
the ‘‘pulled-back’’ partial-likelihood densities of the expres-
sion at i (or its descendants if i is not a leaf node) conditional
on the expression at a being xa. Integrating out all possible
mutations yields L9iðxaÞ ¼

Ð ‘

�‘
pY ;tðiÞðzÞLiðxa 1 zÞdz ¼ ð�pY ;tðiÞ *

LiÞðxaÞ, where z denotes the increase of expression due to
mutations along the branch from a to i, t(i) is the length of the
branch connecting nodes i and a, and �pðxÞ ¼ pð�xÞ. In terms
of these pulled-back likelihoods, the partial-likelihood density
at a is LaðxaÞ ¼ L9bðxaÞL9cðxaÞ (note that this density lives on a
space with as many dimensions as a has descendant leaves).
This computation is potentially slow, since to compute this
integral numerically, the x and z variables need to be dis-
cretized, and a naive implementation of the convolution is
quadratic in the number of discretization bins. However, it can
be computed in log-linear time by the fast Fourier transform
algorithm, using the relation f *g ¼ F�1{F( f )F(g)}. A further
simplification is obtained by a direct computation of the
kernel,

F ð�pY ;tÞ ¼ e�t exp
t

1 1 iau
eiau�u2s2=2

� �
: ð2Þ

The recursion ends with the computation of the likelihood
density at the root. The full likelihood under the evolutionary
model is obtained by integrating out the initial expression
level with a suitable prior distribution Pr(x), which we chose to
be uniform,

LðtreeÞ ¼
ð‘

�‘

PrðxÞLrootðxÞdx ¼ 1

2A

ðA

�A
LrootðxÞdx; ð3Þ

where A is a suitably large bound.
Intraspecific variance, measurement error, and random

physiological fluctuations were modeled for each gene in
each species by initializing the partial-likelihood densities
at the leaf nodes by a Gaussian distribution, with mean equal to
the observed transformed expression, and variance equal to the
observed variance.

Outlier model: The outlier model, which allows for broad
changes of expression level, makes the full model less sus-
ceptible to evolutionary and experimental outliers. The likeli-
hood of the outlier model is independent of the phylogeny
and is given by a product of Cauchy distributions,

Lout ¼
ð‘

�‘

Y
a

a

pða2 1 ðy � xaÞ2Þ
dy; ð4Þ

where a runs over all external nodes and a is a scaling factor,
which we set to a ¼ 1. The final likelihood is obtained by
considering the model where expression levels follow the
outlier model with prior probability p and otherwise follow the
evolutionary model, to obtain
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Lfull ¼ pLout 1 ð1� pÞLðtreeÞ: ð5Þ

Gene-expression levels are assumed to evolve independently,
so that the compound likelihood for a set of genes is the
product of the per-gene likelihoods. Finally, the full model
P (u, x), where u represents parameters and x transformed
expression levels, is obtained by multiplying the likelihood
with a prior P(u), which we chose to be uniform in all
parameters. The algorithm to compute the likelihood under
this model was implemented as an R module (available on
request), using the FFTW package for computing fast Fourier
transforms (Frigo and Johnson 2005). Discretization bins of
size 0.1 were used across the range 1–45.

MCMC inference: We implemented a Markov chain Monte
Carlo (MCMC) scheme to sample the model parameters a, s,
and p, as well as the branch lengths (denoted by, e.g., t1, t2, t3, t4
for the three-species tree in Figure 1) from the posterior
distribution defined by the model and the observed expres-
sion levels. Proposals consisted of the following types: (1) a
normally distributed additive change to one of the branch
lengths or one of the parameters a, s, and p; (2) a translation
of one of the internal nodes (including the root); (3) a change
of sign of a; (4) swapping two neighboring branch lengths
combined with a change of sign of a; (5) a rescaling of the
branch lengths a and s, leaving the total variance in the tree
unchanged, but scaling the expected number of mutations;
and (6) a rotation in a–s space, changing the shape of the
jump-size distribution, but leaving the total variance un-
changed. These proposals were assigned different probabili-
ties to optimize mixing, and each proposal (apart from types 3
and 4) had a scale parameter that was adjusted, during burn-
in, to bring the acceptance ratio within the range 10–25%.

Bayes factors were computed using models, by comput-
ing the ratio of posteriors P(x), themselves computed as
1=Eð1=Pðu; xÞÞ, where the expectation was taken over the
posterior, using the samples from P(u j x) generated in the
MCMC run. Finally, we used our procedure to do approximate
maximum-likelihood-ratio tests, by taking the maximum of the
likelihood density across samples from runs on two nested
models, accounting for the prior, and performing a standard
likelihood-ratio test on the resulting two maxima.

Simulation study: We generated expression data for samples
of size 100, 1000, and 10,000 for (A) three different species
under a given phylogeny (t1 ¼ 2, t2 ¼ 0.5, t3 ¼ 1, t4 ¼ 0.5; see
Figure 1) and for (B) two different species under the
phylogeny t1 ¼ 2, t2 ¼ 0.5. The intraspecific variance m was
fixed to 0.4. Samples were simulated for different values of
parameters a (�0.1 and �0.5), s (0.1 and 0.5), and p (0 and
0.01), corresponding in total to eight variations of the
evolutionary model (see Figure 2 for an illustration of these
variations). The expression level for the proportion p of
outliers was drawn from a Gaussian distribution with standard
deviation 10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 1 s2

p
.

To test the sensitivity of the method to a lack of indepen-
dence within the set of expression profiles, we generated
additional sets of interdependent expression profiles for two
species, taking a ¼ �0.5, s ¼ 0.1, and p ¼ 0 or 0.01. We first
simulated expression profiles for 100, 1000, and 10,000 tran-
scripts using the same protocol as above. We then replicated
each transcript x times, where x was drawn from a geometric
distribution with mean 6, to simulate sets of probes that refer
to the same transcript or several coregulated genes. Finally,
within each such set of probes, we added an error term drawn
from a Gaussian distribution of mean 0 and standard deviation
1.8, similar to the distribution of residuals observed in real
data, to simulate technical effects such as variation of hybrid-
ization efficiency as well as differences in expression between
coregulated genes and alternative transcripts.

We generated 20 replicates for each combination of
parameters (54 combinations, 1080 data sets). Each data set
was analyzed using a 200,000-sample MCMC chain, including a
burn-in period of 10,000 samples. Parameters were logged
every 25 samples. After conservatively discarding the samples
corresponding to the first half of each chain to allow for
convergence, we estimated, for each parameter, the median of
its posterior and its 95% credible interval, as well as the median
and quartiles over 20 runs.

Normalization of primate expression array data: We used
our method to analyze a data set of expression profiles in brain
for seven human (H), six chimpanzee (C), three orangutan
(O), and six rhesus macaque (R) samples produced using
Affymetrix U133plus2 arrays. On these arrays, 25mer oligonu-
cleotide probes were designed to hybridize to specific tran-
script targets. Typically, 11 probes were designed per human
target transcript, allowing both a reduction of noise and a
removal of probe sequence-specific effects (Wu et al. 2004). We
used the latest available human gene annotation (Ensembl
r42, December 2006) to assign probes to target genes as
described elsewhere (Dai et al. 2005). To minimize artifacts
that result from hybridizing chimpanzee, orangutan, and
macaque samples to arrays designed to assay human tran-
scripts, prior to the analysis, we masked all oligonucleotide
array probes that did not match perfectly the human (build
March 2006), the chimpanzee (build March 2006), and the
macaque genomes (build January 2006) as described else-
where (Khaitovich et al. 2004). The resulting consensus set of
probes contained on average 6 probes per target transcript
(probe-set size distributions are shown in supplemental Figure
1). It must be noted that sequence differences specific to the
orangutan genome were not masked by this procedure due to
lack of the orangutan genome sequence information.

For all data sets, probe level data were normalized, adjusting
for different backgrounds and overall hybridization intensities
of individual arrays. This conservatively normalized data set
with no secondary normalization (‘‘nn’’) was used in the sub-
sequent analysis. In addition, to assess whether results were
sensitive to further potential systematic differences between
measurements that were not explicitly included in our model
of expression evolution, probe-level data were quantile nor-
malized across all samples, resulting in the quantile-normalized

Figure 1.—Branch-length parameters for the two-, three-,
and four-species phylogenies considered. H, human; C, chim-
panzee; R, rhesus macaque; O, orangutan.

Figure 2.—Examples of four distributions of change mag-
nitudes used to simulate expression data, corresponding to
different values of the shape parameters a and s.
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(‘‘QQ’’) data set. Transcript expression estimates for both data
sets were obtained by robust fits of linear multichip probe-level
intensity models (Bolstad 2004). See supplemental informa-
tion for low-level analysis Q/C plots.

Our evolution model was then either (1) directly applied to
probe-expression levels (86,818 probes) or (2) used for an
analysis of gene-expression estimates from probe sets (11,309
probe sets). We performed analyses using no outgroup infor-
mation (HC data sets), using information from one outgroup
(HCR and HCO data sets), or using two outgroups (HCRO
data sets). In total 16 data sets were analyzed, each labeled by
the normalizing procedure and the included species, plus the
letter ‘‘p’’ when probe rather than probe-set intensities were
considered; for example, QQ-HCRp refers to the QQ data set
of probe (p) intensities in H, C, and R.

Major assumptions of the model were tested by exploring
intra- and interspecific variances as well as the distribution
skewness of the expression differences, in relation to tran-
script expression level. After QQ normalization, we variance
stabilized each data set to decouple the interspecies variance
from the mean intensity, according to the method described
above. Figure 3 shows the relationship of these variances with
mean intensity before and after this transformation for the
QQ-HCR data set (plots based on other data sets were very
similar). We checked that the skewness coefficient was con-
stant across the variance-stabilized expression scale (supple-
mental Figure 2), as assumed by our evolutionary model. For
low levels of expression, the intraspecies variance reaches
levels comparable to the interspecies variance, most probably
because of an increased influence of experimental noise (see
Figure 4). In this range, the signal contains virtually no infor-
mation, and to reduce computation time we removed these
data before applying the model (overall, 44.9% of probes and
16.4% of probe sets were removed). Finally, we summarized
the observed expression levels for each transcript and species
by the median of the expression levels across independent
samples (and within the probe set, when appropriate) and by
the standard deviation of the median of these expression levels
as estimated from a bootstrap procedure.

Supplemental information: Supplemental information is
available on the Genetics website. Data sets and low level analysis
are provided at http://bioinf.boku.ac.at/pub/Chaix2008/.

RESULTS

Simulation study: We evaluated the performance of
our inference procedure on sets of simulated data, us-
ing parameters comparable to those estimated from our
primate data set. Our primary interest is in the inference

of the distribution of expression changes parameterized
by a and s (see Figure 2) and the ratio of the branch
lengths of human to chimpanzee log2(t1/t2). Conse-
quently, we focused mainly on their inference. Table 1
provides a representative sample of the simulation
results; the full set of parameter inferences is given in
supplemental Tables 1–3.

Using a two-species tree with t1 ¼ 2 and t2 ¼ 0.5, we
performed simulations for various sets of evolutionary

Figure 3.—Relationship between the intraspe-
cific (solid lines) and interspecific (dashed lines)
standard deviation (y-axes) and the mean expres-
sion level (x-axes) before (a) and after (b) the in-
terspecific variance-stabilizing transformation, in
the QQ-HCR data set. The intraspecific variance
is not stabilized and is accounted for explicitly on
a probe-by-probe or a probe-set-by-probe-set basis
in the model.

Figure 4.—Phylogenetic trees inferred for QQ data sets.
The labels H, C, O, and R refer to human, chimpanzee, orang-
utan, and rhesus macaque, respectively.
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parameters and gene counts. The branch-length ratio
log2(t1/t2) and the parameters of the evolutionary
model a and s can be estimated accurately for a
sufficient number of transcripts (typically .100) and
moderate to large skewness (jaj$ s), making the model
sufficiently time irreversible. With insufficient skewness,
the model becomes nearly reversible, resulting in
conservative (near-zero) estimates of the log branch-
length ratio. As expected, confidence intervals decrease
with increasing number of genes and are reasonably
small for n $ 1000 genes; for instance, for a ¼ 0.5, s ¼
0.1, p¼ 1% outliers, and n¼ 1000 genes, we estimate in
the first of our 20 replicates a ¼ 0.48 (95% C.I. 0.40–
0.56) and s ¼ 0.13 (0.05–0.26). Replicating the simula-
tion 20 times for 36 sets of parameters, we found that
true parameters were outside estimated 95% C.I.’s in 5%
of the cases for log2(t1/t2), 8% for a, and 6% for s,
suggesting no systematic biases in the parameter or
confidence estimates (supplemental Table 1).

As for the three-species data sets, evolutionary param-
eters could be inferred with good accuracy even for as
little as n ¼ 100 genes when the model exhibits mod-
erate to strong skew (jaj $ s) (supplemental Table 2).
When the skewness is small (jaj , s), the number of
mutation events (i.e., the total branch length) and the
per-mutation variance a2 1 s2 become confounded: for
instance, for a ¼ 0.1, s ¼ 0.5, n ¼ 1000 transcripts, and
1% of outliers, the total number of events inferred on
the tree is overestimated (4.38 instead of 4) but the per-
mutation variance is underestimated (0.20 instead of
0.26). However, the total variance along branches (num-
ber of events times per-mutation variance), and conse-
quently the branch length ratio, can still be accurately
determined, showing that the presence of outgroup
data makes the procedure less reliant on the time
irreversibility of the model. Replicating the simulation
20 times, we found that true parameters were outside
estimated 95% C.I.’s in 9% of the cases for log2(t1/t2),
in 12% of the cases for a, and in 8% of the cases for s.
We conclude that (i) when skewness is moderate to
large (jaj $ s), parameters and branch lengths can be

consistently estimated for three-species and two-spe-
cies data sets, and (ii) for small skewness, the model
shows no evidence for nonzero skew and tends to
equilibrate the branch lengths in the absence of an
outgroup.

Finally, we evaluated the sensitivity of the method to
the occurrence of interdependent expression profiles.
This is obviously relevant when probe rather than probe-
set intensities are analyzed, in which case each transcript
is represented several times in the data set. Moreover,
both technical limitations of the arrays (like cross-
hybridization) and biologically related coregulated
genes are likely to contribute to correlation in expres-
sion data. We simulated data sets in which each in-
dependent expression measure is represented x times,
where x followed a geometric distribution with mean 6.
We assumed that the within-probe-set measurement
error followed a Gaussian distribution of mean 0 and
standard deviation 1.8, corresponding to our observa-
tions in the data sets. For a substantially skewed jump-
size distribution (a¼ 0.5 and s¼ 0.1), we found that the
method was able to accurately estimate log2(t1/t2) while
the estimate for a was fairly accurate; the parameter s

was, however, somewhat overestimated (supplemental
Table 3). For example, for a simulation of 6000 probes
with a ¼ 0.5, s ¼ 0.1, t1 ¼ 2, t2 ¼ 0.5, and 1% outliers,
log2(t1/t2) was 2.00 (1.49–2.51), a ¼ 0.43 (0.33–0.49),
and s¼ 0.30 (0.22–0.35). Replicating the simulation 20
times for six sets of parameters, we found that true
parameters were outside estimated 95% C.I.’s in 2.5% of
cases for log2(t1/t2), 22% for a, and 20% for s.

Application to primate expression profiles: We ap-
plied our method to sets of expression intensities in the
brain for H, C, O, and R samples, removing probes that
showed mismatches in either the chimpanzee or the
rhesus macaque genomes (in comparison to the human
genome) from all four data sets, and considered all
possible combinations of data sets that included human
and chimpanzee. Because the lack of genome sequence
meant that probes that did not match the orangutan
genome could not be masked (leading to notable

TABLE 1

A representative sample of simulation results

Outgroup
Probe

sets t1 t2 log2(t1/t2) a s p

No No 1.91 (1.72–2.08) 0.36 (0.27–0.52) 2.45 (1.83–2.75) 0.50 (0.48–0.54) 0.18 (0.12–0.18) 0.00 (0.00–0.01)
Yes No 2.02 (1.86–2.16) 0.49 (0.43–0.56) 2.00 (1.83–2.24) 0.50 (0.47–0.53) 0.12 (0.10–0.14) 0.01 (0.01–0.01)
No Yes 2.01 (1.39–2.40) 0.50 (0.37–0.64) 2.00 (1.49–2.51) 0.43 (0.33–0.49) 0.30 (0.22–0.35) 0.00 (0.00–0.00)
True parameters 2.00 0.50 2.00 0.50 0.10 0.01

Shown are medians and 25 and 75% quartiles for estimates of branch lengths t1, t2, and log2(t1/t2) and shape parameters a, s,
and outlier proportion p over 20 simulated data sets with parameters close to values inferred from actual data (see Table 2). In-
ferences were made from data without (two-species tree) or with a single outgroup (three-species tree) and using either 1000
probes or 1000 probe sets, each consisting of a geometrically distributed number (mean 6) of identical probes. Full simulation
results are presented in supplemental Tables 1–3.
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differences in the distribution of intensities of orangu-
tan in comparison to other species; see supplemental
Figures 3 and 4), we first focus our presentation of the
results on the HC and HCR sets and discuss the HCO
and HCRO data sets later.

We first tested whether the data contained a signifi-
cant phylogenetic signal, by running the MCMC pro-
cedure on all possible rooted phylogenies of human,
chimpanzee, and macaque and comparing the statistical
support for the true phylogeny to that for the alternative
phylogenies. Indeed, we found strong support for the
true phylogeny [Bayes factor 73 bits between true and
next-best phylogeny, that is, chimpanzee closer to ma-
caque than to human, ‘‘strong evidence’’ ( Jeffreys et al.
2005); approximate maximum-likelihood test, 2D log(L)¼
96, P , 10�5].

We next considered whether our data set exhibited a
significant skew in the expression-mutation distribution
or could be sufficiently well described with a zero-skew
model (a ¼ 0), which closely approximates a diffu-
sion model. We found that the skewed compound Poisson
model fit the data significantly better [Bayes factor
262 bits, ‘‘decisive evidence’’; approximate maximum-
likelihood test, 2D log(L) ¼ 342, P , 10�5; both using
the HCR set]. To illustrate the data, Figure 5 shows
the inferred jump-size distribution from the HC set
and histograms of simulated and observed expression
differences.

To investigate whether the expression-mutation distri-
bution shows a skew of the type observed by Khaitovich

et al. (2005a), namely, many small downregulations com-
bined with relatively fewer but larger upregulations
(positive skew; a . 0), we estimated parameters for all
four species sets considered. For the two-species phy-
logeny, the model has a mathematical symmetry involv-
ing swapping the branches and changing the sign of a,
and we consequently fixed the sign of a for the HC set,
but not for the other sets. The estimates for a on the HC
and HCR sets were 0.58 (95% C.I. 0.53–0.62) and 0.44
(0.41–0.46), respectively (see Table 2). We also applied
our inference procedure directly on the probes (86,818
probes from 11,309 probe sets) to test the robustness of
our results against errors in gene or chip annotations,
resulting in similar estimates [HC, a¼ 0.53 (0.50–0.55);

HCR, a¼ 0.31 (0.29–0.33); Table 3] and confirming the
skew previously reported. The s-parameter was esti-
mated to be comparatively low at 0.07 (0.05–0.12) for
HC and 0.08 (0.05–0.11) for HCR, and similar estimates
were obtained on raw probe data [HC, 0.06 (0.05–0.1);
HCR, 0.24 (0.22–0.26)]. To test whether different
normalization procedures influenced these results, we
also applied the inference procedure on the data set
without interspecies QQ normalization (nn). Inferen-
ces on both the HC and the HCR sets were similar to
those obtained on the QQ set (supplemental Tables 4
and 5).

Estimates of the branch lengths from human (t1) and
chimpanzee (t2) to their most recent common ancestor
of human and chimp were consistent between the data
sets, both for t1 [HC, 1.42 (1.25–1.65); HCR, 1.19 (1.1–
1.31)] and for t2 [HC, 0.42 (0.33–0.52); HCR, 0.42
(0.36–0.48)], as expected since our simulations showed
that in these parameter ranges (jaj . s), the evolution-
ary parameters and branch lengths can be accurately
estimated even for just two species. The ratio t1/t2 was
estimated separately at 3.38 (2.66–4.43) for HC and 2.87
(2.43–3.42) for HCR. Similar estimates were obtained
for raw probe data [HC, 3.07 (2.76–3.5); HCR, 2.14
(1.99–2.32)], suggesting that more gene-expression
changes have occurred on the human than on the chim-
panzee branch since the split with their most recent
common ancestor.

Finally, we analyzed the data sets that include orang-
utan. On the HCO set, estimates for a and s were 0.45
(0.42–0.47) and 0.08 (0.05–0.13), respectively, consis-
tent with those on HCR and HC. The branch length
estimates t1 and t2 are also consistent (Tables 2 and 3);
however, the estimated branch length from the root to
the human/chimpanzee ancestor is very large [t4¼ 2.34
(2.09–2.62)], while the orangutan branch is very short at
t3¼ 0.28 (0.16–0.41). Analyzing all four species together
(HCOR), we find that the inferred value of a changed
sign [�0.43 (�0.45– �0.41)], and the branch to orang-
utan is now the longest in the tree [t3¼ 1.77 (1.66–1.88)]
(Figure 4). In addition, the estimate for the outlier model
parameter p on this data set is 0.49 with a wide confidence
interval (0.03–0.97); in contrast, in all other cases the
upper 95% confidence limit for p did not exceed 0.02.

Figure 5.—(a) Jump-size distribution
for parameters inferred for the HC data
set. (b) Histogram of expression differen-
ces simulated under the model, without
outliers. Because expression-level muta-
tions occur on either branch, the histo-
gram is markedly less skewed than the
jump-size distribution. (c) Observed ex-
pression differences in the HC data set,
after normalization. The histogram is
similar to the simulated data, although
in the real data a larger number of out-
liers can be observed.
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We propose an interpretation of these results in the
discussion.

DISCUSSION

We have introduced a model and an algorithm that
allowed us to calculate the likelihood of gene-expression

data evolving along a phylogenetic tree. The model,
which is a departure from the diffusion or Brownian
motion models often used for describing the evolu-
tion of quantitative traits, was specifically adapted for
the study of gene-expression levels. Under the model,
expression levels evolve along the branches of a phylo-
genetic tree by discrete mutation events, which occur
stochastically at a certain rate. Each event modifies the

TABLE 3

Inferred human–chimp expression evolution parameters from probe data

Data set HC HCR HCO HCRO

t1
a 1.85 (1.72–2.01) 1.06 (1.01–1.12) 1.67 (1.59–1.78) 0.81 (0.80–0.83)

t2 0.60 (0.53–0.67) 0.50 (0.47–0.53) 0.36 (0.32–0.40) 0.41 (0.40–0.43)
t3 0.87 (0.76–0.98) 0.07 (0.00–0.14) 2.64 (2.59–2.68)
t4 1.13 (1.02–1.23) 4.51 (4.20–4.86) 0.08 (0.07–0.09)
t5 0.68 (0.66–0.69)
t6 0.57 (0.56–0.58)
s 0.06 (0.05–0.10) 0.24 (0.22–0.26) 0.06 (0.05–0.08) 0.06 (0.05–0.06)
a 0.53 (0.50–0.55) 0.31 (0.29–0.33) 0.35 (0.34–0.37) �0.49 (�0.49–0.48)
p 0.01 (0.00–0.01) 0.01 (0.01–0.01) 0.01 (0.01–0.01) 0.21 (0.02–0.70)
var 0.28 (0.26–0.31) 0.16 (0.15–0.16) 0.13 (0.12–0.14) 0.24 (0.23–0.24)
div 3 var 0.70 (0.68–0.72) 0.25 (0.24–0.25) 0.26 (0.26–0.27) 0.29 (0.29–0.30)
log2(t1/t2) 1.62 (1.46–1.81) 1.10 (0.99–1.21) 2.21 (2.06–2.40) 0.97 (0.92–1.05)
t1/t2 3.07 (2.76–3.50) 2.14 (1.99–2.32) 4.63 (4.17–5.3) 1.96 (1.89–2.08)
n 50,759 44,668 40,160 55,802
ESS 191 180 171 20

Estimates (posterior medians and 95% credible intervals) of branch lengths and model parameters from
probe level data are shown, using various choices of outgroups. For inferences on data without quantile–quantile
normalization see supplemental Table 5.

a Parameters are as in Table 2.

TABLE 2

Inferred human–chimp expression evolution parameters from probe-set data

Data set HC HCR HCO HCRO

t1
a 1.42 (1.25–1.65) 1.19 (1.10–1.31) 1.20 (1.11–1.33) 0.82 (0.77–0.88)

t2 0.42 (0.33–0.52) 0.42 (0.36–0.48) 0.28 (0.23–0.33) 0.32 (0.29–0.35)
t3 0.95 (0.81–1.08) 0.28 (0.16–0.41) 1.77 (1.66–1.88)
t4 1.31 (1.15–1.48) 2.34 (2.09–2.62) 0.15 (0.10–0.19)
t5 1.0 (0.9–1.1)
t6 0.34 (0.26–0.41)
s 0.07 (0.05–0.12) 0.08 (0.05–0.11) 0.08 (0.05–0.13) 0.27 (0.25–0.30)
a 0.58 (0.53–0.62) 0.44 (0.41–0.46) 0.45 (0.42–0.47) �0.43 (�0.45–0.41)
p 0.01 (0–0.01) 0.01 (0.01–0.01) 0.01 (0.00–0.01) 0.49 (0.03–0.97)
var 0.34 (0.29–0.40) 0.20 (0.18–0.22) 0.21 (0.19–0.23) 0.26 (0.25–0.28)
div 3 var 0.63 (0.59–0.67) 0.32 (0.30–0.34) 0.31 (0.29–0.33) 0.30 (0.29–0.31)
log2(t1/t2) 1.8 (1.4–2.2) 1.5 (1.3–1.8) 2.1 (1.8–2.4) 1.4 (1.2–1.6)
t1/t2 3.4 (2.7–4.4) 2.9 (2.4–3.4) 4.3 (3.5–5.4) 2.6 (2.3–3.0)
n 9,806 8,303 9,273 10,427
ESS 951 536 334 354

Estimates (posterior medians and 95% credible intervals) of branch lengths and model parameters from
probe-set level data, using various choices of outgroups: none (HC, human–chimp), one outgroup (rhesus
macaque, HCR; or orangutan, HCO), or two outgroup species (HCRO). For inferences from data without
quantile–quantile normalization see supplemental Table 4.

a t1, length of human branch; t2, length of chimpanzee branch; a and s, shape parameters of the distribution of
change magnitudes; p, proportion of outliers; var, event variance (a2 1 s2); div, expected number of events between
human and chimpanzee (t1 1 t2); n, number of probe sets in the data set; ESS, effective sample size for t1.

1386 R. Chaix et al.



expression intensity on an additive scale, by an amount
drawn from a jump-size distribution that may exhibit a
nonzero skewness. Using this model, we implemented a
Bayesian MCMC procedure for the inference of param-
eters and branch lengths and for hypothesis testing.

The existence of a positively skewed mutation spec-
trum for expression levels was suggested previously by
Khaitovich et al. (2005b), on the basis of the observa-
tion that the distributions of expression differences be-
tween human and chimpanzee were skewed. Assuming
this positively skewed mutation spectrum, Khaitovich

et al. (2005b) inferred that genes expressed in the brain
have undergone more expression mutations in the hu-
man lineage than in the chimpanzee lineage. However,
this conclusion depends crucially on the premise of a
positively (rather than negatively) skewed mutation
spectrum. Since the expression data in these studies
were obtained using expression arrays designed for hu-
man samples, and mismatching probes for orangutan
samples could not be reliably identified because of the
lack of genome sequence, some doubt remained about
these conclusions.

Here we revisit these observations. We developed an
algorithm to calculate the likelihood of expression data
under the skewed mutation model, enabling the in-
ference of the phylogeny, evolutionary parameters, and
confidence intervals using MCMC. We adjoined an
outlier model allowing a proportion of data points to
evolve essentially without constraint, to ensure that a
small proportion of spurious data would not unduly bias
the inferred parameters of the main model. Another
innovation is the use of a variance-stabilizing trans-
formation, which decouples the interspecies variance
from the intensity, allowing the same evolutionary
model to be applied to all transcripts whatever their
intensity of expression. Finally, we accounted explicitly
for intraspecific variation due to experimental error, as
well as environmental and genetic variances. We applied
the model to various combinations of H, C, O, and R
data, each obtained using human microarrays. Probes
that showed mismatches in homologous position in
chimp or macaque were removed from the analysis.
Because the same could not be done for orangutan, we
separately analyzed data sets that included this primate.

We found clear evidence for the existence of a positive
skew in the mutation spectrum of gene-expression levels
in our analyses of the HC and HCR data sets, confirming
the original observation by Khaitovich et al. (2005b).
The inferred parameters remain essentially the same
when all probes are used individually, rather than grouped
per gene, and were also robust against changes to the
normalization procedure. The simulation study showed
that inferences in these parameter ranges are reliable, for
both the two-species and the three-species case.

What could have caused the observed skew? A non-
zero skewness in the mutation spectrum confers a
direction to the evolutionary ‘‘arrow of time.’’ This does

not necessarily imply that the underlying process in-
volves selection (as opposed to purely mutational forces);
for example, the high mammalian mutation rate of CpG
dinucleotides results in a mutation bias directed away
from CpGs, while an equivalent reverse bias does not
exist, conferring a directionality to this process without
involving selection (Lunter and Hein 2004). Neverthe-
less, it seems difficult to construct a plausible, purely
mutational mechanism that would lead to a skewed
spectrum of expression-level changes. Alternatively, we
might consider a scenario involving selection to maintain
expression levels at roughly constant values. Since tran-
scription initiation involves many genomic sites, nucleo-
tide mutations that influence its efficiency are likely to be
relatively frequent. For example, our results suggest that
between human and chimpanzee there have been on
average �1.5 mutations per gene that affected expres-
sion levels. According to Kimura’s neutral theory, nega-
tive (purifying) selection and drift will remove the
majority of mutations, and those that become fixed and
are observed as substitutions in interspecies comparisons
will either be neutral or slightly deleterious (Ohta 1973).
This process has a hidden directionality: random muta-
tions increase entropy; in particular, they tend to de-
crease, rather than increase, the affinity of transcription
factor binding sites. Thus, a succession of random (un-
selected) mutations may be expected to lead to a
diminished expression of the transcript, building up an
associated ‘‘fitness deficit.’’ This creates an opportunity
for less frequent, ‘‘corrective’’ mutations that increase the
efficiency of transcription by a relatively large amount to
sweep to fixation, after which the process starts anew.
Although the last step will of course have all the
population-genetic characteristics of a selective sweep,
it would be quite false to think of it as ‘‘positive selection’’
as it is generally understood, since no adaptation to a
favored phenotype is involved. Rather, the conservation
of a fixed desired phenotype (a particular expression
level) is achieved as a dynamic equilibrium involving a
combination of continuous deterioration by slightly dele-
terious mutations, counterbalanced by occasional cor-
rective sweeps. The whole cycle would result in precisely
the observed positive skew of the mutational spectrum
and indeed appears a plausible model for the observed
high turnover of transcription factor binding sites in
mammals (Dermitzakis and Clark 2002) and flies
(Moses et al. 2006).

It should be stressed that not all expression-level
changing mutations that are fixed by drift are expected
to cause a decrease in the level of expression. While
our model predicts that about a third of mutations do
increase expression levels, the proportion of mutations
that are driven to fixation by selection is likely to be
smaller. Although the long tail of the jump-size distri-
bution (see Figure 5) might still suggest this proportion
to be sizeable, the shape of the distribution should not
be overinterpreted, as it is largely a modeling choice,
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and the asymptotics of the actual jump-size distribution
might be different.

True positive selection acting upon expression-level
mutations is also likely to have contributed to some extent
and may also have influenced the observed spectrum.
However, it appears implausible that adaptive changes
would follow any systematic pattern (i.e., many small
downregulations, fewer large upregulations), which
would be necessary for it to leave its fingerprint on a
genomewide analysis. We therefore propose the dynamic
equilibrium of slightly deleterious mutations and occa-
sional corrective sweeps, together acting to conserve the
expression phenotype, as an explanation for the skewed
mutation spectrum of gene-expression levels.

The pronounced skewness allowed us to infer the
branch lengths of the human (t1) and chimp (t2)
lineages separately, both with and without macaque as
an outgroup. The inferred ratio t1/t2 ranges from 2.0 to
4.4, depending on whether macaque was included and
whether probes or probe sets were used. This ratio is in
the same order of magnitude as previous estimates:
analyzing a different data set with a moment approach,
Khaitovich et al. (2005a) found that for brain-ex-
pressed genes, the human branch was 3.3 times longer
than the chimpanzee branch. Similarly, analyzing brain-
expressed genes and restricting the analysis to those 5%
exhibiting the highest divergence between human and
chimpanzee, Enard et al. (2002a) inferred a phylogeny
in which the human branch was 3.8-fold longer than
the chimpanzee branch. Accepting dynamic stabilizing
selection as the dominant mode of expression evolu-
tion, these observations could be explained by more
efficient selection against slightly deleterious mutations
affecting transcription factor binding sites in chimpan-
zees than in humans, as a result of a larger effective
ancestral population size of chimpanzees (Harding

and McVean 2004). Interestingly, such strong acceler-
ation of expression changes on the human lineage is not
observed in liver, heart, or kidney (Enard et al. 2002b;
Khaitovich et al. 2005b, 2006; Lemos et al. 2005). At the
same time, the skewed distribution of expression changes
on the human and on the chimpanzee lineage is ob-
served in other tissues, such as liver (Khaitovich et al.
2005b). Thus, the skew appears to be a general feature of
expression evolutionary dynamics in primates. In con-
trast, the accelerated expression evolution on the human
lineage may represent a special case, possibly reflecting
an excess of positive selection on the gene-expression
changes in the brain along the human lineage. Still, given
the imperfections of microarray expression data and the
paucity of human and chimpanzee samples analyzed thus
far, more effort will be required to uncover the cause of
this phenomenon with certainty.

The data sets that included orangutan (HCO and
HCOR) gave various discordant results. For the HCO
set, we found a highly skewed tree, with a very short
branch leading to orangutan, while for HCOR, we in-

ferred negative skewness, as well as a very large contri-
bution of the outlier model (49%), while all other data
sets support a very small outlier contribution (,2%).
The orangutan data are the only set for which we were
unable to remove mismatching probes because of the
current lack of a genome sequence. The deviations of
the overall distribution of orangutan expression levels
compared to human, chimp, or macaque (supplemen-
tal Figure 3) indeed suggest that this data set is tainted
by a small admixture of such mismatching probes, and
the discordant inferences are all consistent with this
explanation. Indeed, mismatching probes would cause
an admixture of genes with apparently much reduced
orangutan expression levels, favoring a model that
allows occasional very large downregulations. This ex-
plains the aberrant tree inferred for the HCO set, since
the positioning of the root near the orangutan effec-
tively changes the direction of time along much of the
branch toward orangutan. Adding the macaque to the
phylogeny restricts the root position and forces the
large downregulations to be modeled by changing the
direction of the mutational skew.

It is satisfying that these data problems, which are
nonobvious particularly after QQ normalization, were
correctly diagnosed by the outlier model. It also serves
to reemphasize the need for aggressive cleanup of
expression data obtained using expression arrays, espe-
cially for cross-species experiments. In this study, the
loss of affinity due to random mutations on probe
targets within the orangutan genome appears sufficient,
in number or effect, to overwhelm the phylogenetic
patterns we observe in the other data sets.

The proposed evolutionary model is an approxima-
tion of the actual process of gene-expression evolution.
Perhaps the most questionable assumption we make is
that one set of parameters describes the evolution of
expression patterns across all genes. We, however,
expect that our main conclusions (fast evolution on
the human branch and a distinct skew of the mutation
spectrum) are robust against even quite strong devia-
tions from this assumption, because the expected
number of mutations on the phylogeny is modest
(approximately four), assigning reasonable probability
to instances with no mutations, while very fast-evolving
genes are absorbed into the outlier model.

The Bayesian method introduced here was designed
to estimate the phylogenetic tree and various parame-
ters of the evolutionary model that relate several species
on the basis of expression-profiles data. The method is
based on a time-irreversible model of evolution, en-
abling the inference of branch lengths and the position
of the root without recourse to an outgroup. We recover
the known phylogeny and find evidence for a skewed
spectrum of expression mutations, which we suggest is
compatible with the action of stabilizing selection on
gene-expression levels, leading to a dynamic equilib-
rium of slightly deleterious mutations and occasional
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corrective sweeps. We also find evidence for a larger
number of expression-level changes in the human
lineage compared to chimp, which taken by itself could
point to a more efficient action of selection in the
ancestral chimpanzee population owing to its larger
ancestral population size, but is also compatible with
extensive positive selection on brain-expressed genes in
the human lineage. Gene-expression levels have long
been suggested to underlie differences between species,
and we hope that the method proposed here will help to
better understand the role of gene regulatory changes
in the evolution of our and other species.
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