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*Embrapa Pecuária Sul (Brazilian Agricultural Research Corporation South—Cattle and Sheep Center), Bagé, RS 96401-970, Brazil,
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ABSTRACT

Genetic analysis of transcriptional profiling experiments is emerging as a promising approach for un-
raveling genes and pathways that underlie variation of complex biological traits. However, these genetical
genomics approaches are currently limited by the high cost of microarrays. We studied five different
strategies to optimally select subsets of individuals for transcriptional profiling, including (1) maximizing
genetic dissimilarity between selected individuals, (2) maximizing the number of recombination events in
selected individuals, (3) selecting phenotypic extremes within inferred genotypes of a previously identified
quantitative trait locus (QTL), (4) purely random selection, and (5) profiling animals with the highest and
lowest phenotypic values within each family–gender subclass. A simulation study was conducted on the basis
of a linkage map and marker genotypes were derived from data on chromosome 6 for 510 F2 animals from an
existing pig resource population and on a simulated biallelic QTL with pleiotropic effects on performance
and gene expression traits. Bivariate analyses were conducted for selected subset sample sizes of 80, 160, and
240 individuals under three different correlation scenarios between the two traits. The genetic dissimilarity
and phenotypic extremes within genotype methods had the smallest mean square error on QTL effects and
maximum sensitivity on QTL detection, thereby outperforming all other selection strategies, particularly at
the smallest proportion of samples selected for gene expression profiling (80/510).

GENETIC analysis of transcriptional profiling experi-
ments has emerged as a promising approach to

unravel genes and gene networks underlying variation
of complex biological traits. This new field of study,
also called genetical genomics ( Jansen and Nap 2001),
applies linkage analysis to gene expression data derived
from microarray experiments as if they were classical
quantitative traits. Hence DNA sequence variation is
related to variation in gene expression in the search
for a better understanding of transcriptional regulation
(Brem et al. 2002; Schadt et al. 2003; Yvert et al. 2003).
The genetic basis for transcriptional abundance is de-
scribed by its association with locations of the linkage
map, i.e., the expression quantitative trait loci (eQTL),
and its polygenic heritability (Schadt et al. 2003; Gibson

and Weir 2005). Because each transcript has a corre-
sponding encoding gene with a known position in the
genome, eQTL can be regarded as having ‘‘local’’ regu-
lation, when mapped near the genomic location of the
gene encoding the transcript, or ‘‘distant’’ regulation,
when mapped elsewhere in the genome (Rockman and
Kruglyak 2006). Combining information on local

eQTL and coincident QTL for economically relevant
traits (ERT) such as weight gain provides a compelling
strategy to identify candidate genes (CG) for use in
breeding programs (Nettleton and Wang 2006).

The design of genetical genomics experiments, never-
theless, is currently challenged by the high cost of micro-
arrays, which limits the sample size for global genetic
mapping of transcript abundance relative to what is pos-
sible for ERT. This is particularly true for eQTL mapping
in large livestock studies with limited budgets. Conversely,
the relative cost of genotyping is smaller, particularly with
the use of high-throughput chips, such that the number
of genotyped individuals available can be substantially
larger than that used for gene expression profiling. Con-
sequently, several methods based on the use of selective
phenotyping (Darvasi 1998) have been proposed to
determine optimally chosen subsets of individuals for
microarray experiments when gene expression profiling
requires substantially more resources than genotyping on
a per subject basis.

The proposed methods differ in the nature and amount
of prior information required and their intended pur-
poses. The particular strategy proposed by Jin et al. (2004)
uses genetic marker data to select a subset of individuals
for expression profiling by maximizing their genotypic
dissimilarity; they demonstrated substantial improvements
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970, Bagé/RS, Brazil. E-mail: fcardoso@cppsul.embrapa.br

Genetics 180: 1679–1690 (November 2008)



with their strategy for the sensitivity of QTL detection
compared to a random sample of equal size. Other selec-
tive phenotyping/profiling strategies use marker geno-
types to select a subsample, on the basis of maximizing the
balance and number of crossover events ( Jannink 2005;
Xu et al. 2005). These recombination-based methods are
intended to improve the precision of QTL location com-
pared to random subset selection, whereas selecting a
subsample that is as dissimilar as possible between individ-
uals with respect to marker genotypes flanking the QTL
(as in Jin et al. 2004) should retain better power of QTL
detection and precision of QTL effects estimates (Rosa

et al. 2006a). Finally, Wang and Nettleton (2006) pro-
posed a selective profiling strategy that utilizes information
on a correlated quantitative ERT for which a QTL has been
identified, based on a full set of ERT data and molecular
markers flanking the QTL. This method involves selecting
individuals with extreme ERTresponses within each geno-
type of the identified QTL such that its primary goal is to
find genes whose expression is associated with the pleio-
tropic QTL (i.e., eQTL¼QTL) and/or correlated with the
ERT itself (Nettleton and Wang 2006).

In this study, we investigate variations of formerly pro-
posed selective phenotyping/profiling strategies, namely,
the genetic dissimilarity method of Jin et al. (2004), the
maximum-recombination (maxRec) method of Jannink

(2005), and the method of Wangand Nettleton (2006)
for use with outbred F2 resource populations as typical
of livestock studies. Two additional selective profiling
strategies were also examined, one being purely random
selection of a subset of animals and the other based on
profiling only animals with the highest and lowest trait
values within subclasses (Rosa et al. 2006b). We compared
the performance of these selective profiling strategies
in terms of sensitivity and specificity of QTL detection
and the precision of inference on the corresponding
QTL location and effect. Moreover, we compare alterna-
tive statistical modeling approaches to analyze selectively
profiled expression data that vary in the manner in which
they utilize information on a completely recorded and
correlated ERT. These analysis methods are (1) a bivariate
mixed-model analysis of ERT and CG, (2) using the ERT
as a covariate for CG expression, and (3) completely
ignoring ERT in a conventional single-trait mixed-model
analysis on CG expression. The comparisons were con-
sidered at different levels of correlations between the re-
corded ERTand CG expression and at different selection
proportions of individuals chosen for selective profiling.

MATERIALS AND METHODS

Simulations: This study was conducted assuming that ERT
records were available on all animals and that a QTL scan has
been conducted, leading to a putative QTL identified for a
particular ERT (e.g., back fat 10th rib or loin muscle area in
swine). Simulated data sets for each of two correlated pheno-
types, the ERT and a correlated transcriptional abundance or
expression of a particular CG, were generated on the basis of

bivariate mixed-effects models. We were particularly interested
in situations where the ERT and the CG expression were
correlated and both were affected by the same segregating
pleiotropic QTL. In this case, the corresponding probe would
be a potential CG for the ERT QTL, thereby providing a
powerful way of understanding the molecular genetic mech-
anisms underlying variation in a traditional quantitative trait
(Nettleton and Wang 2006).

Linkage map and genetic marker data: To mimic anongoing
genetical genomics experiment from an existing resource
population, characterized by typical data features (uninforma-
tive genotypes, missing markers, unequally spaced markers,
different number of marker alleles, etc.), we used the linkage
map and marker genotypes derived from the Michigan State
University pig resource population (MSUPRP). This population
was based on an F2 design, originating from F0 Pietran females
and Duroc males, and developed to discover genes associated
with production and meat quality (Edwards et al. 2008a,b). Full
details on this population development and structure are avail-
able in Edwards (2005). Chromosome 6 served as the basis for
this simulation study. There were eight markers available in the
linkage map, spaced between 5.8 and 31.8 cM from each other, as
described in Table 1.

A biallelic QTL located at position 92 cM, about two-thirds
of the distance between markers S0087 and S0220, was simu-
lated with pleiotropic effects, explaining 10% of the phenotypic
variance for both CG expression and ERT. The two alleles were
fixed within each base F0 founder breed, A and B. Using the
actual microsatellite marker genotypes observed in 510 F2, 54 F1,
and 19 F0 pigs, marker phase probabilities for the F0 were
calculated using the MCMC algorithm available from QxPak
(Perez-Enciso and Misztal 2004). These probabilities were
used to simulate the phases of the F0, which were then used to
determine the conditional probabilities to subsequently draw
random samples of the F1 phases when they were deemed to be
ambiguous from marker data. Finally, the phase simulation
step was concluded by determining the probabilities used to
subsequently draw random samples of the phases of the F2

individuals conditional upon the F0 and F1 sampled phases.
Once all the marker phases were assigned, the probabilities of
inheriting alternate alleles of the QTL were calculated on the

TABLE 1

Genetics markers on pig chromosome 6 (SSC6) and their
respective map locations (centimorgans) relative to
marker S0099, the number of F2 individuals with

missing genotypes, the number of alleles,
and the polymorphism information

content for each marker locus

Genetic
marker

Map
location

No. of missing
F2 genotypes

No. of
alleles

Polymorphism
information

content

S0099 0 42 5 0.7231
SW2406 22.4 6 5 0.5157
SW2525 50.6 10 4 0.5535
S0087 81.3 10 4 0.4781
S0220 98.1 13 2 0.2717
SW122 103.9 9 5 0.6357
SW1881 135.7 26 4 0.5809
SW322 164.8 3 7 0.7154
SW2419 181 12 7 0.7533

The polymorphism information content was obtained as
proposed by Botstein et al. (1980).
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basis of the observed marker distances and marker genotypes,
simulated phases, and recombination based on the Haldane
map function. These probabilities were in turn used to simulate
the inheritance of the QTL alleles.

Data generation: Data records were generated from a
bivariate normal distribution with the model

yijk ¼ m 1 qi 3 a 1 sj 1 u0i 1 u1k 1 eijk ;

where yijk is the 2 3 1 vector of correlated records on the two
responses (ERT phenotype and CG expression) of individual
i having sex j and belonging to family k, m ¼ ½100 50�9 is the
overall mean vector, a ¼ ½4:5 3:5�9 is the vector of additive
QTL allele substitution effects, sj is the vector of sex effects
( j ¼ 1 for males with s1 ¼ ½2 1�9 and j ¼ 2 for females with
s2 ¼ ½0 0�9), u0i is the vector of polygenic effects, u1k is the
vector of full-sib family effects, eijk is the vector of residual
errors, and qi indicates the number of QTL alleles originating
from breed A for individual i.

Distributional assumptions on the random effects were
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where A is the numerator relationship matrix of the MSUPRP
and and Ip represents an identity matrix of dimension p. Here,
the dimension, p ¼ 510, of u0 matches the number of F2

individuals whereas the dimension, p ¼ 60, of u1 matches the
number of full-sib families. Note that full-sib family effects
specify environmental and maternal effects that might be
common to sibs.

To check robustness of each selective profiling approach
and data analysis strategy to differences in the correlations
between trait and expression, three alternative scenarios were
also simulated: a high correlation scenario (r0¼ 0.71, r1¼ 0.92,
and re¼ 0.82), a medium correlation scenario (r0¼�0.47, r1¼
�0.49, and re¼ 0.53), and a low correlation scenario (r0¼ 0.19,
r1¼ 0.21, and re¼ 0.21). Negative correlations were considered
in the medium correlation scenario as Sorensen et al. (2003)
demonstrated that bivariate QTL mapping was particularly most
efficient relative to the conventional univariate mapping when
the contributionsof the QTL and of the polygeniccomponents to
the genetic correlation between the two traits have opposite signs.

Two hundred replicates were generated for each of the
three correlation scenarios.

Selective profiling strategies: For each generated bivariate
data set, five different selective profiling strategies based on
three different proportions of animals selected were applied
to retain a subset of records for the CG expression phenotype.
These profiling strategies are listed as follows:

Strategy 1. Random selection of individuals across F2 families.
Strategy 2. Phenotypic within-family selection based on choos-

ing the most extreme males and females for the ERT
phenotype within each family: Again, family size and distri-
bution of sexes within families were based on those actually
observed from the MSUPRP. Not all of the 60 families (litters)
had enough males and females for higher proportions of

animals selected; therefore, in those cases where a larger
average number of individuals per family were chosen for
profiling, more individuals were selected from larger families
than from smaller families.

Strategy 3. Line dissimilarity selection based on the proposal of
Jin et al. (2004): Note, however, that because of our use of
microsatellite markers on a cross between outbred lines, our
similarity measure was based on the estimated line of origin
probabilities rather than on the number of marker alleles
shared at each locus. To compute the similarity between two
individuals, we used the haplotype samples generated at
each MCMC cycle by QxPak. We traced the line of origin of
each marker allele in pig chromosome 6 (SSC6) as being
either A or B for each cycle and assigned the shared number
of alleles deriving from the same line of origin between two
individuals as their similarity measure. A posterior mean
similarity between each pair of individuals was based on
1000 cycles of the MCMC algorithm. The subsample with
the lowest pairwise posterior mean similarities was used to
selectively profile individuals of a certain subset size across
the entire F2 population, as similar to Jin et al. (2004).

Strategy 4. Phenotypic within-genotype selection as proposed
by Wang and Nettleton (2006): On the basis of the cal-
culated line of origin probabilities from the MCMC algorithm
of QxPak at position 92 cM (i.e., the QTL location), F2 in-
dividuals were assigned to the QTL genotype group (AA, AB, or
BB) that they had the highest probability of belonging to. The
most extreme individuals (highest and lowest observed values)
for the ERT from groups AA and BB were selected. Individuals
from the homozygous groups were preferred because these
are the most informative groups when searching for QTL with
additive effects (Rosa et al. 2006a). Nevertheless, some extreme
individuals from AB were needed to complete the set when
the sample size chosen for selective profiling exceeded the
number of individuals assigned to the two homozygous geno-
type groups.

Strategy 5. Maximum-recombination selection based on maxi-
mizing the number of recombinant genotypes in the selected
samples, using the principles of maxRec ( Jannink 2005):
Within each MCMC cycle, we considered a marker interval to
be recombinant for an F2 individual if the two flanking
markers derived from a different line of origin, assuming that
the probability of multiple recombinations was zero. The sum
of the posterior probabilities of recombination was used to
identify and selectively profile individuals as having the great-
est probability of inheriting recombinant gametes. These
probabilities were obtained by summing the proportion of
times that each of the 16 marker intervals (8 for each gamete)
was recombinant over 1000 MCMC cycles.

Selected sample sizes: Three alternative sample sizes (or se-
lectively profiled proportions), namely 80 (15.7%), 160 (31.4%),
or 240 (47.1%) individuals, were used to compare the different
selective profiling strategies as used on the 510 F2’s available.
Moreover, a complete profiling analysis (i.e., complete records
on CG expression for all 510 animals) was conducted to compare
the efficiency of the five different strategies relative to the more
informative, yet also more expensive, option of no selective
profiling.

Analyses of simulated data: All analyses were performed by
QxPak, in part on the basis of the same mixed model used to
generate the data with QTL effects specified as fixed. Three
different deviations on a mixed-model analysis of this data
were considered and are subsequently listed.

Analysis method 1. Bivariate analysis: In this case, all 510
records on the ERT were used to partially recover informa-
tion due to selectively profiling on the CG expression by
jointly modeling both ERT and CG expression in a bivariate
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mixed-model analysis. In agreement with the model used to
generate the data, the QTL was assumed to have pleiotropic
effects on both ERT and CG expression.

Analysis method 2. Covariate analysis: Here, a univariate mixed-
model analysis was conducted on the selectively profiled CG
expression data using the ERT as a covariate.

Analysis method 3. Univariate analysis: Here, a univariate mixed-
model analysis was conducted on the selectively profiled CG
expression data as in analysis method 2, but without the ERT
covariate.

In all cases, the QTL scan was conducted every 2 cM
throughout the linkage group.

Performance comparisons: We compared the performance
of the five different selective profiling strategies and the three
different analysis methods for each of the three different
correlation scenarios and three different selected sample size
proportions considered. Performance criteria were based on
measures of sensitivity and specificity of QTL detection and
precision of QTL location and QTL effect inference. We
adopted the following conventions on the basis of previous
work conducted in this area ( Jin et al. 2004; Xu et al. 2005). A
peak was defined as a position where the likelihood-ratio (LR)
value exceeded a threshold of statistical significance and the
LR values of adjacent points. The range of the peak was taken
to be the interval on either side of the peak bounded by either
the end of the linkage group or by that point closest to the
peak with an LR value equal to the significance threshold,
whichever came first. If this range bracketed the true QTL
position, then the peak was tallied as a true positive (TP); if
not, it was determined to be a false positive (FP). If no peaks
were found in regions of the linkage group without the QTL,
the particular simulation run was counted as true negative
(TN); however, if the true QTL position was not bracketed by
any peak, then that run was counted as a false negative (FN).
The threshold value of statistical significance was obtained as
the LR value that yielded an expected proportion of false
positives (PFP) (Fernando et al. 2004) of 5%. The algorithm
of Nettleton et al. (2006) was used to estimate the number
of true null hypotheses over all QTL scan tests for each of the
200 replicates generated under the three different levels of
correlation, using each possible combination of selective
profiling strategy (five), analysis method (three), and selected
sample size proportions (three). Using these definitions, we
had the following performance criteria:

1. Sensitivity (Sn) ¼ TP/(TP 1 FN).
2. Specificity (Sp) ¼ TN/(TN 1 FP).
3. Mean squared error (MSE) of the QTL effect defined as the

variance plus the squared bias of the QTL allele sub-
stitution effect estimated at the highest peak position for
each simulation run: This included even analyses when this
peak did not exceed the significance threshold level, since
we postulate that a QTL has already been discovered for the
ERTsuch that the objective is to identify the corresponding
CG in the profiling experiment.

4. Mean absolute distance (MAD) taken from the highest QTL
peak to the simulated QTL location for each simulation run,
even when this peak did not exceed the threshold level.

5. QTL scan profile, represented by the negative base 10
logarithm of the likelihood-ratio test P-values averaged over
the replicates for each combination of selective profiling
strategy, analysis method, selected sample size, and corre-
lation scenario as a function of scan location.

Analysis of variance was used to assess significance of MSE
and MAD differences within each correlation scenario (high,
medium, or low), using a factorial analysis based on selective
profiling strategy (five levels), analysis method (three levels),

and selected sample size (three levels). Overall mean differ-
ences between levels of any factor were tested using the Tukey
adjustment.

RESULTS

QTL scan profiles: Figure 1 plots the negative log-
arithm base 10 ofP-values (–Log10P) of the LR test profile,
averaged across replicates, against each scanned posi-
tion (2-cM intervals) within the correct linkage group for
each combination of selective profiling strategy, selected
sample size, and method of inference based on data
generated under the high-correlation scenario. Figure 1
provides a visual assessment of the power for QTL de-
tection as indicated by the relative height of the profile
curve compared across strategies and of the precision for
QTL location by the peak location and sharpness of the
profile curve. The full-panel profile refers to a sample
size of 510 animals in which all animals were profiled for
gene expression; this curve serves as a positive control to
illustrate the potential loss of information due to selec-
tively profiling a subset of the population. All selective
profiling strategies unbiasedly estimated the true loca-
tion of the QTL, given no visually evident difference in
average peak location across the various strategies as they
all align over the true location. Line dissimilarity and
phenotypic within-genotype selection were the two strat-
egies providing the highest profiles throughout the scan,
thereby indicating that they were more efficient relative
to the other methods. As expected, increasing sample
sizes elevated the profile curves for all selective phenotyp-
ing strategies, while retaining the relative rankings be-
tween them. We also observe from Figure 1 that bivariate
analyses (Figure 1, A, D, and G) provided higher profiles
and sharper peaks compared to univariate (Figure 1, B, E,
and H) and covariate analyses (Figure 1, C, F, and I).
That is, bivariate analyses provided a substantial gain of
statistical power by conditioning inference on the corre-
lated unselected ERT such that substantially more indi-
viduals would need to be profiled on the CG expression to
achieve the same precision and power if using univariate
analyses on the CG expression data only. Conversely, using
the ERTas a covariate (Figure 1, C, F, and I) in the model
for CG removes genetic variability for CG expression,
particularly when the genetic correlation between the
two traits is high as in Figure 1. Hence covariate analyses
had poorer power and precision of QTL detection for all
selective phenotyping methods as seen by the substan-
tially flatter –Log10P profiles in Figure 1. These results
indicate that using ERT as a covariate is an inappropriate
analysis method for eQTL studies. Hence, additional re-
sults based on covariate analysis are not presented further
in this article.

Additional scan profile results are presented for low
and medium correlation scenarios for a selected sample
size of 80 in Figure 2. Relative rankings for selected
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samples sizes of 160 and 240 were similar to that for 80
under these two scenarios; hence these results are not
reported further. Figure 2 is similar to Figure 1 in terms
of performance ranking of the different selective pro-
filing methods for a selected sample size of 80 with
results for low vs. medium correlation being virtually
identical. Nevertheless, as expected, the relative advan-
tage of using bivariate analyses compared to univariate
analyses diminished because of the lower correlation
between the two responses and hence less value for
conditioning upon a completely recorded ERT. At any

rate, univariate analyses still provided flatter QTL scan
profiles compared to their bivariate counterparts.

Mean squared error of the estimated QTL effect:
The precision of QTL effect estimates, based on the
MSE across replicates, is presented for the different se-
lective profiling strategies, selected sample sizes, and
bivariate vs. univariate analyses in Figure 3. The full-panel
MSE that corresponded to profiling all 510 animals is
again plotted for reference. For the high-correlation
scenario, as anticipated, the bivariate analyses (Figure
3A) had a much smaller magnitude of MSE compared to

Figure 1.—Negative logarithm base 10 of P-values of the likelihood-ratio test for scanned positions at linkage groups averaged
over all the replicates for the different selective profiling strategies, analysis methods (A, D, and G, bivariate; B, E, and H, uni-
variate; and C, F, and I, covariate analyses), and sample sizes (A–C, 80; D–F, 160; and G–I, 240) for the high-correlation scenario.
Arrows point to the true QTL location.
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univariate analysis (Figure 3B), for all selective profiling
strategies and selected sample sizes.

On the basis of bivariate analyses for the smallest selected
sample size (80 animals), the line dissimilarity and
phenotypic within-genotype selections had no signifi-
cant difference between their MSEs (P . 0.05) whereas
both had much smaller MSEs than any of the other
selective profiling strategies considered (P , 0.0001),
regardless of level of correlation between the ERT and
CG expression. The largest MSE was observed for
maximum-recombination selection (P , 0.0001), with
phenotypic within-family and random strategies having
intermediate results. These last two strategies were not
different from each other under the high-correlation
scenario; however, the phenotypic within family had
smaller MSE under the low- and medium-correlation
scenarios (P , 0.01). The most striking difference
among the profiling strategies is the much larger MSE
for the phenotypic within-family method compared to
other selective profiling strategies under the high-
correlations scenario using univariate analyses (Figure
3B), although this problem dissipated when bivariate
analyses were used (Figure 3A). Under univariate
analysis and sample size of 80, the line dissimilarity
strategy of selective phenotyping was the best among all
methods of selection, outperforming the phenotypic

within-genotype approach (Figure 3B). In the other
situations of low and medium correlations, ranking of
the selective strategies using univariate analyses (Figure
3, D and F, respectively) was similar to that of bivariate
analyses (Figure 3, C and E, respectively). Moreover, in
all cases as the selected sample sizes increased, particu-
larly from 80/510 to 160/510, the difference between
the selection strategies decreased as expected; yet their
relative rankings were retained (see Figure 3). However,
increasing selected sample sizes from 160/510 to 240/
510 and from 240/510 to a full-panel analysis had no
apparent pragmatic advantage on precision. These
results suggest, as pointed out by Jin et al. (2004), that
most of the power and precision relative to the full-panel
analysis is retained by the first subsample fractions
selected from the available animals; nevertheless, the
appropriate size of the subsample depends on the eQTL
effects or heritability levels.

Mean absolute distance of QTL location: Figure 4
illustrates the precision of QTL mapping evaluated in
terms of MAD averaged over the replicates for each of the
different selective profiling strategies and selected sam-
ple sizes under each of the three different correlation
scenarios for bivariate vs. univariate analyses. Once again,
the MAD for the full panel is plotted for reference. The
pleiotropic nature of the simulated QTL and the use of

Figure 2.—Negative logarithm base 10 of
P-values of the likelihood-ratio test for scanned
positions at linkage groups averaged over all
the replicates for the different selective profiling
strategies at a selected sample size of 80, for bivar-
iate (A and C) and univariate analysis methods (B
and D), for the low- (A and B) and medium- (C
and D) correlation scenarios. Arrows point to the
true QTL location.
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the ERT data in the bivariate analyses (Figure 4, A, C, and
E) afforded much greater precision for mapping the QTL
than its univariate counterpart based on the analysis of
the selectively profiled CG data only (Figure 4, B, D, and
F). This was noted for all selection strategies and selected
samples sizes. For bivariate analyses, there was no clear
trend for preference of any one particular selective

profiling strategy as none of the MAD differences were
significant at any selection proportion (Figure 4A). Con-
versely, we observed some significant differences among
selection strategies and selected sample sizes based on
univariate analyses (see Figure 4). For example, with a
sample size 80/510, the random and the phenotypic
within-genotype approaches had larger MAD compared

Figure 3.—Mean squared error (MSE) of the quantitative trait locus effect estimation, as a function of the variance and squared
bias of the estimator averaged over the replicates for the different selective profiling strategies and samples sizes, from bivariate (A,
C, and E) and univariate analysis methods (B, D, and F), for the high- (A and B), low- (C and D), and medium- (E and F) cor-
relation scenarios. The full-panel MSE corresponding to a sample size of 510 animals is plotted for reference.
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to other selective profiling strategies at high correlation
(Figure 4B), whereas random selection performed worst
at low correlation (Figure 4D). There were no significant
differences (P . 0.05) among selection strategies at the
medium correlation (Figure 4, E and F). Naturally, as the
selection proportion increased, the differences among
selective phenotyping strategies tended to decrease in the

univariate analysis, particularly under the high- and low-
correlation scenarios (Figure 4, D and F).

Specificity and sensitivity of QTL detection: Sensi-
tivity and specificity of QTL detection are presented in
Figures 5 and 6 for the different selection strategies,
selected sample sizes, and correlation scenarios, with
bivariate analyses presented in Figure 5, A, C, and E, and

Figure 4.—Mean absolute distance (MAD) between the true and the estimated quantitative trait locus location averaged over
the replicates for the different selective profiling strategies and sample sizes, from bivariate (A, C, and E) and univariate analysis
methods (B, D, and F), for the high- (A and B), low- (C and D), and medium- (E and F) correlation scenarios. The MAD for the full
panel (sample size 510) is plotted as a dotted line for reference.
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Figure 6, A, C, and E, and univariate analyses presented
in Figure 5, B, D and F, and Figure 6, B, D, and F.
Sensitivity, as a numerical measure of power of QTL
detection, followed the same trend of relative perfor-
mance observed from the QTL scan profiles in Figures 1
and 2. For example, for the bivariate analyses under all
levels of correlation, and when 80 of 510 animals were
selected for profiling, the line dissimilarity and the

phenotypic within-genotype strategies presented the
greatest sensitivity whereas maximum-recombination
selection had the worst. Under univariate analysis, the
line dissimilarity, the phenotypic within-genotype, and
the phenotypic within-family strategies had the best
performance, while the maximum recombination had
the lowest sensitivity at all three different levels of
correlation. As the selected sample size increased, the

Figure 5.—Sensitivity of quantitative trait locus detection averaged over the replicates for the different selective phenotyping strategies
and sample sizes, from bivariate (A, C, and E) and univariate analysis methods (B, D, and F), for the high- (A and B), low- (C and D), and
medium- (E and F) correlation scenarios. The sensitivity for the full panel (sample size 510) is plotted as a dotted line for reference.
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differences diminished substantially, particularly when
240 animals were selected; this was true for both the
bivariate and the univariate analyses and under all levels
of correlation. Finally, it is worth noting that differences
in sensitivity among selection methods were smaller
under bivariate analyses and high correlation (Figure
5A). On the other hand, similarly to MAD for QTL loca-
tion, there was no clear pattern in terms of specificity of

QTL detection among the different selective profiling
strategies (Figure 6). Nonetheless, there was some
indication of better performance of the line dissimilar-
ity profiling strategy in the univariate analyses (Figure 6,
B, D, and F), although other researchers found similar
specificities for genome-based genetic dissimilarity vs.
random selective profiling of an F2 mice population
( Jin et al. 2004).

Figure 6.—Specificity of quantitative trait locus detection averaged over the replicates for the different selective phenotyping
strategies and sample sizes, from bivariate (A, C, and E) and univariate analysis methods (B, D, and F), for the high- (A and B), low-
(C and D), and medium- (E and F) correlation scenarios. The specificity for the full panel (sample size 510) is plotted as a dotted
line for reference.
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DISCUSSION

In this study, we compared different selective profiling
strategies for the efficient design of eQTL experiments
with outbred F2 populations. These strategies are in-
tended to conserve resources for the microarray exper-
iment while maximizing power and precision of eQTL
mapping as suited for expensive livestock studies focus-
ing on identifying CG for particular ERT.

The five examined selective profiling strategies have
different requirements and efficiency of use of prior
information. The line dissimilarity and the maximum-
recombination selection require a complete panel of
genotyped individuals but no records on an ERT whereas
these records would be required for the phenotypic within-
family and the phenotypic within-genotype strategies. The
latter selection strategy also requires the identification of a
QTL for the performance trait and genotyped individuals
for this QTL position, whereas the random selection does
not require any prior information on ERT or genotypes.

The line dissimilarity strategy, following the proposal
of Jin et al. (2004), aims to select a sample of individuals
with maximum dissimilarity with respect to line of origin
within a genomic region of particular interest or across
the whole genome if there are no targeted segments.
Since we used the number of alleles (0, 1, or 2) coming
from the same line of origin as the measure of similarity,
our deviation on their strategy favored the choice of
homozygous individuals, thereby optimizing the detec-
tion of additive QTL effects. However, estimation of more
general genetic effects (e.g., dominance) can be favored
by specifying other genotypes as similar (code ¼ 1) or
dissimilar (code ¼ 0), regardless if they share one or no
alleles from the same line or origin ( Jin et al. 2004; Bueno

et al. 2006). This strategy along with the phenotypic
within-genotype selection approach had the best perfor-
mance for power of QTL detection and estimation of
QTL effects as measured, respectively, by sensitivity and
MSE across all selective profiling strategies.

In our simulations, we used chromosome-based line
dissimilarity, calculated using all markers in the linkage
group in which the QTL was detected for the ERT. This
approach would be especially suitable in situations with
sparse maps and wide confidence intervals for the pu-
tative QTL position. However, for denser marker maps
with high precision for the putative QTL location,
probably only one or a few markers closely linked to
the QTL could be used to obtain a marker-based genetic
dissimilarity, potentially resulting in higher sensitivity and
precision of eQTL detection ( Jin et al. 2004). Moreover,
for two-color microarray platform experiments, the dis-
tant pairing of most genetically dissimilar individuals could
further improve power and resolution in eQTL analyses
(Fu and Jansen 2006).

The maximum-recombination strategy, analogous to
the maxRec method of Jannink (2005), selected indi-
viduals with a larger expected number of crossover

events. As such, this strategy is expected to improve the
QTL mapping resolution, as observed in this and other
studies ( Jannink 2005; Xu et al. 2005), when compared
to the random selection using the univariate analysis of
CG expression data. However, this superior behavior
was not seen in our simulation study for the bivariate an-
alyses, as there were no clear patterns in the MAD graphs
(Figure 5) in favor of any of the selective profiling
strategies. Furthermore, the maximum-recombination
method was outperformed by other selective profiling
strategies in terms of sensitivity of QTL detection and
MSE of QTL effect estimates. The F2 population structure
had few recombinant gametes (the estimated mean
number of recombinations with respect to line of origin
across the 16 marker intervals for both gametes inherited
by the 510 F2 individuals based on MCMC inference was
3.24), thereby not facilitating refined mapping resolu-
tion. Hence this may be one of the main reasons for
poorer results for the maximum-recombination method,
even though we observed crossover enrichment in the
decreasing selected sample sizes of 240, 160, and 80 in-
dividuals, in which the estimated mean number of recom-
binations rose from 4.31 to 4.71 and 5.23, respectively.

The phenotypic within-genotype strategy of Wang

and Nettleton (2006) required the previous detection
of a QTL for the corresponding ERTas well as genotypes
for this QTL or closely linked markers. This method
improved sensitivity of QTL detection and precision of
QTL effects estimation compared to the random, the
maximum-recombination, and the phenotypic within-
family strategies under the bivariate analysis and se-
lected sample sizes of 80 and 160 individuals, whereas its
performance was similar to that of the line dissimilarity
approach. Therefore, this profiling strategy seems to be
suitable, particularly when the microarray experiment
targets gene(s) associated with a particular performance
QTL of interest (Nettleton and Wang 2006). On the
other hand, the phenotypic within-genotype and the
line dissimilarity strategies were shown to have somewhat
equivalent performance. This was true even when a QTL
was present with pleiotropic effects on a highly correlated
ERTand CG expression, thereby characterizing the ideal
scenario for the phenotypic within-genotype selection.
Hence, the line dissimilarity approach is a robust pro-
cedure suitable for most general cases, regardless of
whether or not there are one, several, or no QTL of par-
ticular interest and available data on ERT.

The phenotypic within-family strategy that selected
extreme individuals for ERT within family (Rosa et al.
2006b) can be applied, with some loss in precision and
power of QTL detection compared to the line dissim-
ilarity and the phenotypic within-genotype strategies.
Nevertheless, no genotype data are required for this
particular selective profiling strategy. However, it is
vitally important for the phenotypic within-family strat-
egy to use bivariate analysis conditional upon the ERT
on which selection was based to avoid badly biased QTL

Selective Transcriptional Profiling 1689



effect estimates for the CG expression as seen in Figure
3B. Finally, random sampling is a resource-wasteful
strategy for expensive microarray experiments and should
be avoided. There are superior selective profiling strate-
gies ( Jin et al. 2004; Jannink 2005; Xu et al. 2005; Wang

and Nettleton 2006) that could be chosen, depending
on the information available, the goal of the experiment,
and the inferential methods used (Rosa et al. 2006a).

In this study, bivariate mixed-model analysis was shown
to be efficient in recovering information lost by selective
profiling as noted by smaller MSE of effects (Figure 3)
and MAD of location (Figure 4) for the pleiotropic
QTL across all selective profiling strategies and hence
should be preferred for the statistical analysis of such
experiments (Wang and Nettleton 2006). Our recom-
mendation holds despite the larger computational re-
quirements of bivariate analyses and the fact that most
selective profiling proposals have been based on univar-
iate analyses ( Jin et al. 2004; Jannink 2005; Xu et al. 2005).
Wehavealsodemonstrated thatusingtheERTasacovariate
for the CG data substantially decreases the power of eQTL
detection (Figure 1) such that this analysis method should
not be employed in genetical genomics studies. However,
this strategy continues to be used in classical livestock QTL
mapping, for example, when carcass weight is used as a
covariate for other carcass traits (De Koning et al. 2001;
Ovilo et al. 2002; Varonaet al. 2002; Edwards et al. 2008a).

Finally, it is important to emphasize that selective
profiling is a resource-efficient design strategy. In our
simulation results, with the eQTL explaining 10% of the
phenotypic variance we generally observed no practical
advantage by increasing the selected sample size for
profiling from 160/510 to 240/510. Therefore, selective
phenotyping should be considered to increase power and
precision of eQTL mapping experiments whenever re-
sources are not abundant. In practice, the relative ef-
ficiency of selective phenotyping methods compared to a
full-panel analysis will depend on several factors, notably
magnitude of the eQTL effects, correlation between ERT
and CG expression, population structure, marker density,
and sample size.
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