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ABSTRACT

Fixed effects models have dominated the statistical analysis of genetic crosses between inbred strains. In
spite of their popularity, the traditional models ignore polygenic background and must be tailored to each
specific cross. We reexamine the role of random effect models in gene mapping with inbred strains. The
biggest difficulty in implementing random effect models is the lack of a coherent way of calculating trait
covariances between relatives. The standard model for outbred populations is based on premises of genetic
equilibrium that simply do not apply to crosses between inbred strains since every animal in a strain is
genetically identical and completely homozygous. We fill this theoretical gap by introducing novel com-
binatorial entities called strain coefficients. With an appropriate theory, it is possible to reformulate QTL
mapping and QTL association analysis as an application of mixed models involving both fixed and random
effects. After developing this theory, our first example compares the mixed effects model to a standard fixed
effects model using simulated advanced intercross line (AIL) data. Our second example deals with hormone
data. Here multivariate traits and parameter identifiability questions arise. Our final example involves
random mating among eight strains and vividly demonstrates the versatility of our models.

IN analyzing gene mapping data from inbred strains,
there is always the temptation to borrow models

more pertinent to outbred populations. The vast major-
ity of statisticians are wise enough to resist this temp-
tation and turn to analysis methods tailored to specific
breeding designs. Fortunately, the typical backcross or
F2 design has sufficient symmetry to permit analysis of
variance by standard statistical packages. As mamma-
lian geneticists explore more complicated designs in-
volving multiple strains and multiple generations, this
analysis paradigm has begun to fracture. It is therefore
hardly surprising that the last decade and a half have
seen a revival of interest in statistical models for gene
mapping with inbred strains. Although we briefly re-
view some of the important contributions to this lit-
erature in the next section, it is fair to say that most
modern models rely heavily on fixed effects. In contrast,
the most successful models for mapping quantitative trait
loci (QTL) in outbred populations invoke random effects
(Hopper and Mathews 1982; Goldgar 1990; Schork

1993; Amos 1994; Blangero and Almasy 1997).
The premise of this article is that, properly formu-

lated, random effects models hold equal promise for
more complicated inbred strain data. If a QTL is seg-

regating between two strains, backcross and F2 designs
reliably detect it (Valdar et al. 2006). Models based on
fixed allelic effects play a critical role in this process. Tra-
ditional designs have two drawbacks. First, the scarcity of
recombination events often gives long mapped intervals.
Second, when two founder strains of related ancestry are
chosen, there may be no segregating QTL. To increase
the number of recombination events and the number of
segregating QTL, geneticists are turning to more com-
plex designs involving multiple strains. Although the
rationale for more complex designs is compelling, they
bring in their wake problems of overparameterization.
Random effects models neatly circumvent some of the
parameterization issues encountered with fixed effects
models. Unfortunately, the standard outbred QTL
model does not make sense for inbred strains. All
individuals of a particular strain are genetically identical
and completely homozygous. These cardinal character-
istics have subtle consequences when we calculate trait
covariances for the descendants of matings between
different strains. A logically correct theory for specifying
covariances between pairs of individuals is the key to
making random effects models respectable for inbred
strains.

In this article, we take two approaches to QTL
mapping; both capture polygenic background as a
source of random variation. The two approaches differ
in how they handle variation caused by the QTL. In
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association mapping, markers are treated one by one as
candidate genes, and observed genotypes or allele
counts at a marker serve as fixed predictors of trait
means. In linkage mapping, markers in the vicinity of
the QTL provide prior information on gene sharing,
and the QTL contribution is modeled as a random ef-
fect. The greatest defect of our models is the blanket
assumption of additivity. The greatest strength of our
models is their generality in other regards. Thus, there is
no limit to the number of founding strains, the depth
and complexity of pedigrees, or the number of traits in a
multivariate analysis.

To avoid breaking the flow of our discussion, much of
the mathematical detail is relegated to the appendixes.
The following sections summarize previous contribu-
tions, lay out the model with full attention to computa-
tion of strain coefficients and relative covariances,
resolve the thorny issue of identifiability, apply the mod-
els to real and simulated data, and discuss the broader
implications and limitations of the models.

METHODS

A brief survey of previous methods: Inbred mam-
malian strains have unique advantages in genetics. All
members of a strain are genetically identical and com-
pletely homozygous. Simple crosses between strains in-
volve no phase ambiguities, and any genes mapped can
be quickly located in humans and other species by
synteny. With mice and other small mammals, breeding is
reasonably straightforward, generation times are fairly
short, and the environment can be exquisitely controlled.

For decades, QTL mapping in inbred strains was
considered an exercise in fixed effects modeling.
Testing for association between marker genotypes and
trait values is readily carried out using several available
statistical packages. In the interval method introduced
by Lander and Botstein (1989), the QTL is allowed to
take any position along a chromosome. This makes QTL
genotypes unobservable and requires computation of
posterior distributions given observed genotypes at the
flanking markers. Although the EM algorithm is appli-
cable in this context, it is often slow to converge, and the
regression method of Haley and Knott (1992) pro-
vides a quick approximation. The permutation test of
Churchill and Doerge (1994) handles multiple
testing problems gracefully. The recent program R/qtl
(Broman et al. 2003), which capitalizes on the R soft-
ware environment, combines several of these methods
with hidden Markov modeling of missing genotypes.
Despite these admirable advances, interval mapping is
still limited to simple crosses where polygenic back-
ground is confounded with random environment. As
the field embraces more complex crosses, geneticists no
longer have the luxury of ignoring polygenic back-
ground, and it seems self-evident that explicitly model-
ing it will improve statistical inference.

The composite interval mapping method of Zeng

(1993, 1994) implemented in QTL Cartographer gen-
eralizes interval mapping by including the direct effects
of one or more markers unlinked to the QTL. Hence,
composite interval mapping can be viewed as an attempt
to incorporate polygenic background through fixed
effects. If the number of typed markers is large, then it
becomes hopeless to include all of them, and some
automatic selection of background markers is desirable
(Manly and Olson 1999).

Although Xie et al. (1989) take important first steps
toward including polygenic background as a random
effect, they do not derive general covariance expres-
sions. This failure makes it difficult to deal with non-
standard crosses and awkward to combine data from
different crosses. In the meantime, the pressure to in-
crease the number of strains per cross has been growing
(Rebai and Goffinet 1993). Of 21 cloned mouse genes
listed in Tables 1 and 2 of the review by Flint et al.
(2005), 7 rely on cloning strategies involving multiple
strains or outbred mice. These practical concerns are
stimulating intense efforts to revamp experimental
design and statistical analysis of inbred cross data (Liu

and Zeng 2000; Hitzemann et al. 2002; Pletcher et al.
2004; Li et al. 2005; Cervino et al. 2007). Other recent
models that delve into multiple QTL models and epis-
tasis are both frequentist (Kao et al. 1999; Janninka and
Jansena 2001; Seaton et al. 2002; Broman et al. 2003)
and Bayesian oriented (Sillanpää and Arjas 1998; Sen

and Churchill 2001; Broman et al. 2003).
Trait means, variances, and covariances: We begin

our theory development with a basic model applicable
to any inbred strain design, including F2, advanced
intercross lines, and random mating. Suppose that i and
j are two animals generated by a complex cross involving
s inbred strains. At t traits of interest, i and j exhibit
random vectors Xi and Xj of trait values. For the sake
of simplicity, assume further that Xi and Xj reflect the
contributions of a single gene whose alleles have ad-
ditive effects. Our immediate goal is to calculate the
expected vectors E(Xi) and E(Xj) and the covariance
matrix Cov(Xi, Xj). When i ¼ j, we recover variances as
well as covariances. Because of our assumption of ad-
ditivity, Xi decomposes as the sum Yi 1 Zi of a maternal
contribution Yi plus a paternal contribution Zi. To
calculate E(Yi), let Mi denote the originating strain of
the maternal gene of i. Although Mi is unobserved, we
can calculate the probability Pr(Mi ¼ a) for any given
strain a. In terms of these probabilities and the t 3 1
mean vector m(a) of allelic effects on each trait for strain
a, we have

EðYiÞ ¼
Xs

a¼1

PrðMi ¼ aÞmðaÞ:

Invoking a similar expression for E(Zi), it follows that

1744 L. E. Bauman et al.



EðXiÞ ¼ 2
Xs

a¼1

giðaÞmðaÞ; ð1Þ

where gi(a) is the probability that a randomly sampled
gene from i originates from strain a. We refer to gi as the
strain fraction vector for animal i; gi has dimension s 3 1.

Covariances are derived by the same kind of reason-
ing. Decompose Xj into the sum Vj 1 Wj of a maternal
contribution Vj plus a paternal contribution Wj . In view
of the bilinearity of the covariance operator and the
symmetry of maternal and paternal alleles, it suffices
to find the covariance Cov(Yi, Vj). Let Nj denote the
originating strain of the maternal gene of j. Condition-
ing on the joint value of Mi and Nj then yields

CovðYi ; VjÞ ¼ EðYiV *j Þ � EðYiÞEðVjÞ*
¼
X

a

X
b

PrðMi ¼ a; Nj ¼ bÞmðaÞmðbÞ*

�
X

a

PrðMi ¼ aÞmðaÞ
" #

3
X

b

PrðNj ¼ bÞmðbÞ
" #

*
;

where the superscript * indicates a vector or matrix
transpose. By analogy with kinship coefficients, we
define the strain coefficient cij(a, b) to be the joint
probability that a randomly drawn gene from animal i
originates from strain a and a randomly drawn gene
from the same locus of animal j originates from strain b.
If i and j coincide, then sampling is done with re-
placement. The t 3 t covariance matrix between the trait
values of i and j becomes

CovðXi ; XjÞ ¼ CovðYi ; VjÞ1 CovðYi ; WjÞ1 CovðZi ; VjÞ
1 CovðZi ; WjÞ
¼ 4

X
a

X
b

cijða; bÞmðaÞmðbÞ*

� 4
X

a

giðaÞmðaÞ
X

b

gjðbÞmðbÞ*

¼ 4
X

a

X
b

Cijða; bÞmðaÞmðbÞ*; ð2Þ

where Cij(a, b) ¼ cij(a, b) � gi(a)gj(b), which we collect
into an s 3 s matrix, denoted Cij.

For s strains and t traits, it is convenient to stack the
allelic effects into a column vector m of length st with
transpose

m* ¼ ½m1ð1Þ; . . . ; m1ðsÞ; . . . ; mtð1Þ; . . . ; mtðsÞ�:

The positive semidefinite matrix V ¼ mm* can then be
split into t2 blocks Vkl each of size s 3 s. Restricting our
attention to the block corresponding to traits k and l,
the covariance matrix (2) has entries given by the trace
formula

CovðXik ;XjlÞ ¼ 4 trðCij Vkl Þ: ð3Þ

In polygenic inheritance, many independent loci
contribute in an additive manner to the traits under
consideration. Since trait means and covariances add in
this setting, the mean expression (1) and the covariance
expressions (2) and (3) remain valid provided we
replace m by

P
l ml and V by

P
l mlðml Þ*. Here ml denotes

the vector contribution corresponding to locus l rather
than the lth component of m. appendix a shows that
every pair (m, V) consisting of a vector m and a positive
semidefinite matrix V can be represented as two such
coordinated linear combinations. Hence, to capture
polygenic background, it suffices to estimate arbitrary m

and V. We see later that there is an identifiability issue
that must be surmounted in estimating V.

Computation of strain coefficients: Because the
combinatorial coefficients gi(a) and cij(a, b) are essen-
tial in calculating trait means and variances, we need
good algorithms to compute these coefficients. Fortu-
nately, we can mimic the logic used in calculating
kinship coefficients for outbred populations. Since a
pedigree founder i is assumed to be strain pure, one
entry of the vector gi¼ 1, and the remaining entries¼ 0.
Likewise for two founders i and j, one entry of the matrix
cij ¼ 1, and the remaining entries ¼ 0. All other strain
fraction vectors gi and strain coefficient matrices cij are
defined recursively starting with the founders.

To avoid circular reasoning, pedigree members are
numbered so that parents always precede their children.
If animal i is not a founder, then it has parents k and l.
Assuming that k and l have already been visited in filling
in the strain fractions, we set

gi ¼
1

2
ðgk 1 gl Þ: ð4Þ

If j 6¼ i, then without loss of generality we can assume j
has been visited already, and we can set

cij ¼
1

2
ðckj 1 cljÞ ð5Þ

cji ¼
1

2
ðcjk 1 cjlÞ: ð6Þ

This leaves only the case j ¼ i. There are four equally
likely possibilities when we sample two genes of i: (a)
both genes coincide with the gene passed by k, (b) both
genes coincide with the gene passed by l, (c) the first
gene comes from k and the second from l, and (d) the
first gene comes from l and the second from k. These
considerations produce the matrix recurrence

cii ¼
1

4
½diagðgkÞ1 diagðgl Þ1 gkgl* 1 gl gk*�; ð7Þ

where diag(g) denotes a diagonal matrix whose di-
agonal entries coincide with the entries of the vector g.
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The initial conditions on founders and the recurren-
ces (4)–(7) completely determine gi and cij. These in
turn determine the Cij matrices, which have a richer
mathematical structure than the strain coefficient ma-
trices cij. appendix b describes several fascinating
properties of the Cij matrices. One such property is
Cij ¼ 0 between most members of simple crosses, for
example, for all F2 animals when i 6¼ j or whenever i is a
founder or F1.

Variance component models for QTL mapping with
outbred populations require conditional kinship coef-
ficients in addition to theoretical kinship coefficients.
For exactly the same reasons, we also need conditional
strain fractions and coefficient matrices. These depend
on observed marker genotypes in the vicinity of a
putative QTL. On small pedigrees, it is possible to
compute conditional strain coefficient matrices exactly
by considering all descent graphs (gene flow patterns)
at the QTL and neighboring markers (Kruglyak et al.
1996). In practice, inbred strain pedigrees are so large
that the number of possible descent graphs is astro-
nomical. Stochastic sampling provides a workable sub-
stitute for exhaustive enumeration of descent graphs
(Sobel and Lange 1996). The Markov chain Monte
Carlo (MCMC) method incorporated in the computer
program SimWalk samples relevant descent graphs with
the appropriate conditional probabilities. Given a de-
scent graph at the QTL, it is trivial to compute strain
fractions for all animals and strain coefficient matrices
for all pairs of animals in a pedigree. The averages of
these quantities over all sampled descent graphs serve as
approximations to the conditional strain fractions and
strain coefficient matrices.

Strain coefficients convey more information than
strain fractions. For instance, it is obvious that

giðaÞ ¼
X

b

ciiða; bÞ:

We can put this extra information to good use in
predicting QTL genotypes. At a given genomic location,
imagine a marker with a different allele for each strain.
Let b̂iða=bÞ be the conditional probability that animal i
has unordered genotype a/b at the hypothetical marker
given the observed data at the ordinary markers. The
relations

ĉiiða; aÞ ¼ 1

2
ĝiðaÞ1

1

2
b̂iða=aÞ;

ĉiiða; bÞ ¼ 1

4
b̂iða=bÞ; b 6¼ a

connect the conditional genotype probabilities to the
conditional strain fractions and coefficients. These
relations in turn imply that

b̂iða=aÞ ¼ 2ĉiiða; aÞ � ĝiðaÞ;
b̂iða=bÞ ¼ 4ĉiiða; bÞ; b 6¼ a: ð8Þ

Thus, we can impute strain genotypes as well as strain
fractions.

Variance component models: Variance component
models revolve around the multivariate normal distri-
bution or related distributions such as the multivariate t.
Every multivariate normal distribution is uniquely de-
termined by its mean vector n and variance matrix S. If
we decompose trait values into independent, additive
contributions, then n and S can be expressed as sums
over the various contributions. As long as we are willing
to take the leap of faith that all random contributions
are Gaussian, then trait vectors will be Gaussian as well.
For each random contribution, variance matrices are
constructed from a constant part and a parametric part.
The genetic covariance formula (3) is typical in this
regard. The constant parts Cij are forced on us by the
nature of the pedigree. The parametric part V with
blocks Vkl requires estimation.

The environmental contribution to the mean is
usually modeled as the sum of a grand mean h plus
covariate effects such as age or sex. Random environ-
ment and cage effects can be modeled by Kronecker
products of variance matrices, provided we order trait
values so that all values corresponding to a given trait are
contained in a single block, and animals are consistently
enumerated across blocks. Given these conventions, the
variance matrix under random environment reduces to
the Kronecker product Y 5 I of the trait variance matrix
Y and the identity matrix I. Obviously, Y is the para-
metric part; it describes the environmental covariation
of the traits in a single animal. The matrix I reflects
the independence of the random environments for the
various animals. For a random cage effect, we replace
the identity matrix by a cage matrix H¼ (hij), where hij¼
1 if animals i and j belong to the same cage and 0
otherwise. The matrix replacing Y describes the envi-
ronmental covariation of the traits for animals in a
single cage (Lange 2002). As an example, heritability
analyses generally specify two random effects, additive
polygenes and random error/environment,

EðXikÞ ¼ 2
Xs

a¼1

giðaÞmkðaÞ1
XC

c¼l

aicbkc 1 h ð9Þ

CovðXik ;Xjl Þ ¼ 4 trðCij VklÞ1 Ykl ; ð10Þ

where aic is the cth of C covariates measured on animal i
and bkc is the corresponding regression coefficient for
trait k.

Once we specify the mean and variance components,
the loglikelihood of a pedigree can be written as

L ¼ � 1

2
ln det S� 1

2
ðx � nÞ*S�1ðx � nÞ;

using the observed trait values x, the mean vector n such
as that of Equation 9, and the variance matrix S such
as that of Equation 10. Assuming pedigrees behave
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independently, their loglikelihoods add. Given the over-
all loglikelihood, parameters can be estimated by max-
imum likelihood, and statistical inference conducted by
standard likelihood ratio tests comparing alternative
hypotheses to null hypotheses. Lange (2002) develops
this frequentist approach to estimation and inference in
detail. Our computer program Mendel relies on a quasi-
Newton algorithm for maximum likelihood estimation.
Bauman et al. (2005) discusses an alternative EM algo-
rithm as well as factor-analytic parameterizations of
variance matrices. Given the presence of covariates and
heterogenous pedigree structures, permutation testing is
rarely possible. To aid the user in judging significance
and model fitting, Mendel reports standard errors of
parameters, pedigree deviances, outlier individuals, and
various goodness-of-fit statistics.

Two QTL mapping strategies: There are two specific
strategies, association and linkage, for QTL mapping.
Variance component models are pertinent to both.
Although the two strategies differ in how they portray
QTL effects, each captures polygenic background as a
random effect. In addition to the strain effects appear-
ing in Equation 1, most models include a grand mean h

and fixed effects tied to plausible predictors. If we
specify h, then we must impose the vector constraintP

a mðaÞ ¼ 0 on the polygenic mean vector m. Here the
index a ranges over all strains. Random effects include
the polygenic effect summarized by Equation 3, random
environment plus measurement error, and possibly
correlated environment such as cage effects. As de-
scribed in the next section, the polygenic variance
matrix V is not identifiable, and complicated con-
straints must be imposed on it to compensate for this
fact. Regardless of the nature of these constraints, we
must compute theoretical strain fractions and strain
coefficients to estimate m and V under the null
hypothesis of no QTL effect.

In linkage mapping, markers serve to tag chromo-
some segments and keep track of recombination events.
The genotypes of the causative QTL are unobserved,
and the QTL is allowed to assume any position along the
genome. Under the alternative hypothesis in linkage
mapping, we model the QTL as a random effect in the
same way that we modeled the contribution of a single
gene with additive effects. The only difference is that we
use strain fractions and coefficients calculated condi-
tional on the observed marker data. From here on, we
refer to these as conditional strain fractions and
coefficients; those calculated unconditionally we call
theoretical strain fractions and coefficients. Motivated
by Equations 1 and 3, we let e(a) denote the additive
effect of the QTL in strain a. Then our earlier reasoning
shows that the QTL contribution has mean

2
X

a

ĝiðaÞ eðaÞ

for animal i and covariance

4
X

a

X
b

cCijða; bÞeðaÞeðbÞ*

for animals i and j. Here the circumflexes indicate
conditional versions of the strain fractions and coef-
ficients estimated from the marker data. Under the
alternative hypothesis, we estimate the entries of e.

Our basic linkage model therefore specifies the trait
means and covariances

EðXikÞ¼2
Xs

a¼1

giðaÞmkðaÞ12
Xs

a¼1

ĝiðaÞekðaÞ1
X

c

aicbkc1h

ð11Þ

CovðXik ;XjlÞ ¼ 4 trðCij VklÞ1 trðĈijekel*Þ1 1fi¼jgYkl

ð12Þ

for two animals i and j. Here k and l index two traits, aic

is covariate c of animal i, and bkc is the corresponding
regression coefficient for trait k. If we let �e denote the
average ð1=sÞ

P
a eðaÞ, then all QTL models that include

a grand mean require the constraint �e ¼ 0. In the
presence of this constraint, the likelihood ratio test of
linkage follows asymptotically a x2 distribution with st� t
degrees of freedom.

In association mapping, QTL fixed effects are tied to
the current marker. The marker is viewed as a candidate
gene whose genotypes or alleles directly influence trait
means (Lange et al. 2005); random QTL effects are
omitted. Hence, in Equation 12 we drop the random
effect trðcCijekel*Þ, and in Equation 11 we amend the
fixed effect 2

Ps
a¼1 ĝiðaÞekðaÞ to represent regression

on observed allele counts at the current marker. If the
additive model for allelic effects is viewed as too
restrictive, then we can regress on observed genotypes.
Association testing is again conducted by likelihood
ratio statistics.

In the presence of missing genotypes in association
testing, we fall back on imputed allele counts or im-
puted genotype counts. Because genotypes at markers
are usually directly observed, little is lost in imputation
by ignoring genotypes at flanking markers. In this
simpler setting, a fast deterministic algorithm is avail-
able for imputation (Lange et al. 2005). Flanking mark-
er genotypes occasionally resolve phase ambiguities
caused by combining closely spaced single nucleotide
polymorphisms (SNPs) into supermarkers. Accordingly,
the current version of Mendel also accepts MCMC
estimates of conditional strain fractions from SimWalk.
When each strain carries a different allele at the marker,
the allele counts delivered by SimWalk are computed by
doubling the conditional strain fractions at the marker.
When two strains share a common allele at the marker,
the corresponding strain fractions are added before
doubling.

Identifiability: We have seen that the polygenic co-
variance expression (3) between trait k of animal i and
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trait l of animal j involves the s 3 s trait block Vkl of an
st 3 st variance matrix V. Unfortunately, estimation of
V collides with an identifiability issue. The crux of the
problem is the existence of nontrivial matrices L with

tr½CijðVkl 1 LklÞ� ¼ trðCij VklÞ

for every legitimate choice of Cij and every trait pair (k,
l). Proposition 2 of appendix b explains this phenom-
enon by representing Cij as a convex combination of the
matrix 0 and ðs2Þ matrices Emn indexed by unordered
strain pairs {m, n}. Here all entries of Emn are 0 except for
the diagonal entries emm ¼ enn ¼ 1 and the off-diagonal
entries emn ¼ enm ¼ �1. It follows that

trðCij Lkl Þ ¼
X
fm;ng

aij ;mntrðEmnLkl Þ ¼ 0

provided

trðEmnLkl Þ ¼ lkl ;mm 1 lkl ;nn � lkl ;mn � lkl ;nm ¼ 0 ð13Þ

for every strain pair {m, n} and every s 3 s trait block Lkl¼
(lkl,mn) of L.

We can solve the identifiability problem by subtract-
ing the nonidentifiable part of V from V. To achieve this
end, we view the positive semidefinite matrix V as a vec-
tor in the Euclidean space Rst3st. In this setting the trace
function ,A;B. ¼ tr(AB*) and Frobenius norm
kAkF¼ tr(AA*)1/2 reduce to the standard inner product
and Euclidean norm. To find the nonidentifiable part
of V, one projects V onto the vector subspace S of
symmetric matrices satisfying Equation 13 for every
strain pair {m, n} and every trait block Vkl. Formally,
the projection P(V) is defined to be the matrix X giving
the minimum of kV� X k2

F for X 2 S.
Fortunately, minimization of kV� X k2

F separates into
subproblems corresponding to different trait blocks.
First, consider a diagonal block Vkk of V. To simplify
notation, denote its entries by ymn ¼ Vkk,mn and the
entries of the corresponding block of the projection by
xmn ¼ P(V)kk,mn. To find P(V)kk we must minimize the
sum of squares

1

2

X
m

X
n

ðymn � xmnÞ2

subject to the constraints xmm 1 xnn¼ xmn 1 xnm for every
pair {m, n}. Now consider off-diagonal blocks Vkl ¼ Vlk*.
These come in pairs that must be handled together, so
we let

ymn ¼ Vkl ;mn ¼ Vlk;nm

and

xmn ¼ PðVÞkl ;mn ¼ PðVÞlk;nm

and minimize the sum of squares

1

2

X
m

X
n

ðymn � xmnÞ2 1
1

2

X
m

X
n

ðynm � xnmÞ2

¼
X

m

X
n

ðymn � xmnÞ2

subject to the constraints xmm 1 xnn¼ xmn 1 xnm for every
pair {m, n}. It follows that diagonal blocks and off-
diagonal blocks lead to the same constrained minimi-
zation problem.

appendix c shows that each of these least-squares
problems has solution X ¼ (xmn) with residual

Y � X ¼ 1

2
ðU 1 U *Þ;

where Y ¼ (ymn), U ¼ QYQ, and Q is the s 3 s projection
matrix I � ð1=sÞ11*. In calculating a covariance, we can
ignore symmetrization and replace the matrix 1

2ðU 1U *Þ
by U. Indeed, the symmetry of Cij implies that

1

2
tr½CijðU 1 U *Þ� ¼ 1

2
trðCijU Þ1

1

2
trðCij U *Þ

¼ trðCij U Þ:

Thus, tr(CijQVklQ) faithfully represents the covariance
between trait k of animal i and trait l of animal j. By the
same reasoning, we can replace the entire residual ma-
trix V � P(V) by the matrix

R ¼ diagðQ ÞV diagðQ Þ: ð14Þ

Here diag(Q) is a diagonal block matrix with all t
diagonal blocks equal to Q. One can easily check that
diag(Q) is a projection matrix and that R inherits the
properties of symmetry and positive semidefiniteness
from V.

In reparameterizing V, it is convenient to define an
orthogonal matrix O mapping the vector ð1= ffiffi

s
p Þ1 to the

standard basis vector e1. (See appendix d for one version
of O.) It follows that

OQO* ¼ OðI � 1

s
11*ÞO* ¼ I � e1e1*:

Observe that pre- and postmultiplying any square
matrix by I � e1e1

* zeros out the first row and first
column of the matrix. To take advantage of this fact,
we express the residual matrix (14) as

R ¼ diagðO*ÞdiagðOQO*ÞdiagðOÞV diagðO*ÞdiagðOQO*ÞdiagðOÞ
¼ diagðO*ÞY diagðOÞ: ð15Þ

The matrix

Y ¼ diagðOQO*ÞdiagðOÞV diagðO*ÞdiagðOQO*Þ

is a positive semidefinite replacement for diag(O)V

diag(O*). By our earlier remark, a block Ykl of Y equals
the corresponding block of diag(O)V diag(O*) with its
first row and column zeroed out.

We are now close to the desired goal of reparam-
eterizing the residual. The matrix Y has entire rows and
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columns consisting of zeros. Permuting its rows and
columns appropriately will move its nontrivial part to an
upper-left block, which will be positive definite when-
ever V is positive definite. The Cholesky decomposition
of this upper-left block then serves as a good parame-
terization of R. To compute the number of parameters
for s strains and t traits, observe that the matrix Y is st 3

st. A total of t rows and columns are lost in the zeroing-
out process. This leaves an (st � t) 3 (st � t) upper-left
block with (st� t)(st� t 1 1)/2 diagonal or subdiagonal
entries. For example, with three strains and two traits,
there are 10 parameters.

For the sake of clarity, let us summarize how our
proposed parameterization leads to trait covariances. It
begins with a Cholesky decomposition D of an (st� t) 3

(st � t) positive definite matrix. The matrix DD* is then
subdivided into (s � 1) 3 (s � 1) trait blocks (DD*)kl,
and each block is promoted to an s 3 s trait block Ykl

by adding a top row and left column of zeros. In matrix
notation, Ykl¼ Z(DD*)klZ* with Z the s 3 (s� 1) matrix

Z ¼ 0*
I

� �
:

Finally, we construct the residual matrix R via Equation
15, using the orthogonal matrix O.

With these conventions, the covariance between trait
k of animal i and trait l of animal j amounts to

CovðXik ; Xjl Þ ¼ 4 trðCij RklÞ
¼ 4 trðCij O*Ykl OÞ
¼ 4 tr½Cij O*ZðDD*Þkl Z*O�
¼ 4 tr½Z*OCij O*ZðDD*Þkl �: ð16Þ

In computing covariances over large pedigrees, it saves
time and storage to precompute and store the (s� 1) 3

(s � 1) matrices 4Z*OCijO*Z and discard the s 3 s
matrices Cij. Note that the action A 1 Z*AZ on an s 3 s
matrix A deletes the first row and first column of A.

This ends our theoretical overview of the model.
appendix e shows how to differentiate covariances with
respect to parameters, and appendix f supplies a
counterexample connecting identifiability and symme-
try. We now move on to data analysis.

APPLICATIONS

A simulated advanced intercross line: An AIL starts
with F1 offspring from an intercross of two inbred
strains. The F1 animals are randomly bred to produce
the F2 animals, the F2 animals are randomly bred to
produce the F3 animals, and so on for a total of n
generations. An AIL differs from repeated brother–
sister mating, because it involves enough animals to
preserve genetic diversity. It draws its strength from the
steady accumulation of recombination events over
many generations (Darvasi and Soller 1995). Simu-

lating data according to an AIL design permits us to
compare our mixed effects results with the fixed effects
results of the benchmark program QTL Cartographer.
This exercise is not meant to be a substitute for an
exhaustive study of power and experimental design.
Also, the comparison is not entirely fair because QTL
Cartographer analyzes the Fn data at the last generation
ignoring the previous generations. To reconstruct miss-
ing marker information, QTL Cartographer applies an
inflated recombination fraction scaled to reflect n.

To create our simulated AIL data, we mated two
inbred founder animals and subjected their descend-
ants in each generation to virtual random mating.
Generation 10 contained 175 animals in 140 sibships
with 492 animals overall. Placing the QTL locus at the
midpoint of markers 5 and 6 of 11 equally spaced
marker loci, we simulated genotypes by gene dropping
and assigned QTL effects on the basis of the genotypes
at the QTL. QTL genotypes were then discarded from
further analysis. We modeled a univariate trait with a
grand mean h ¼ 4, an environmental variance s2

env ¼ 1,
and a 2 3 2 polygenic variance matrix

V ¼ 1:0 0:20
0:20 0:29

� �
:

For this simulated trait, strain one has a genetic variance
comparable to the environmental variance and larger
than the genetic variance of strain two. The two strains
share a modest genetic correlation. For reasons ex-
plained in the next section, a single generation of data
in a symmetric cross of this sort does not sustain
estimation of strain-specific polygenic means. To cir-
cumvent this problem in our comparisons, we set the
strain-specific polygenic means equal to 0. We chose
small strain-specific QTL effects e1 ¼ 0.2 and e2 ¼ �0.2
centered around 0. In view of our discussion of identifi-
ability, we can estimate only a single parameter p1

characterizing V. The projection technique discussed
yields the value p1 ¼ 0.667. The discussion of the Cij

matrices in appendix b explains why genotype data on a
single generation also prevent estimation of p1.

To provide the most informative comparisons, we ran
three analyses: (1) Mendel on the full pedigree with
complete genotype and phenotype data (Mendel Full),
(2) Mendel on the full pedigree but with phenotype
data on only the final F10 generation (Mendel F10), and
(3) QTL Cartographer on the final F10 generation with
complete genotype and phenotype data (Cartogra-
pher). Simply comparing cases Mendel Full and Car-
tographer is hardly fair; the full pedigree contains more
than twice the number of animals in the final genera-
tion. Mendel F10 takes advantage of the full genealogy
and all genotype data in computing theoretical and
conditional strain coefficients. It limits itself to the
phenotype sample in the last generation to enable a
better comparison to QTL Cartographer.
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Before turning to QTL mapping in the Mendel
analyses, we fit a baseline model including the grand
mean, the polygenic variance, and the environmental
variance. We then estimated conditional strain coeffi-
cients at each of the 11 marker loci. This put us in a
position to estimate the global parameters and the QTL-
specific parameters simultaneously at each locus. The
evidence in favor of the QTL is summarized by a
likelihood ratio test (LRT) statistic following a x2

1

distribution; a nonlinear false discovery rate (FDR)
correction (Benjamini et al. 2001) corrects for multiple
testing for all three analyses. Table 1 summarizes the
type I error rate, power, and coverage as well as the
generating parameters, their estimates, and the stan-
dard errors of the estimates at the loci adjacent to the
QTL. Successful coverage occurs when the equivalent
one-LOD drop interval (4.6 LRT units) includes the
QTL. We reject the null hypothesis of no QTL effect
when the LRT is significant at the 0.05 level.

The results in Table 1 reflect 100 simulations for a
QTL-effect size that yields power .90% for Mendel Full;
type I error rates are given as confidence intervals based
on 500 simulations under the null hypothesis of no QTL
effect. Clearly, the power to detect linkage is drastically
reduced when only the F10 generation is available for
analysis. This absence of data also makes it difficult for
Mendel F10 to estimate the polygenic parameter p1

accurately. For Mendel Full all estimates are within one
standard error of their true values, and standard errors
are small. QTL Cartographer exhibits slightly better
power and coverage than Mendel F10, but with a largely
inflated type I error rate. Both methods are easily bested
by Mendel Full. These trends continue over a range of
smaller QTL effects (data not shown). We are pleased with
these results. In our view they demonstrate that applica-
tion of the mixed effects model sacrifices little in simple
settings while generalizing readily to complex pedigrees.

A multivariate four-way cross: To illustrate the anal-
ysis of multivariate traits, we next consider the hormone
data of Burke and colleagues (Harper et al. 2003) on
aging UM-HET3 mice. Figure 1 shows how the UM-
HET3 mice were created from four founder strains:
BALB/cJ (C), C57BL/6J (B6), C3H/HeJ (C3), and
DBA/2J (D2). CB6F1 females crossed with C3D2F1

males provided 967 F2 full siblings. At markers with
four different alleles, all F2 mice were heterozygous.
Thus compared to a two-way cross, the four-way cross
doubles the number of founder strains without sacrific-
ing phase certainty. Hormone levels of insulin-like
growth factor I (IGF), leptin (Lep), and thyroxine
(T4) were measured at 4 and 15 months on each of
the F2 mice. Testing maternal and paternal effects
separately, Harper et al. found several linked markers
in these data via ANOVA, including a maternal allele at
D3Mit25 linked to IGF at 15 months, a paternal allele at
D3Mit127 linked to Lep at 4 months, and both maternal
and paternal alleles linked to Lep at 15 months. It is

worth pointing out that ANOVA or MANOVA must be
carried out at marker loci. Only here do marker geno-
types or allele counts unambiguously define factor
levels. With complete genotyping, our model collapses
in this setting to the classical models.

This multistrain cross highlights identifiability pitfalls
inherent in the structure of some crosses and the data
collected on them. For example, all F2 mice share the
strain fraction vector 1

4 1. Hence, the polygenic mean is
confounded with the grand mean. Using strain trait
averages or phenotyping members of the original
strains would allow us to estimate the polygenic means,
but this is not an option for the current data.

Although the rigid structure of the four-way cross
preserves phase certainty, it reduces uncertainty to the
point where the polygenic covariance matrix cannot be
estimated. Polygenic covariances depend on the com-
binatorial matrices Cij. We have already noted that Cij ¼
0 whenever i is a founder or i and j are F1 mice.
Straightforward calculations for F2 mice i and j with i 6¼
j yield

Cij ¼ 0; Cii ¼
1

16

1 �1 0 0
�1 1 0 0
0 0 1 �1
0 0 �1 1

0BB@
1CCA:

Inspection of Equation 3 therefore shows that the
polygenic covariance matrix V is confounded with the
matrix describing the environmental covariances.

Finally, there are identifiability problems with the
QTL allelic effects. At the covariance level, the condi-
tional coefficient matrix cCij is identically 0 when typing
is full and different alleles are present in each strain. At
the mean level, imposition of the constraint e4¼� e1�
e2 � e3 shows that the genotype-specific means in a
purely allelic model can be expressed as the vector

e1 1 e3 1 h

e1 1 e4 1 h

e2 1 e3 1 h

e2 1 e4 1 h

0BB@
1CCA ¼

1 0 1 1
0 �1 �1 1
0 1 1 1
�1 0 �1 1

0BB@
1CCA

e1

e2

e3

h

0BB@
1CCA:

Because the matrix on the right of this equation has less
than full rank, some mean vectors are not representable. As
a substitute for the additive QTL contributions, we assign a
different mean effect to each of the four F2 genotypes.

We analyze these data in the same manner as the
simulated AIL except for graphing the �log10(P-value)
instead of LRTs and analyzing multiple map points in
the intervals between marker loci. We enjoy two advan-
tages over ANOVA or MANOVA; namely, we can use
phenotyped individuals with wholly or partially missing
genotypes, and we can estimate both QTL location and
effect size.

To carry out a multivariate analysis, one must decide
which univariate traits to analyze together. This is not a
trivial matter because combining traits exacerbates the
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multiple testing problem and may add noise and
degrade power (Amos et al. 2001; Bauman et al. 2005).
With outbred populations it is intertwined with the issue
of ascertainment (Dawson and Elston 1984); it may
also be a problem with inbred populations since strains
are often chosen for a particular experiment on the
basis of their average phenotype. We present here the
results of two multivariate analyses making these points.
The most interesting results from this example data set

are on chromosome 3, and we focus on three traits,
leptin measurements at both 4 and 15 months and
insulin-like growth factor I at 15 months in this region.
In univariate analysis, both IGF-15 and Lep-4 show
significant linkage to markers on chromosome 3, while
Lep-15 shows suggestive linkage. Multivariate analyses
are indicated biologically, spatially, and temporally.

We carried out a number of multivariate analyses;
some of the results are summarized in Figures 2 and 3
and Table 2. The graphs of �log10(P-value) along chro-
mosome 3 in Figure 2 correspond to the univariate an-
alyses of IGF-15, Lep-4, and Lep-15 and the bivariate
analysis of Lep-4 and Lep-15. The univariate graph
of IGF-15 peaks over marker D3Mit5. Subjecting the
P-values for IGF-15 to the nonlinear FDR correction
(Benjamini et al. 2001) suggests a single location for
IGF-15. Both of the univariate leptin graphs as well as
the bivariate graph peak over D3Mit127. After FDR
correction, at least two significant map points are
suggested over D3Mit127 for the bivariate leptin anal-
ysis. Table 2 reports estimates and standard errors for
the bivariate leptin mean parameters at marker
D3Mit127. These estimates are very similar at the two
time points. Although likelihood ratios improve over
univariate analysis, P-values do not because the degrees
of freedom of the x2 test double. The estimated
environmental covariance matrix

Ŝe ¼
0:96ð0:05Þ 0:50ð0:04Þ
0:50ð0:04Þ 0:97ð0:05Þ

� �
ð17Þ

TABLE 1

AIL: type I error, power, coverage, and average estimates

Mendel Full Mendel F10 Cartographer True value

Type I error 0.83–3.39 4.92–9.60 25.6–33.8 NA
Power 96 46 51 NA
Coverage 92 39 48 NA

Point 5
h 3.9913 (0.2058) 3.9661 (0.2355) NA 4.000
p1 0.6486 (0.1183) 0.3259 (0.0878) NA 0.667
e1 0.1910 (0.0487) 0.1759 (0.0764) 0.1869 0.200
e2 �0.1910 (0.0487) �0.1759 (0.0764) �0.1869 �0.200

s2
env 1.0112 (0.1002) 1.1494 (0.1721) 0.9581 1.000

Point 6
h 3.9998 (0.2059) 3.9465 (0.2344) NA 4.000
p1 0.6492 (0.1176) 0.3370 (0.0967) NA 0.667
e1 0.1932 (0.0477) 0.1764 (0.0758) 0.1781 0.200
e2 �0.1932 (0.0477) �0.1764 (0.0758) �0.1781 �0.200

s2
env 1.0092 (0.0998) 1.1458 (0.1746) 0.9606 1.000

Type I error rates, power, and coverage are percentages; estimates and standard errors are averages. Type I error rates are con-
fidence intervals based on 500 simulations under the null hypothesis; other table entries are based on 100 simulations under the
alternative hypothesis. We count successful coverage when the equivalent one-LOD drop (4.6 LRT units) interval around a sig-
nificant map point includes the QTL. The QTL is located at the midpoint of points 5 and 6. Parameter p1 is the reduced-dimension
polygenic background parameter; h, the grand mean; ei, the QTL effect on strain i; and s2

env, the residual covariance. The Mendel
estimates have average standard errors in parentheses. NA, not applicable.

Figure 1.—Four-way cross for UM-HET3 Mice. UM-HET3
mice are created from four founder strains: BALB/cJ (C),
C57BL/6J (B6), C3H/HeJ (C3), and DBA/2J (D2); the F2

generation results from CB6F1 females crossed with C3D2F1

males.
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is consistent with the raw correlation of the two traits. In
the matrix (17), the standard error of each estimate
appears in parentheses.

A trivariate analysis of IGF-15, Lep-4, and Lep-15
clearly illustrates that in the case of multivariate traits,
more is not always better. Comparing Figure 2 to Figure
3 shows two large peaks: one at marker D3Mit25 and one
over marker D3Mit127. After FDR adjustment only the
first peak survives, and the evidence for it is compro-
mised. Thus, the trivariate analysis provides no addi-
tional linkage information and actually degrades the
power to detect linkage. While leptin and IGF share
numerous biological interactions, there is no evidence
in these data for a common genetic determinant on
chromosome 3.

An eight-strain simulated cross: Our first two exam-
ples demonstrated the equivalence of the random
effects model to the fixed effects model for standard
cross designs and hint at the flexibility of our approach.
To demonstrate this flexibility, we now present an eight-
strain simulated example that (a) documents how
correctly accounting for polygenic background can be
beneficial and (b) demonstrates how it is possible to test
hypotheses with the kind of unbalanced pedigree data
encountered in human studies. As with the simulated
AIL example, this exercise is not meant to be a sub-
stitute for an exhaustive study of power and experimen-
tal design.

Simulation specifics: Our simulated cross involves a
univariate trait, eight inbred strains, and seven pedi-
grees of nine generations each. We are motivated in part
by the heterogeneous stock (Mott et al. 2000) and the
collaborative-cross designs (Williams et al. 2002).
Starting with strain-pure founders, we constructed each
pedigree by random mating with a decreasing number
of progeny per animal per generation. The average

number of animals per pedigree is 366. Random mating
ensures substantial diversity in theoretical and condi-
tional strain fractions and coefficients. On the basis of
the marker map for chromosome 2 in the UM-HET
example of the previous section, we simulated geno-
types at six loci using the gene-dropping option of
Mendel. Locus 3 serves as the QTL and the remaining
loci as markers. Genotypes at the QTL are omitted
during linkage analysis.

We generated univariate trait values independently
for each pedigree by sampling from a multivariate
normal distribution with prescribed means and cova-
riances. If animal i has QTL genotype a/b and trait value
Xi, then

EðXiÞ ¼ h 1 2gi*m 1 eðaÞ1 eðbÞ;

where h is the grand mean, m is the vector of polygenic
deviations from the mean, and e is the vector of QTL
deviations from the mean. For animals i and j, the
polygenic and random environment contributions en-
tail the covariance

CovðXi ; XjÞ ¼ 4 trðCij VÞ1 1fi¼jgs
2
e:

Note the absence here of a QTL variance contribution.
Although the data are analyzed conditionally given
observed marker genotypes, they are generated un-
conditionally. Table 3 displays the values of the param-
eters used for the simulations. These values were chosen
randomly subject to constraints such as

P
a mðaÞ ¼ 0.

Our simulation choices present both opportunities
and challenges. For example, the fact that each strain is
assigned a unique QTL allele suggests that even a simple
F2 cross between two strains would be adequate to map
the QTL. This advantage is tempered by the long genetic
distances separating the QTL from the flanking markers,

Figure 2.—Univariate and bivariate results,
four-way cross on chromosome 3, univariate re-
sults for IGF-15 peak over marker D3Mit25. Uni-
variate and bivariate results for Lep-4 and Lep-15
peak over marker D3Mit127.
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by the smallness of the QTL effects, by the similarity of
these effects in some strains, and by the discordance of
the QTL effects and the polygenic means effects.

In using random effect models for QTL mapping,
inclusion of polygenic background is usually a good
idea. If polygenic background is present but ignored,
then the only way of accounting for relative correlations
is through the QTL component. When we analyze the
current data omitting polygenic background, every
single chromosome location in the linkage analysis
achieves a P-value ,0.00001. Adding polygenic back-
ground causes P-values to reach more reasonable levels,
ranging from 0.0019 to 0.3835. Subjecting the P-values
to the (FDR) procedure highlights the QTL and one
neighboring point as significant (Benjamini et al. 2001).
Figure 4 plots the function �log10(P-value) along the
chromosome; as earlier, the P-values reflect the likeli-
hood ratio tests of the QTL component. The QTL is
located at 30 cM from the origin between marker
D2Mit323 at 23 cM and marker D2Mit37 at 42 cM.

We also used these data to illustrate the application of
the QTL association model. As in our linkage analysis,
omitting polygenic background leads to unrealistically

small P-values. Figure 4 plots the �log10(P-value) for
the association analysis with the polygenic background. The
association results are similar to the linkage results. The
marker with the most significant result is D2Mit323,
which is the marker nearest to the QTL. The FDR
procedure singles out D2Mit323 as the only significant
association.

Comparison of computation times between the two
models illustrates the speed of the association analysis.
The linkage model requires�4 hr for calculation of the
coefficient matrices for each pedigree and �20 hr to
estimate the parameters for each of the 17 points. The
association model requires�1.5 hr for all calculations at
each of the five markers.

DISCUSSION

In the hope of mapping QTL with small effects,
geneticists are undertaking more ambitious crosses with
multiple strains, multivariate traits, and dense marker
sets. The random effects models developed here will
enable a smooth transition to more sophisticated
statistical analysis. The greatest strength of the models

Figure 3.—Trivariate analysis, four-way cross
on chromosome 3, trivariate results peak over
marker D3Mit25 and D3Mit86. These peaks are
lower than those obtained with univariate and bi-
variate analyses.

TABLE 2

Four-way cross: mean estimates for bivariate leptin
analysis at D3Mit127

Lep-4 Lep-15

Mean effect Estimate SE Estimate SE

B6/C3 0.1273 0.0616 0.1258 0.0638
B6/D2 �0.1686 0.0599 �0.1675 0.0632
C/C3 0.1812 0.0593 0.1198 0.0615
C/D2 �0.1399 0.0615 �0.0781 0.0646
Grand �0.0157 0.0346 �0.0243 0.0362

SE, standard error.

TABLE 3

Eight-strain cross: simulation generating parameters

Inbred strain a m(a) e(a)

BALB �3.94 0.45
C57 5.62 0.24
C3H �1.95 �0.24
DBA 2.13 �0.53
CAST �3.68 �0.10
RIII 2.22 �0.68
I �4.88 0.29
AKR 4.48 0.57
Grand 6.31 NA
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is their ability to capture polygenic background parsi-
moniously. A second strength is their versatility in
handling large pedigrees, large numbers of contribut-
ing strains, and multivariate traits. While we have
warned against importing ideas wholesale from the rest
of statistical genetics, judicious adaptations are fully
warranted. For example, since environment can be
exquisitely controlled for inbred strain experiments,
models of gene-by-environment interaction can be put
to good use on the mean level (Blangero 1993) and on
the variance level (Lange 1986; Itoh and Yamada

1990). These techniques apply both to continuous traits
(Pletcher 1999; Pletcher and Geyer 1999; Jaffréic

and Pletcher 2000; Pletcher and Jaffréic 2002;
Purcell 2002; Purcell and Sham 2002; Meyer and
Kirkpatrick 2005) and to categorical traits (Towne

et al. 1997; Viel et al. 2005). It is also straightforward to
model multiple QTL acting additively (Lange 2002).

Balanced against these strengths is the need for
better-conceived study designs. Unless crosses are care-
fully structured, some parameters will be unidentifiable.
One antidote is to scale back the complexity of a model
and reparameterize. Our first two examples illustrate
this tactic. Another antidote is to avoid monolithic
designs and opt for a mixture of designs that individu-
ally reveal different features of a model. Our third
example does this.

In random effects models, trait values for most animals
are correlated. Logically, one should treat all animals as
members of a single large pedigree. At some point this
requirement becomes unwieldy. The computational
demands of the random effects models are fairly high,
so tactics such as pedigree splitting, marker thinning, and
marker amalgamation should not be dismissed. It will
probably take a combination of these tactics to cope with
the large-scale mapping projects now under way
(Pletcher et al. 2004). Fortunately, our experiences

with simulated data suggest that a moderate amount of
pedigree splitting sacrifices little information.

We have omitted a detailed discussion of how the
program SimWalk delivers conditional strain fractions
and coefficients. In our experience, SimWalk’s MCMC
algorithm adequately samples descent graph space. In
association analysis, this lengthy process can be dis-
pensed with if information at neighboring markers is
ignored. Deterministic algorithms that produce approx-
imate kinship and strain coefficients may ultimately be a
better choice than stochastic sampling (Gao et al. 2004;
Gao and Hoeschele 2005). In maximizing loglikeli-
hoods, it is also worth mentioning that Mendel allows
the user to set initial parameter values and bounds. This
flexibility is valuable in exploring multimodal likeli-
hood surfaces.

Our QTL parameters enter the model at both the
mean and the variance level and are not subject to
nonnegativity constraints. Thus, the asymptotic distri-
bution of a likelihood ratio test follows a chi-square
distribution with degrees of freedom equal to the
difference in the number of independent parameters
between the underlying nested models. Model selection
can be accomplished by likelihood ratio tests or mod-
ified criteria such as the Akaike information criteria
(AIC) or the Bayesian information criteria (BIC).
Multiple testing is certainly an issue. The FDR correc-
tion of Benjamini and Hochberg (Benjamini et al. 2001)
for dependent tests is often a useful cure and provided
us with correct inferences in our simulated examples.
Extensions such as Storey’s optimal discovery procedure
(Storey 2007; Storey et al. 2007) can lead to more
accurate P-values and should be kept in mind.

The assumption of multivariate normality is helpful in
maximum likelihood estimation. For univariate traits
with excess kurtosis, the multivariate t distribution is a
workable substitute for the multivariate normal distri-
bution and is an implemented option in Mendel. It is
reasonable to conjecture that some version of the
central limit theorem should hold for a polygenic trait
over a pedigree (Lange 1978; Lange and Boehnke

1983). For simple pedigrees generated en masse in a
cross, one can check the normality assumption empir-
ically. The impact of departures from normality has
been considered by several researchers (Beaty et al.
1985; Allison et al. 1999; Pratt et al. 2000). Blangero

et al. (2000) and Sham et al. (2000) suggest solutions to
gross violations. One can object that QTL effects by
their discrete nature cannot be normal. Three responses
are possible. First, this objection has never stopped
ordinary QTL mapping with outbred populations.
Second, under the null hypothesis, the discrete effects
disappear. Third, in all but the simplest crosses, applica-
tion of a rigorous model incorporating both polygenes
and major genes is very computationally demanding.

The web site (http://www.genetics.ucla.edu/software)
offers the current versions of Mendel and SimWalk for

Figure 4.—Eight-strain cross example—linkage and associ-
ation results for the simulated eight-strain random-mating ex-
ample. Association results mirror linkage results at the
markers. The linkage results peak over the QTL, located be-
tween markers D2Mit323 and D2Mit58.
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several computing platforms. Ample documentation
and sample problems are provided. The experimental
versions of Mendel and SimWalk featured in this article
will be released publicly as soon as it is practical.

The authors are grateful to David Burke for access to the UM-HET3
data, to Karl Broman for his editorial interest and guidance, and to the
anonymous reviewers for their helpful comments. This investigation
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Broman, K. W., H. Wu, Ś. Sen and G. A. Churchill, 2003 R/qtl:
QTL mapping in experimental crosses. Bioinformatics 19:
889–890.

Cervino, A. C. L., A. Darvasi, M. Fallahi, C. C. Mader and N. F.
Tsinoremas, 2007 An integrated in silico gene mapping strategy
in inbred mice. Genetics 175: 321–333.

Churchill, G. A., and R. W. Doerge, 1994 Empirical threshold val-
ues for quantitative trait mapping. Genetics 138: 963–971.

Darvasi, A., and M. Soller, 1995 Advanced intercross lines, an ex-
perimental population for fine genetic mapping. Genetics 141:
1199–1207.

Dawson, D. V., and R. C. Elston, 1984 A bivariate problem in human-
genetics—ascertainment of families through a correlated trait.
Am. J. Med. Genet. 18: 435–448.

Flint, J., W. Valdar, S. Shifman and R. Mott, 2005 Strategies for
mapping and cloning quantitative trait genes in rodents. Nat.
Rev. Genet. 6: 271–286.

Gao, G., and I. Hoeschele, 2005 Approximating identity-by-
descent matrices using multiple haplotype configurations on
pedigrees. Genetics 171: 365–376.

Gao, G., I. Hoeschele, P. Sorensen and F. Du, 2004 Conditional
probability methods for haplotyping in pedigrees. Genetics 167:
2055–2065.

Goldgar, D. E., 1990 Multipoint analysis of human quantitative
genetic-variation. Am. J. Hum. Genet. 47: 957–967.

Haley, C. S., and S. A. Knott, 1992 A simple regression method for
mapping quantitative trait loci in line crosses using flanking
markers. Heredity 69: 315–324.

Harper, J. M., A. T. Galecki, D. T. Burke, S. L. Pinkosky and R. A.
Miller, 2003 Quantitative trait loci for insulin-like growth fac-
tor I, leptin, thyroxine, and corticosterone in genetically hetero-
geneous mice. Physiol. Genomics 15: 44–51.

Hitzemann, R. W., B. Malmanger, S. Cooper, S. Coulombe, C. Reed

et al., 2002 Multiple cross mapping (MCM) markedly improves
the localization of a QTL for ethanol-induced activation. Genes
Brain Behav. 1: 214–222.

Hopper, J. L., and J. D. Mathews, 1982 Extensions to multivariate nor-
mal models for pedigree analysis. Ann. Hum. Genet. 46: 373–383.

Itoh, Y., and Y. Yamada, 1990 Relationships between genotype x en-
vironment interaction and genetic correlation of the same trait
measured in different environments. Theor. Appl. Genet. 80: 11–16.
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APPENDIX A: REPRESENTATION OF POSITIVE DEFINITE MATRICES

Given a k 3 k positive definite matrix V and a k 3 1 vector m, we now prove that vectors m1, . . . , mn exist such thatP
i mi ¼ m and

P
i mimi* ¼ V. To simplify the proof, we pass to the spectral decomposition V¼O*DO of V. Here O is an

orthogonal matrix, and D is a diagonal matrix whose jth diagonal entry dj is an eigenvalue of V. If n vectors n1, . . . , nn

exist such that
P

i ni ¼ Om ¼ n and
P

i nini* ¼ D, then taking mi ¼ O*ni for each i completes the proof.
With the transformed problem, we can work on each dimension j separately. Suppose we can find scalars a1, . . . , am

such that a1 1 . . . 1 am¼ nj and a2
1 1 . . . 1 a2

m ¼ dj. Then we construct m vectors w1, . . . , wm whose entries are 0 except
for their jth entries wij¼ ai. These m vectors compose part of the solution set n1, . . . , nn and do not impinge on the parts
contributed by other dimensions. To show that appropriate scalars a1, . . . , am exist, we consider optimizing the
function f(a)¼ a2

1 1 . . . 1 a2
m subject to the affine constraint a1 1 . . . 1 am¼ nj. By introducing a Lagrange multiplier,

we can prove that f(a) attains its minimum n2
j =m when all ai¼ nj/m. The maximum of f(a) is infinite in all but the trivial

case m¼ 1. For instance, we can take a1¼ 1
2ðnj 1 pÞ, a2 ¼ 1

2 ðnj � pÞ, and all other ai¼ 0 and send p to ‘. Since dj must be
positive, some positive integer m exists with n2

j =m , dj. This choice of m puts us in a position to invoke the intermediate
value theorem. The set of vectors a ¼ (a1, . . . , am) satisfying the constraint is convex and therefore connected. A
continuous function on a connected set attains every value between its minimum and maximum values. Hence, there
is some a with f(a) ¼ dj.

APPENDIX B: PROPERTIES OF THE Cij MATRICES

The role of the matrix Cij in formula (3) suggests its importance. Mathematically Cij is better behaved than the strain
coefficient matrix cij. Recall that the founder initial conditions and the recurrences (4)–(7) completely determine the
strain fraction vectors gi and the strain coefficient matrices cij. If we retain the conventions that i has parents k and l
and j is an animal previously considered, then the last three recurrences translate into the similar recurrences

Cij ¼ cij � gigj*

¼ 1

2
ðckj 1 cljÞ �

1

2
ðgk 1 gl Þgj*

¼ 1

2
ðCkj 1 CljÞ ðB1Þ

Cji ¼
1

2
ðCjk 1 CjlÞ ðB2Þ

and
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Cii ¼ cii � gigi*

¼ 1

4
½diagðgkÞ1 diagðglÞ1 gkgl* 1 gl gk*�

� 1

4
ðgk 1 gl Þðgk 1 gl Þ*

¼ 1

4
½diagðgkÞ1 diagðglÞ � gkgk*� gl gl*� ðB3Þ

on the Cij matrices. The next proposition collects some relevant facts.

Proposition 1. In addition to satisfying the recurrences (B1), (B2), and (B3), the matrix Cij

a. has all entries 0 when either i or j is a founder,
b. is symmetric,
c. is positive semidefinite,
d. has the vector 1 in its null space,
e. has entries Cij(m, n) confined to the interval ½� 1

8 ; 0� for n 6¼ m and to the interval ½0; 1
8 � for n ¼ m.

Proof.

a. If i is a founder belonging to strain q and j is a founder belonging to strain r, then by definition gi(m)¼ 1{m¼q}, gj(n)¼
1{n¼r}, and cij(m, n) ¼ 1{m¼q}1{n¼r}. Thus, all entries of Cij vanish. If i or j is a founder but the other is not, then
induction and the recurrences (B1) and (B2) show that all entries of Cij vanish.

b. Formula (B3) forces Cii to be symmetric, and the recurrences (B1) and (B2) preserve symmetry.
c. Because the recurrences (B1) and (B2) preserve positive semidefiniteness, it suffices to prove that Cii is positive

semidefinite. Inspection of formula (B3) further demonstrates that it suffices to prove that diag(gk) � gkgk* is
positive semidefinite for all k. Accordingly, let v be an arbitrary vector. The quadratic form

v* diagðgkÞ � gkgk*½ �v ¼
X

m

gkðmÞv2
m �

X
m

gkðmÞvm

" #2

is nonnegative owing to Cauchy’s inequality

X
m

gkðmÞvm

" #2

#
X

m

gkðmÞ
" # X

m

gkðmÞv2
m

" #

and the fact that
P

m gkðmÞ ¼ 1.
d. Again this is a consequence of the recurrences (B1) and (B2) and the validity of the assertion for Cii. In the latter

case, the equality

diagðgkÞ � gkgk*½ �1 ¼ gk � gkgk*1 ¼ 0

is obvious.
e. Because the stated bounds are preserved by recurrences (B1) and (B2), it suffices to consider Cii. The contribution

1
4 gkðmÞ½1� gkðmÞ� to a diagonal term in Equation B3 is bounded below by 0 and above by 1

16 . The contribution
� 1

4 gkðmÞgkðnÞ to an off-diagonal term is bounded below by � 1
16 and above by 0. n

The collection C of all Cij matrices over a pedigree has considerable structure. For example, the symmetry of Cij

entails Cij ¼ Cji. With just s ¼ 2 strains, parts b, d, and e of Proposition 1 imply that every Cij is representable as

Cij ¼ aij
1 �1
�1 1

� �
for some constant aij 2 ½0; 1

8 �. Furthermore, since aij¼ 0 whenever i or j is a founder or an F1 individual, straightforward
recursive arguments show that within any strictly linear mating designs like Fn, aij¼ 0 for all i 6¼ j. Two-strain systems also
produce uninteresting conditional coefficients; straightforward calculations show that Ĉij ¼ 0 for all i and j at markers
that differentiate between the strains with complete genotyping.

To generalize this representation to more than two strains, it is helpful to introduce the s 3 s matrix Emn where all
entries of Emn are 0 except for emm ¼ enn ¼ 1 and emn ¼ enm ¼ �1. There are ðs2Þ such matrices.
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Proposition 2. Every matrix Cij from the collection C can be represented as a linear combination

Cij ¼
X
fm;ng

aij ;mnEmn : ðB4Þ

Furthermore, the coefficients aij,mn are nonnegative dyadic rationals satisfyingX
fm;ng

aij ;mn #
1

4
1� 1

s

� �
:

Proof. Each matrix Cii¼ 0 corresponding to a founder i clearly qualifies. The representation (B4) is preserved by the
averaging process of the recurrences (B1) and (B2), so it suffices to prove the representation for a matrix Cii generated
by a nonfounder. Again the averaging nature of recurrence (B3) allows us to verify the representation (B4) for a matrix
of the form 1

2 ½diagðgkÞ � gkgk*�. Because the set of dyadic rationals constitutes an algebraic field, it is clear by induction
that all entries of gk are dyadic rationals. We now claim that

1

2
½diagðgkÞ � gkgk*� ¼

1

2

X
fm;ng

gkðmÞgkðnÞEmn : ðB5Þ

Equality (B5) is certainly true for the off-diagonal entries of the matrices on both sides. For the diagonal entries, it is a
consequence of the identity X

n 6¼m

gkðmÞgkðnÞ ¼ gkðmÞ½1� gkðmÞ�:

Because the coefficients 1
2 gkðmÞgkðnÞ are dyadic rationals, all that remains is to check that the sum of the coefficients is

properly bounded. This follows from

1

2

X
fm;ng

gkðmÞgkðnÞ ¼
1

4

X
m

X
n 6¼m

gkðmÞgkðnÞ

¼ 1

4

X
m

gkðmÞ½1� gkðmÞ�

#
1

4
1� 1

s

� �
: ðB6Þ

The upper bound (B6) can be proved by introducing a Lagrange multiplier corresponding to the constraintP
m gkðmÞ ¼ 1. Equality is achieved only when all gkðmÞ ¼ 1=s. n

APPENDIX C: COMPUTATION OF THE PROJECTION

Consider minimizing the function

f ðxÞ ¼ 1

2

X
m

X
n

ðymn � xmnÞ2

subject to the constraints xmm 1 xnn ¼ xmn 1 xnm for every unordered pair {m, n}. We proceed by seeking a stationary
point of the Lagrangian

Lðx; mÞ ¼ 1

2

X
m

X
n

ðymn � xmnÞ2

1
X
fm;ng

mfm;ngðxmm 1 xnn � xmn � xnmÞ:

This point is characterized by the equations

@

@xmn
Lðx; mÞ ¼ �ðymn � xmnÞ � mfm;ng ¼ 0 ðC1Þ
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@

@xmm
Lðx; mÞ ¼ �ðymm � xmmÞ1

X
n 6¼m

mfm;ng ¼ 0

@

@mfm;ng
Lðx; mÞ ¼ xmm 1 xnn � xmn � xnm ¼ 0 ðC2Þ

with the convention that m 6¼ n. Rearrangement of Equation (C1) gives

xmn ¼ ymn 1 mfm;ng: ðC3Þ

If we interchange m and n in Equation C3, add the result to Equation C3, and invoke the constraint (C2), then we get
the equation

xmm 1 xnn ¼ xmn 1 xnm ¼ ymn 1 ynm 1 2mfm;ng;

determining m{m,n} as

mfm;ng ¼
1

2
ðxmm 1 xnn � ymn � ynmÞ:

From Equation C3 it follows that

xmn ¼
1

2
ðymn � ynmÞ1

1

2
ðxmm 1 xnnÞ: ðC4Þ

It is easy to check that the constraint (C2) is implicit in this solution. Furthermore, the solution entails the residual

ymn � xmn ¼
1

2
ðymn 1 ynmÞ �

1

2
xmm �

1

2
xnn:

If we set amn ¼ 1
2 ymn 1 ynmð Þ, our objective function can now be expressed as

f ðxÞ ¼ 1

2

X
m

X
n

amn �
1

2
xmm �

1

2
xnn

� �2

:

Neither the off-diagonal entries xmn nor the constraints now appear. To solve this unconstrained problem, we center
the amn by subtracting their average value �a ¼ �y. This allows us to reparameterize f(x) as

f ðxÞ ¼ 1

2

X
m

X
n

amn � �y � 1

2
ðxmm � �yÞ � 1

2
ðxnn � �yÞ

� �2

¼ 1

2

X
m

X
n

ðbmn � um � unÞ2

in more or less obvious notation.
Minimizing the objective function in this form coincides with a classical problem in population genetics. If we

assume that m and n represent two possible alleles from s equally frequent alleles and bmn represents a trait value
determined by the genotype m/n, then minimizing f(x) corresponds to the problem of determining the additive
genetic variance of a centered trait. The solution to this problem is known to be

um ¼
1

s

X
n

bmn:

It follows that

xmm ¼
2

s

X
n

bmn 1 �y ¼ 2

s

X
n

amn � �y:

A final substitution for amn gives

xmm ¼
1

s

X
n

ymn 1
1

s

X
n

ynm � �y
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and the general formula

xmn ¼
1

2
ðymn � ynmÞ1

1

2s

X
k

ymk 1
1

2s

X
k

ykm

1
1

2s

X
k

ynk 1
1

2s

X
k

ykn � �y ðC5Þ

based on Equation (C4) and valid for both m 6¼ n and m ¼ n.
The projection solution (C5) reduces the residual rmn ¼ ymn � xmn to

rmn ¼
1

2
ðymn 1 ynmÞ �

1

2s

X
k

ymk �
1

2s

X
k

ykm

� 1

2s

X
k

ynk �
1

2s

X
k

ykn 1 �y:

If we define a matrix R with entries rmn and a matrix U with entries

umn ¼ ymn �
1

s

X
k

ykn �
1

s

X
k

ymk 1 �y;

then it is clear that

rmn ¼
1

2
ðumn 1 unmÞ:

In other words, the residual matrix R ¼ 1
2 ðU 1 U *Þ is a symmetrized version of U. Fortunately, we can represent U as

the matrix product

U ¼ I � 1

s
11*

� �
Y I � 1

s
11*

� �
of Y ¼ (ymn) sandwiched between two copies of the orthogonal projection Q ¼ I � 1

s 11*.

APPENDIX D: CONSTRUCTION OF AN ORTHOGONAL MATRIX

An orthogonal matrix O mapping the vector ð1= ffiffi
s
p Þ1 to the standard basis vector e1 can be explicitly constructed by

the Gramm–Schmidt process applied to the basis fð1= ffiffi
s
p Þ1; e1; . . . ; en�1g, where ek is the standard basis vector with 1 in

position k and zeros elsewhere. The first row of O is just o1* ¼ ð1=
ffiffi
s
p Þ1*; the subsequent rows take the form

ok* ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðs � k 1 1Þðs � k 1 2Þ
p ð0; . . . ; 0; s � k 1 1; �1; . . . ; �1Þ;

where k � 2 zeros precede the entry s � k 1 1. The reader can easily check that the row vectors ok* provide an
orthonormal basis.

APPENDIX E: DIFFERENTIATION OF VARIANCES AND COVARIANCES

Because the fastest maximum likelihood algorithms rely on exact derivatives, there is an obvious need to calculate
the partial derivatives of each covariance Cov(Xik, Xjl) with respect to the entries of D ¼ (dmn). If we let @mn denote
partial differentiation with respect to dmn, then formula (16) immediately leads to

@mn CovðXik ; XjlÞ ¼ 4 tr½Z*OCij O*Z@mnðDD*Þkl �;

so it suffices to compute the partial derivatives of DD* ¼ (duv). Since

duv ¼
Xminfu;vg

w¼1

duwdvw ;
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the product rule of differentiation yields

@mnduv ¼ 1fm¼ug1fn#vgdvn 1 1fm¼vg1fn#ugdun :

Thus, @mn(DD*) consists entirely of zeros except for row m and column n. This fact considerably simplifies
computation of derivatives.

APPENDIX F: A COUNTEREXAMPLE ON IDENTIFIABILITY

Finally, we consider a counterexample that illustrates some of the subtleties of identifiability. We noted that
projection replaces each trait block Y ¼ Vkl with a symmetrized block residual

Y � X ¼ 1

2
ðU 1 U *Þ:

For purposes of computing covariances, we argued that symmetrization is unnecessary and avoiding it simultaneously
yields correct covariances and reduces the number of parameters. We have not actually demonstrated that no further
reduction is possible. Furthermore, exploiting the symmetrized version may lead to a residual V� P(V) that fails to be
positive semidefinite. Consider the matrix

A ¼

1 0 0 0
0 4 0 0
1 1 1 0
�1 0 0 2

0BB@
1CCA:

Straightforward algebra leads to the positive semidefinite matrix

B ¼ AA* ¼

1 0 1 �1
0 16 4 0
1 4 3 �1
�1 0 �1 5

0BB@
1CCA:

If we symmetrize each 2 3 2 block of B, then we get

C ¼

1 0 1 3
2

0 16 3
2 0

1 3
2 3 �1

3
2 0 �1 5

0BB@
1CCA:

A tedious computation shows that

det C ¼ � 291

16
;

and C cannot be positive semidefinite.
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