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Human beings differ in their ability to form and retrieve lasting
long-term memories. To explore the source of these individual
differences, we used functional magnetic resonance imaging to
measure blood-oxygen-level-dependent (BOLD) activity in healthy
young adults (n = 50) during periods of resting fixation that were
interleaved with periods of simple cognitive tasks. We report that
medial temporal lobe BOLD activity during periods of rest predicts
individual differences in memory ability. Specifically, individuals
who exhibited greater magnitudes of task-induced deactivations
in medial temporal lobe BOLD signal (as compared to periods of
rest) demonstrated superior memory during offline testing. This
relationship was independent of differences in general cognitive
function and persisted across different control tasks (i.e., number
judgment versus checkerboard detection) and experimental de-
signs (i.e., blocked versus event-related). These results offer a
neurophysiological basis for the variability in mnemonic ability
that is present amongst healthy young adults and may help to
guide strategies aimed at early detection and intervention of
neurological and mnemonic impairment.
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nemonic faculty varies as a function of age and mental

health, yet also differs across healthy individuals of similar
age and neurological status. Neuroscientific investigations of
individual differences in memory have predominantly focused
on the hippocampus and surrounding medial temporal cortices
(i-e., the medial temporal lobe, MTL), regions known to be
crucial to long-term memory (1-3). While numerous studies
have demonstrated a positive relationship between MTL volume
and mnemonic performance in patients with neuropathology to
this region (4-7), the search for neuroanatomical markers that
may mediate individual differences in memory in healthy indi-
viduals has been largely inconclusive (8). Thus, the extent to
which individual differences in memory ability are wedded to
functional or anatomical differences in brain regions that me-
diate memory, or simply arise from differences in strategy or
behavior during conditions that guide memory formation and
retrieval (9, 10) is an outstanding question.

The tendency to search for a relationship between MTL size
and individual differences in memory has stemmed, in part, from
the practical limitations involved in probing the intrinsic phys-
iological properties of the human brain. However, recent insight
gained from functional neuroimaging studies has highlighted a
mechanism that allows for explorations of this possibility. Rel-
ative to externally cued tasks, a number of regions consistently
demonstrate greater levels of activity, indexed by either blood
flow (11, 12) or blood-oxygen-level-dependent (BOLD) signal
(13) during passive or resting states (e.g., simple fixation or eyes
closed). These regions include the medial prefrontal cortex,
lateral parietal cortex, posterior cingulate gyrus and retrosple-
nial cortex, anterior portions of the lateral temporal cortex, and
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the MTL. Collectively, these regions have been referred to as the
“default” network (14). Importantly, during rest, blood flow and
metabolic activity are both high in the default network. Transient
attenuation occurs during performance of goal-directed tasks,
suggesting that these are true deactivations from this physiologic
baseline and subserve a “default” mode of brain function that is
suspended when subjects are engaged in goal-directed behaviors
(15, 16).

Although the functional significance of default network activity
has been a topic of considerable recent experimental interest,
converging lines of evidence from animal and human work have
provided clues regarding the nature of MTL processing during
periods of inactivity. Neuroscientific studies using multiunit record-
ing in rats during periods of resting wakefulness (17, 18) and sleep
(19-21), and functional neuroimaging in humans (22), have pro-
vided evidence that these periods are accompanied by signatures
that may reflect hippocampal-mediated consolidation of past ex-
periences. These studies fit in well with the MTL’s well-established
role in facilitating the establishment of long-term mnemonic traces
(1, 23).

As such, measurements of resting period activity may serve as
aviable metric with which to investigate the relationship between
regionally specific neurophysiological properties and individual
differences in cognitive abilities. Interestingly, recent investiga-
tions have reported that MTL resting T2* activity is mitigated in
elderly individuals with mnemonic deficits (24, 25), while MTL
resting-state functional connectivity is reduced in patients with
Alzheimer’s disease (26). However, whether differences in rest-
ing MTL signals are a consequence of the local neurodegenera-
tive changes that accompany aging and disease or reflect dif-
ferences in the functional properties of the region across
individuals is yet to be discerned.

The present set of studies investigates whether resting brain
activity indexes a wider range of health and mnemonic faculty.
We tested healthy young adults (n = 50) to determine whether
there was a relationship between resting MTL BOLD activity
and memory ability. Resting period BOLD activity was quanti-
fied relative to periods during which subjects were engaged in
externally-cued control tasks.
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Fig.1. fMRI experimental procedure. (A) During Experiment 1, subjects alternated between periods of task (30 s) and periods of rest (30 s). During task periods,
subjects made odd/even judgments on a random set of numbers ranging from 1 to 1,000. During the passive rest periods, subjects were instructed to simply
maintain fixation on a crosshair that was presented at a central location on the screen. (B) During Experiment 2, subjects alternated between periods of task (1.25
s) and variable periods of rest (0-10 s). During task periods, subjects responded at the onset and offset of a flickering checkerboard stimulus. During the passive
rest periods, subjects were instructed to simply maintain fixation on a crosshair that was presented at a central location on the screen.

Resting period BOLD activity was measured with functional
magnetic resonance imaging (fMRI) using two separate exper-
imental paradigms in subjects who were naive to the aims of the
study. During scanning, subjects engaged in extended periods of
a simple number judgment task that alternated with periods of
rest, during which subjects simply fixated a crosshair (Fig. 14,
Experiment 1). To assess whether any observed relationship
between resting MTL activity and memory would generalize to
more rapid transitions between task and rest, all 50 subjects were
scanned in a second experiment using an event-related design.
Individual task trials were intermixed with shorter, variable
periods of rest (0—10 seconds in duration). Task trials during this
second experiment required subjects to respond with a button
press at both the onset and offset of a large-field 8-Hz counter-
phase flickering checkerboard (black to white) (Fig. 1B, Exper-
iment 2). Both experimental paradigms were collected in a single
scanning session. Of interest to the present report was the
activity associated with the periods of rest (treating the scanned
control tasks as a reference) in both experiments.

Following scanning, subjects completed a battery of standard-
ized and nonstandardized cognitive tests outside of the fMRI
scanner. These tests provided psychometric measures of general
intelligence, vocabulary, executive function, fluency in stimulus-
to-response mapping, and long-term memory ability across
various domains. Performance scores from each of the psycho-
metric tests were entered into a principle components analysis
(PCA) to reduce the data into a set of orthogonal components
or “metavariables.” Finally, to explore the relationship between
behavioral and BOLD measures, these components were en-
tered in a multiple regression analysis aimed at predicting resting
period activity.

Critically, as resting period activity was defined relative to
activity during periods of the control task, individual differences
in behavioral performance during the scanned control task
periods could influence the measure of resting period activity
(27). Because the control task was intended as a common
reference point for resting period activity, performance mea-
sures from the scanned control task (mean response time and
mean number of no responses) were also included in the PCA
and subsequent brain-behavior regression analysis to serve as
indices of inter-subject variability in attention or vigilance that
may have been present during scanning.

Results

The data reported here are from 45 young adults (22 males, 23
females; mean age of 20 years old; age range of 18-32 years old)
following an initial screen for the presence of outliers on
behavioral measures obtained from both within the scanner
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during number judgment and checkerboard detection, as well as
outside of the scanner during offline behavioral testing [see
Methods and supporting information (SI) Methods].

Experiment 1-fMRI. Relative to periods of rest, periods of control
task (odd/even number judgment) evoked greater activity in
bilateral brain areas, including regions of the occipital cortex,
primary motor and somatosensory cortex, thalamus, middle
frontal gyrus, and the anterior extent of the cingulate gyrus. By
contrast, relative to the control task, periods of rest elicited
greater activity in a number of regions, including bilateral
regions of the lateral parietal cortex, posterior cingulate gyrus,
medial prefrontal cortex, the anterior extent of the lateral middle
temporal gyrus, and the medial temporal lobe (i.e., the default
network; P < 0.001 uncorrected, minimum cluster size of 5
contiguous voxels) (Fig. Sla). Subsequent analyses focused on
this latter default network of brain regions. Activation maps were
not used as inclusive masks, but rather served as weighted
parameter estimate images to be used in subsequent regression
analyses (see SI Methods for details of analysis).

Experiment 1-Behavioral. A summary of the data from each
behavioral measure is reported in Table S1. All behavioral
measures were entered into a PCA model to reduce the data into
a set of orthogonal metavariables. PCA analysis revealed three
components that accounted for over 63.7% of the total variance
of the 10 behavioral measures (Table S2). Rotation of the factor
loading structure (Table S3) (factor loadings represent Pearson’s
correlation coefficient, “r”’) revealed a component (Component
3) that accounted for 13.7% of the variance and was most highly
correlated with performance on two declarative memory tasks
(both loading scores: P < 0.001)—the verbal word recognition
task and the face-name memory task. One of the remaining two
components was most highly correlated with Intelligence Quo-
tient (IQ) and working memory measures (Component 1: verbal-
1Q, performance-IQ, full-IQ, and digit-span score; all loading
scores: P < 0.001), while the last component was most highly
correlated with the two behavioral measures collected during the
scanned number judgment task and with the behavioral mea-
sures associated with fluency in stimulus-to-response mapping
during offline testing (i.e., measures obtained from a serial
reaction-time task and a repetition-priming task; Component 2:
all loading scores, P < 0.001).

Experiment 1-Brain-Behavior Correlations. To determine whether
resting-state activity was related to any of the behavioral mea-
sures, subjects’ PCA component scores were entered into a
regression analysis as predictors of default network activity.

Wig et al.
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Fig. 2. Individual differences in resting period BOLD activity in regions of the left and right medial temporal lobes predict memory ability (Experiment 1).
Subjects were scanned while periods of resting fixation (30 s) were interleaved with periods of a odd/even number judgment task (30 s) in a block-design
experiment. Individuals evoking greater resting period MTL BOLD activity demonstrated larger PCA memory component scores during offline behavioral testing.
The PCA memory component accounted for the majority of the variance associated with two declarative memory tasks: d’ from verbal word recognition and
percentage of faces correctly named from the relational memory test. Graphs depict subjects’ mean resting period MTL ROI parameter estimates on the y-axis
and their memory component scores on the x-axis. Each point represents one subject. (A) Left hippocampus (peak xyz Talairach coordinates: —30, —35, —3); (B)
Right hippocampus/parahippocampal gyrus (21, —35, —1).

Specifically, each subject’s whole-brain resting period weighted  Experiment 2-fMRI. During visual checkerboard detection in Ex-
parameter estimate image (treating the control task as a refer-  periment 2, task events evoked greater activity in bilateral brain
ence) was entered into a multiple regression analysis with  areas, including regions of the occipital cortex, primary motor
subjects’ component scores for each of the three PCA compo-  and somatosensory cortex, thalamus, middle frontal gyrus, the
nents serving as covariates of interest. Statistical F-maps were  anterior extent of the cingulate gyrus, and subregions of the
computed to identify brain regions demonstrating correlations ~ MTL, when compared to fixation rest. Relative to the checker-
with any of the three orthogonal PCA components. Two regions ~ board-detection task, moments of rest evoked greater activity in
within the MTL demonstrated a significant relationship with ~ regions similar to those observed during Experiment 1. When

PCA memory scores: a region of the left hippocampus (peak xyz compared to task, moments of rest elicited greater activity in
Talairach coordinates: —30, —35, —3) and a region of the right bilateral regions of the default network: lateral parietal cortex,

posterior cingulate gyrus, medial prefrontal cortex, the anterior
extent of the lateral middle temporal gyrus, and subregions of
the MTL (P < 0.001 uncorrected, minimum cluster size of 5
contiguous voxels) (Fig. S1b). Consistent with prior neuroimag-
ing work (11), the present results demonstrate the ubiquity of
default network modulation across different experimental par-
adigms and resting period durations.

hippocampus extending into the right parahippocampal gyrus
(peak xyz Talairach coordinates: 21, —35, —1). No other com-
ponent demonstrated a significant relationship with resting
activity within the MTL, and the memory component failed to
predict resting activity in other regions within the default
network (for additional analyses, see SI Results and Fig. S2).
To explore the nature of the relationship between memory
component scores and resting MTL activity, a region-of-interest
(ROI) analysis was conducted. Mean resting period weighted
parameter estimates in both ROIs were extracted for each

subject and entered into a multiple regression model, with the | /o040 04 cognitive tasks. This PCA produced four be-
subjects’ three PCA component scores as covariates of interest.  pavioral components that accounted for 73.3% of the total
As expected, the overall model was significant for each region  yarjance (Table S4). As in Experiment 1, rotation of the factor-
[left MTL: R* = 0.34, F (3, 39) = 6.75, P = 0-00_15 rlght MTL:  oading structure revealed a component (Component 4) that
R?=0.24,F (3,40) = 4.19, P = 0.01]. Resting activity in the left  ccounted for 13.9% of the variance and was most highly
and right MTL correlated positively with the PCA memory  correlated with performance on the two declarative memory
component [left MTL: R? = 0.27, F (1, 41) = 1531, P < 0.001;  tasks, whereas the remaining components were most highly
right MTL: R? = 0.20, F (1, 42) = 10.46, P = 0.002]. That is,  correlated with the remaining behavioral measures (Component
subjects who demonstrated greater resting period MTL BOLD  1: verbal-1Q, performance-1Q, full-IQ, and digit-span score;
activity had higher PCA memory component scores—the com- ~ Component 2: behavioral measures collected from the serial
ponent onto which the behavioral measures of declarative  reaction time task and repetition priming task; Component 3: the
memory loaded most heavily (Fig. 2). The remaining component  two behavioral measures collected from the scanned checker-
coefficients were not significantly related to either MTL region.  board-detection task; all loading scores: P < 0.001) (Table S5).

Experiment 2-Behavioral. A second PCA model was computed
that included the behavioral scores obtained from the checker-
board-detection task along with the offline standardized and
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Individual differences in resting period BOLD activity within the right medial temporal lobe predict memory ability (replication analysis, Experiment

2). In the same group of subjects as Experiment 1, resting period data were collected in a second fMRI scan that used an event-related checkerboard detection
task (1.25 s) that was interleaved with shorter, variable periods of resting fixation (0-10 s). Individuals evoking greater resting period BOLD activity in the right
MTL demonstrated larger PCA memory component scores during offline behavioral testing. The MTL ROl was defined from Experiment 1. As in Experiment 1,
memory component scores were predictive of performance on the two offline declarative memory tasks: d’ from verbal word recognition and percentage of
faces correctly named from the relational memory test. Graph depicts subjects’ mean resting period MTL parameter estimates on the y-axis and their memory

component scores on the x-axis. Each point represents one subject.

Experiment 2-Replication Analysis. To test the reliability and gen-
erality of the resting period BOLD activity-memory relationship
across data sets and experimental paradigms, a formal replica-
tion analysis was conducted. Specifically, the MTL regions-of-
interest that were defined from Experiment 1 were tested for
replication on the REST > TASK-weighted parameter estimates
derived in Experiment 2. By limiting interrogation to only those
regions that demonstrated an effect in the first experiment, this
method was both nonbiased in its approach and also highly
conservative (see SI Results and Fig. S3 for additional analyses).
For each subject, mean resting period parameter estimates
representing rest relative to the checkerboard detection task
were extracted from each of the two MTL regions and entered
into a regression model, with the subjects’ PCA memory com-
ponent scores serving as a covariate of interest. Resting activity
in the right MTL was again positively correlated with the
memory component scores [R? = 0.11, F (1,41) = 5.21, P = 0.03]
(Fig. 3). Resting activity in the left MTL region failed to replicate
this relationship.

Discussion

The present study demonstrates that greater MTL BOLD ac-
tivity during periods of rest relative to periods of task predicts
superior memory ability in healthy young adults*. This relation-
ship is independent of general cognitive functioning, persists
across variable resting period durations and variations in exper-
imental design, and is present in a region known to be critical to
the formation and retrieval of long-term memories that are
declarative and relational in nature (1).

Delineating the functional significance of default network
processing during periods of resting wakefulness is a research
topic that has received considerable attention (11, 14, 28-30).
The observed brain-behavior correlations reported here may
shed light on understanding the nature of MTL involvement in
the default network.

One possible explanation for resting period MTL activity is
that it reflects active encoding of recent experiences or of the
immediate external environment during periods of inactivity.
Active elaborative rehearsal of recently encountered material
facilitates subsequent memory (31), and the differences in MTL
activity that were observed across individuals may have revealed

*This characterization is based on the correlation between memory ability and task-
induced deactivations in MTL activity; better memorizers are those individuals who
exhibit greater task-induced deactivation of the MTL.
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a differential propensity to engage in such rehearsal (see also ref.
32). According to this account, subjects in the present study
demonstrated greater MTL activity during periods of rest be-
cause they were actively encoding certain aspects of the task (i.e.,
the random numbers in Experiment 1 and flickering checker-
boards in Experiment 2) or the scanning environment. Such an
account seems unlikely in the present set of experiments, as there
was no requirement to explicitly memorize the stimuli, and the
rudimentary nature of the stimulus material (simple numbers
and repeating checkerboards) likely discouraged any incidental
encoding of the stimuli during the intervening rest periods.
Similarly, it is not clear what aspect of the scanner environment
would serve as a viable stimulus to encode while subjects lay in
resting wakefulness.

Alternatively, the observed relationship between resting pe-
riod MTL activity and memory ability observed here may reflect
memory consolidation operations that are passive and do not
require subject-initiated operations. For example, the variability
in BOLD signal may be capturing differences in basal inter-
neuronal firing rate or neurometabolic activity that are not a
result of the subjects actively and consciously encoding recent
experiences. Functionally, these differences may reflect individ-
ual variability in the propensity to spontaneously engage hip-
pocampal-mediated consolidation of recent experiences during
periods of inactivity (33, 34). Neuroscientific investigations of
animals and humans have provided converging evidence for
hippocampal-mediated processes of memory consolidation dur-
ing periods of both resting wakefulness and sleep. Multiunit
recording in the awake rat has been used to demonstrate that
neurons in the hippocampus exhibit patterns of resting period
activity that are reverse-recapitulations of events that have
recently transpired (17, 18). Likewise, periods of slow-wave (19)
and rapid-eye movement (20) sleep are accompanied by reac-
tivation of temporally sequenced patterns of hippocampal ac-
tivity for previous behavioral experiences. Although research
investigating the human corollaries of hippocampal-mediated
consolidation processes have been sparse because of method-
ological limitations, the hippocampus has been shown to be
critical for the consolidation of declarative memories (33), and
there is evidence for this function to be accompanied by periods
of sleep (35) and awake behavior (22).

As such, MTL processing and consolidation need not be tied
to material encountered in the immediate spatial or temporal
vicinity, but may be an obligatory and spontaneous reaction
associated with periods of inactivity that serves to stabilize
previously encoded information or episodes using otherwise idle

Wig et al.
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MTL-processing resources. This account also fits nicely with
animal research demonstrating that the successful storage of
recently encoded material can be compromised following dam-
age to MTL regions that has occurred hours following the initial
learning experience (1, 23). Perhaps more interestingly, this
account suggests that neural signatures of memory consolidation
may be revealed using functional neuroimaging in humans
during periods of resting wakefulness and that individual differ-
ences in these signatures may, in turn, manifest as individual
differences in mnemonic ability. An important caveat to this
hypothesis is that BOLD activity is an indirect measure of
neuronal activity, one that has received considerable debate as
of late (36-38). Thus, any direct linkage to memory consolida-
tion will undoubtedly require converging evidence from neuro-
scientific methodologies that are more sensitive to quantitative
measures of cerebral blood flow, glucose metabolism, oxygen
consumption, and neuronal activity. Similarly, to determine
whether the observed relationship reflects consolidation pro-
cesses that are passive and obligatory, it will be important to
assess whether the relationship persists under reduced levels of
consciousness, such as during sleep or under anesthesia.

An additional, possibly complimentary, source of the brain-
behavior correlation we consider is that MTL activity during
periods of resting wakefulness functions to encode or retrieve the
products of default network processing. Default network activity
has been linked to internally generated thought processes related
to self-reflection (39, 40), mind-wandering, and stimulus-
independent thoughts (29, 41).

A subset of default network regions, which includes the
posterior cingulate cortex and lateral parietal cortex, has been
implicated in the retrieval of past experiences (42). One possi-
bility is that regions of the MTL act in concert with posterior
cingulate and lateral parietal regions to recapitulate past expe-
riences, and that individuals who are more likely to recall and
reflect on prior experience do so because they were better able
to encode such experiences as they initially occurred. However,
if resting MTL activity indexes the extent to which individuals
engaged active retrieval at rest, other regions of the default
network that have been linked to memory retrieval (e.g., the
posterior cingulate gyrus and lateral parietal cortex) would also
be expected to track with offline memory scores. In the present
study, resting period BOLD activity in other default regions
failed to exhibit a relationship to memory when indexed along a
continuum of mnemonic fluency.

A more parsimonious account is that MTL activity during rest
functions to establish memory traces for the kinds of internal
thoughts that accompany resting wakefulness. For example, we
can readily remember the products of our internal musings.
Indeed in many cases, such as when making future goals and
plans of action, the ability to do so has considerable adaptive
significance (43-45). In much the same way that regions of the
MTL bind together the processing outcomes of external expe-
riences, the MTL may facilitate the formation of memory for our
internally generated thoughts and feelings. Better memorizers
may be more adept at forming memories for information that is
externally provided, as well as the product of internally gener-
ated thoughts, thus leading to greater activity when comparing
periods of rest to periods of task for these individuals. Such an
account has intuitive appeal because it offers a putative expla-
nation for the somewhat puzzling functional coupling between
regions of the MTL and other regions of the default network;
spontaneous fluctuations in MTL activity correlate with spon-
taneous fluctuations in the other regions of the default network
during periods of rest (28, 46). The brain-behavior correlation
reported here suggests that the spontaneous fluctuations in MTL
activity during moments of rest occur at a higher mean level of
activity in individuals who are better memorizers.

Wig et al.

These alternative accounts need not be mutually exclusive.
Resting period MTL activity may be related to both passive
consolidation of recent real world experience as well as the
encoding and consolidation of internal thought. Linking these
ideas together, distinct subregions of the MTL may function to
encode the products of internally generated thoughts and to
promote domain-general consolidation of information from the
recent past (i.e., information from both external and internal
sources). Superior memorizers may be afforded a processing
advantage for one or both of these functions, thus leading to the
resting period memory performance correlations reported here.

Keeping these points in mind, the results from the present set
of studies have a number of additional implications. First, the
relationship noted here highlights the need to consider the
potential for individual differences in resting period BOLD
activity when making comparisons across groups of subjects
(also see ref. 47). Second, correlations between offline cognitive
measures and resting period BOLD activity may be used as a
potentially unique method of parsing out the function of com-
ponents of the default network, complementing the use of
task-based manipulations and resting state intrinsic correlations
(46, 48, 49) to further our understanding of both regional and
network activity when the brain is at rest and during execution
of externally cued tasks.

Resting-state MTL functional connectivity is reduced in pa-
tients with Alzheimer’s disease (26), and there is evidence that
reductions in baseline glucose metabolism in the hippocampal
formation differentiates both Alzheimer’s patients and patients
with mild cognitive impairment from healthy age-matched con-
trols (50). Mitigated T2* resting activity in the MTL has been
further implicated in the memory decline that accompanies
healthy aging (24, 25). The present study demonstrates that
differences in resting MTL activity index a wider spectrum of
human mnemonic ability, such that it permeates the subtle
variability that is present among healthy young adults. One final
hypothesis is that individuals demonstrating significantly re-
duced levels of MTL resting period activity may be those that are
more susceptible to ensuing mnemonic impairment, and that this
predisposition may be directly related to the underlying genetic
make-up of individuals. Considered in this context, we propose
that resting-state MTL activity should be explored as a poten-
tially viable biomarker for early detection of ensuing neurolog-
ical and mnemonic degeneration, possibly permitting early in-
tervention strategies aimed at both improving memory function
and forestalling age-related memory decline.

Materials and Methods

Data Acquisition. All imaging was performed on a 3.0T Philips Intera Achieva
Scanner (Philips Medical Systems, Bothell, WA) equipped with a SENSE (SENSE-
itivity Encoding) head coil at the Dartmouth College Brain Imaging Center
(Hanover, NH). See SI Methods for apparatus and imaging details.

Study Procedure

Functional Imaging. All subjects were scanned during two separate tasks
(experiments). Both experiments were collected in a single scan session and
the order of experiments was counterbalanced across individuals. Refer to Fig.
1 and S/ Methods for details of functional imaging task procedures.

Behavioral Testing. Following their scanning session, subjects came back on two
separate days for additional behavioral testing. Behavioral testing consisted of a
number of standardized and nonstandardized cognitive tests. Tasks were coun-
terbalanced across subjects, with the exception that all standardized testing was
administered on one of the two days, while the remaining nonstandardized
cognitive tests were administered on the alternate day. See S/ Methods for details
on standardized and non-standardized cognitive testing.
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Data Analysis

Behavioral. Behavioral data were analyzed using a separate exploratory PCA for
each of the two experiments. These analyses produced a set of independent
components or metavariables representing the behavioral data set. Factor scores
from each of the components were derived for every subject to be used in fMRI
regression analyses. These factor scores represented estimations of the actual
individual subject values (i.e., the relative contribution of each component to the
variance of their behavior both within and across subjects) for each of the
components. See SI Methods for details on behavioral data analysis.

Functional Data. Functional MRI data were analyzed using SPM2. Each
experiment was preprocessed and analyzed separately. For each functional
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run, data were preprocessed to remove sources of noise and artifact.
Preprocessing was followed by estimation of parameter estimates and
computation of statistical images. Brain-behavior correlations were com-
puted using the PCA component scores obtained from the behavioral data
in a series of multiple regression analyses, and subsequently probed using
a region of interest analysis. See S/ Methods for details on preprocessing
and data analysis.
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