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Abstract
In this summary paper, we describe the contributions included in the Multistage Design group (Group
14) at the Genetic Analysis Workshop 15, which was held during November 12-14, 2006. Our group
contrasted and compared different approaches to reducing complexity in a genetic study through
implementation of staged designs. Most groups used the simulated dataset (problem 3), which
provided ample opportunities for evaluating various staged designs. A wide range of multistage
designs that targeted different aspects of complexity were explored. We categorized these approaches
as reducing phenotypic complexity, model complexity, analytic complexity or genetic complexity.
In general we learned that: (1) when staged designs are carefully planned and implemented, the power
loss compared to a single-stage analysis can be minimized and study cost is greatly reduced; (2) a
joint analysis of the results from each stage is generally more powerful than treating the second stage
as a replication analysis.
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INTRODUCTION
The rapid progress of genomic technology has been accompanied by many statistical
challenges. Datasets for genetic studies have grown remarkably in terms of the number of
genetic locations tested and the number of phenotyped and genotyped subjects. This growth
has caused both increased study costs and increased complexity of the statistical analysis. The
focus of genetic studies remains the identification of DNA variants conferring increased
susceptibility to disease, but these studies are also expected to tackle multiple additional
challenges, such as analysis of disease-associated clinical phenotypes and environmental
covariates, identification of population subgroups, and evaluation of gene-gene and gene-
environment interactions. We have not yet reached the apex of this data expansion. The new
mega single-nucleotide polymorphism (SNP) chips will soon be released, whole genome
sequencing is making rapid progress, the P3G Consortium is facilitating harmonization of
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genetic data collections (http://www.p3gconsortium.org/), and the NIH is strongly encouraging
efforts to make such data collections publicly available
(http://www.ncbi.nlm.nih.gov/entrez/query/Gap/gap_tmpl/about.html).

It follows that the statistical-genetic challenges will likely increase in the near future. The
primary statistical goal is usually to achieve appropriate power while controlling for multiple
testing and accounting for the correlation between tests at nearby markers. The widely
discussed difficulty of replicating genetic association findings has cast a long shadow over our
field, and the need for validation is more pressing than ever. Reasons for lack of replication
include under-powered studies with limited sample size and the population-specific nature of
effects, which can themselves be genetic, environmental, or both, with the additional difficulty
of discerning between causal versus indirect association findings due to population-specific
linkage disequilibrium (LD) patterns [Alcais et al., 2007]. Taken together, these factors have
generated many ambiguous follow-up studies and sometimes “ad hoc” staged analyses.
Properly planned and implemented multistage study designs have the potential to reduce the
considerable complexity of genetic-epidemiologic datasets, and thus it is not surprising that
for the first time a group examining multistage designs was formed at Genetic Analysis
Workshop 15 (GAW15).

The GAW15 datasets presented a variety of opportunities to tackle complexity with multistaged
approaches. Problems 2 (RA data) and 3 (simulated data) included a large and diverse sample
that allowed the evaluation of linkage methods, family-based and case-control association
designs and their combination, using genome-wide microsatellite and SNP marker maps and
a region of dense SNP genotyping on chromosome 6. Problem 1 expanded the problem to
include a combination of both a dense genome wide scan on a large number of samples
combined with gene expression data on the same subjects.

STAGED DESIGNS IN GENETICS
The use of staged designs in genetic epidemiology is not unique to the current genomic era.
Morton [1955] proposed a sequential test for linkage in his 1955 publication that was based
on Wald's sequential probability ratio test. In the 1990s, Whittemore and Halpern [1997]
advocated staged designs as cost-saving sampling strategies in genetic epidemiology.
Multistage sampling designs entail a number of interesting statistical issues that also arise in
the context of survey studies.

More recently, staged designs have been proposed with the primary aim of reducing the
genotyping cost in linkage [Craddock et al., 1996; Holmans and Craddock, 1997] and
association studies [Fulker et al., 1999; Satagopan and Elston, 2003; Thomas et al., 2004;
Marchini et al., 2005; Van Steen et al., 2005; Rosenberg et al., 2006; Skol et al., 2006; Wang
et al., 2006]. A popular approach is to divide the entire available (or anticipated) dataset into
a test sample and a validation (replication) sample, in which only a subset of the original genetic
tests will be performed. The subset of SNPs can be selected by single-locus association P-
values in the test sample or by identifying SNPs that capture the distribution of neighboring
SNPs via correlation. Both approaches reduce the number of tests to be performed at the second
stage. An alternative use of a staged design is to identify a genomic region of interest through
linkage analysis and both validate and refine this finding by case-control or family-based
association analysis. Finally, two-stage strategies have also been proposed in genetic
association studies to reduce the penalty due to multiple testing when modeling gene-gene
interactions [Marchini et al., 2005; Ionita and Man, 2006].
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METHODS
The multistage designs employed by our group covered a wide range of applications and
analyses. Most designs aimed to reduce the complexity in the first stage and then used the
second stage to evaluate the reduced problem. Of primary importance is the statistical treatment
of the first-stage tests as the second-stage analysis must account for the inference made at the
first stage. The entire experiment must be viewed as the result of both stages for valid statistical
inference. In addition, the desired reduction of complexity at the first stage typically results in
a reduction of information extracted from the second stage, which impacts statistical power.
The Multistage Designs group presented a variety of approaches to reducing complexity, which
we have divided into four categories for clarity. However, some approaches fall into more than
one category.

PHENOTYPIC COMPLEXITY
Some contributions used a staged design to reduce the phenotypic complexity of the data. For
example, Yang et al. [personal communication] worked with the gene expression data of
problem 1 and aimed to identify phenotypes (traits) with high signal-to-noise ratio to carry into
the next stage. Two contributions [Gray-McGuire et al., personal communication; Schmidt et
al., 2007] used covariate adjustment models to identify important disease-associated covariates
for testing in the next stage. This may improve the homogeneity of the phenotype [Gray-
McGuire et al., personal communication] or identify a subset of cases, on the basis of both
identity-by-descent sharing and covariate values, which may carry a specific disease
susceptibility allele and qare analyzed in detail at the second stage [Schmidt et al., 2007].

MODEL COMPLEXITY
In applications to real datasets, the underlying genetic model is unknown and may or may not
include higher-order terms, such as gene-environment or gene-gene interactions. In a staged
design approach to model building, Barhdadi and Dube [2007] selected SNPs in stage one
based on the results of single-marker case-control association analysis and then tested a number
of SNP-SNP interaction models by logistic regression using two different SNP entry criteria
in the second stage. They realized the importance of stringency in selecting the SNPs (model
terms) to be included in the second-stage interaction models. Model complexity was also
reduced by applying a staged approach to a variety of data types such as expression data, family-
based and case-control association data, such that results brought forward from one stage to
the next helped inform the inference from the entire experiment [Yang et al., personal
communication].

ANALYTIC COMPLEXITY
One of the most novel applications of a staged design was presented by Wang et al. [2007a],
who argued that the choice of the best statistic to use in any given study is highly dependent
on the underlying data distribution and that a multistage design can guide the selection of the
most powerful statistic for any particular sample. They compared two statistics on a portion of
the dataset in the first stage, and then applied the most powerful statistic to the remaining
samples at the second stage [Wang et al., 2007a]. As one might expect, the selection of the
most powerful statistic in the first stage can substantially increase power compared to applying
a single statistic that may or may not be a good fit for the underlying distribution of the data
at hand.

GENETIC COMPLEXITY
The most popular use of staged designs was to perform SNP selection procedures to reduce
the number of SNPs tested in the second stage. The reduction was achieved by a number of
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different methods. Some contributions selected SNPs by evaluating the correlation or LD
relationships between them, or by using a SNP clustering algorithm [Li, 2007;Aschard et al.,
2007; Darabi et al., personal communication; Yang et al., personal communication]. Darabi et
al. [personal communication] reported that localization may be very poor if too few SNPs were
selected for the second stage. Other contributions selected SNPs by single-marker association
tests, or multipoint linkage tests, using statistics that were independent between the first (SNP
selection) and the second (SNP-phenotype association) stages [Aschard et al., 2007;Barhdadi
and Dube, 2007;Rohlfs et al., 2007;Schmidt et al., 2007;Wang et al., 2007b]. Some groups
used tests that were not independent between stages [Wang et al., 2007a].

We discussed in some detail the statistical options for combining tests performed at the two
stages. It is known that a joint analysis is more powerful than treating the second stage as a
stand-alone replication sample [Skol et al., 2006]. Li [2007] reported on the use of a joint
analysis assuming heterogeneity as detailed in his paper. He found that a joint analysis of his
two-stage design was very close in power to that of a single-stage analysis including all samples
and all markers, consistent with the previous report [Skol et al., 2006]. Wang et al. [2007a]
compared the efficiency of two methods to combine P-values, one based on Fisher's test and
the other based on the weighted inverse normal distribution. P-values were generated from two
different statistics, the nonpara-metric Wilcoxon test and Hotelling's T2 statistic. They found
that the difference in power was primarily due to the choice of statistic rather than the choice
of method for combining the P-values.

The use of multistage procedures usually requires that the dataset be divided in some way. The
samples can either be divided into a testing set and a validation set, with or without joint analysis
of the respective statistics [Li, 2007;Wang et al., 2007a], or alternatively, the same dataset can
be examined from different angles at the two stages. For example, Wang et al. [2007b] selected
SNPs by comparing allele frequencies in affected parents versus unaffected parents in stage
one and then tested a subset of SNPs by family-based association tests in stage two. Rohlfs et
al. [2007] relied on the use of Lange's [2003] two-stage method that uses a conditional means
model in the first stage followed by a family-based association test in the second stage. Aschard
et al. [2007] selected regions of SNPs based on a case-control analysis and followed up the
selected markers in stage two with a novel multi-marker family-based association test. Schmidt
et al. [2007] used ordered subset analysis [Hauser et al., 2004] to implement a twofold selection
approach in stage one. They selected a subset of SNPs within candidate regions identified by
linkage analysis, and also selected a subset of cases for further analysis on the basis of both
identity-by-descent sharing and covariate information. Unrelated cases (one per family) were
then compared to unrelated controls in a second-stage logistic regression analysis.

RESULTS
A summary of the published contributions is included in Table I. Despite the diversity of
analysis approaches, we were able to identify some common themes across studies. In general,
we observed that very liberal selection criteria in the first stage were likely to increase the false
positive rate in the second stage [Aschard et al., 2007;Barhdadi and Dube, 2007;Li, 2007; Gray-
McGuire et al., personal communication]. On the other hand, selection criteria that were too
stringent in the first stage could lead to severely decreased power to detect true-positive SNPs
in the second stage [Schmidt et al., 2007]. Clearly, type I and type II error rates can and should
be balanced through appropriate selection criteria, and whenever possible, this should be
planned prior to performing the data analyses and not be driven by interim results.

We found interesting uses of multistage designs in particular for the selection of a best model,
a best test statistic, and for phenotype clarification. Further exploration of these aspects are
worth additional study as they may be even more useful than the two-stage designs focused on
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SNP reduction and may allow complexity reduction beyond the well-recognized genetic and
genomic complexity induced by LD.

The majority of the papers discussed by the Multistage Designs group used the simulated
dataset (problem 3). In general, we felt that the simulations provided a wide range of genetic
effects to evaluate, however, some care was required in order to make useful comparisons
among the different approaches. For example, the genetic effect simulated on chromosome 6
was overwhelmingly large and analyses concentrating only on this genomic region might not
have detected variation in performance of different approaches. In contrast, the genetic effect
simulated on chromosome 9 was very weak and difficult to detect with any method. The only
method that was even modestly successful in detecting this locus was the joint method
implemented by Li [2007]. The number of simulated replicates also proved to be somewhat
problematic. Our conclusions about estimated type I error rates for any of the methods were
hampered by the availability of only 100 replicates. On the other hand, 100 replicates provided
a substantial computational challenge for groups like Barhdadi and Dube [2007], whose goal
was to comprehensively evaluate gene-gene interactions. In general, the simulated dataset was
very interesting and complex and should be useful for other evaluations of multistage designs
in the future.

CONCLUSIONS
There are many ways to implement a multistage study design. Ideally, a carefully planned and
accurately executed staged design can help manage whichever dimension of complexity is
considered most challenging in any given study, i.e., phenotypic complexity, model
complexity, analytic complexity, or genetic complexity. The GAW15 contributions to the
Multistage Designs group evaluated multiple approaches to reduce these various forms of
complexity. It was clear from most studies that an analysis of all SNPs in all available samples
provides maximum statistical power in the absence of cost constraints. However, given limited
resources, a staged design can provide substantial cost savings at little loss of power. Consistent
with previous studies [Skol et al., 2006; Wang et al., 2006], we confirmed that a joint statistical
analysis that combines results from the two experimental stages is virtually always more
powerful than treating the second-stage sample as an independent replication study. This
statement was true, whether the complexity reduction was in the genetic or analytic dimension.
However, it is important to carefully consider corrections for multiple comparisons in the
multistage setting.

The possible two-stage study designs are quite diverse, as are the reasons for using these
designs. However, the ability to balance costs and information gain is an important feature of
all multistage designs. Financial considerations were the original and are still often the main
reason for considering two-stage study designs. Given rapidly decreasing genotyping costs,
some have argued that two-qstage study designs are no longer necessary. However, costs may
not be the only factor in considering a two-stage study design. As data from genome-wide
association studies are becoming publicly available, these datasets may be viewed as first stage
data, making multistage designs an important tool in the new era of genetic studies. We believe
that the time is ripe for an additional method development for multistage designs, including
stages related to phenotypic and analytic complexity.
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