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Abstract
Purpose To describe the ultrastructure of spermatozoa from
a patient with complete asthenozoospermia that resulted in
live births following blastocyst culture.
Materials and methods Analyses of spermatozoa from a
36 year old patient were performed using light and electron
microscopy. The hypo-osmotic swelling test was used to
select spermatozoa for intracytoplasmic sperm injection.
Embryos were cultured to the blastocyst stage.
Results 100% of the spermatozoa had dynein arm deficien-
cy with secondary defects varying from 3–17%. Six
oocytes were injected; five fertilized normally and one
was digynic. All five zygotes formed good quality
blastocysts. Three blastocysts were cryopreserved and two
blastocysts were transferred. Twin females were born at
37 weeks.
Conclusions The hypo-osmotic swelling test can be used to
select viable immotile ejaculated spermatozoa from a
patient with dynein arm deficiency and can produce
excellent fertilization rates and blastocyst development
resulting in live births.

Keywords Blastocyst culture . Dynein arm deficiency .

Hypo-osmotic swelling test . Primarily ciliary dyskinesia .

Sperm ultrastructure

Introduction

Primary ciliary dyskinesia (PCD), also known as immotile
cilia syndrome (ICS), is identified by immotility of the
ciliated cells in the body such as epithelial airway cells and
spermatozoa. PCD is heterogeneous and has been shown to
be inherited in an autosomal recessive pattern [1]. Individuals
presenting with this disease will have a chronic cough and
recurrent upper respiratory tract infections which will lead to
bronchiectasis. Males will most often present with infertility
or sub-fertility.

The severity of symptoms and the age at which the
condition is diagnosed is quite variable, even though the
symptoms are present from birth [2]. Approximately 50%
of patients will fall within a subset of PCD known as
Kartagener’s syndrome (KS). In addition to bronchiectasis
and chronic sinusitis, these patients will also present with
situs inverus; indicating the cilia of the patient was affected
during embryonic development [3].

Successful treatment of PCD with the birth of healthy
babies following embryo transfer on day three or earlier has
been reported using sub-zonal insemination (SUZI) [4–6]
and intracytoplasmic sperm injection (ICSI) [7–13]. The
hypo-osmotic swelling (HOS) test [14] was used in
conjunction with ICSI of immotile spermatozoa with
success in several cases as well [15–17].

We believe this is the first report of a viable twin
pregnancy for a couple where the husband had PCD and the
embryos were grown to the blastocyst stage prior to embryo
transfer. Viable ejaculated spermatozoa were selected using
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the HOS test prior to ICSI. Several spermatozoa were
analyzed with transmission electron microscopy (TEM) to
confirm the structural flagellar defects responsible for the
complete asthenozoospermia.

Materials and methods

Patients

A 36 year old male was referred to our clinic following
seven years of infertility. He had 0% motility on several
semen evaluations. He also had a history of chronic
bronchitis and recurrent pneumonia. He was referred to a
pulmonary specialist and showed no signs of situs inversus
and was therefore diagnosed with PCD and not KS. His
28 year old wife presented with normal menstrual cycles
and a history of pelvic inflammatory disease. A prior
hysterosalpingogram from 2005 showed one uterine tube
blocked.

Semen samples and electron microscopy studies

Semen samples were obtained by masturbation following 2
to 3 days of abstinence. Following liquefaction, samples
were analyzed using the protocol of the World Health
Organization Laboratory Manual [18].

Transmission electron microscopy preparation

The washed spermatozoa samples were concentrated to a
pellet and fixed in glutaraldehyde in PBS buffer for 30 min.
The pellet was washed twice in PBS and secondarily fixed
in osmium tetroxide for 1 h. The pellet was rinsed with de-
ionized water and melted agar was added to the pellet. The
sample was placed in a refrigerator at 5°C, overnight. The
next day, the pellet was diced into smaller pieces and
transferred to glass vials for gradient series dehydration
with ethanol followed by 100% acetone. The samples were
embedded in PolyBed 812 resin (Polysciences, Warrington,
PA, USA) and the resin was allowed to harden at 60°C for
3 days. The specimen blocks were sectioned using a Leica
Ultracut R ultra-microtome (Leica Microsystems Inc,
Bannockburn, IL, USA). The cut sections were then placed
on small copper grids and stained with uranyl acetate and
lead citrate. Images were visualized using the JEOL 200CX
transmission electron microscope (Tokyo, Japan).

Ovarian stimulation and ICSI procedures

After an ovarian stimulation with an antagonist protocol
using Gonal-F (Serono, Rockland, MD, USA) low dose
human chorionic gonadotropin (hCG) (Abraxis Pharmaceu-

tical Products, Schaumburg, IL, USA), and Ganirelix
(Organon, Roseland, NJ, USA), 11 oocytes were recovered
on day 10 of the cycle following 10,000 IU of hCG
(Abraxis Pharmaceutical Products, Schaumburg, IL, USA)
given 36 h prior to vaginal oocyte retrieval (VOR). All 11
oocytes had the cumulus removed with 80 IU of hyaluron-
idase (Sage, Trumbull, CT, USA) 3 h after VOR. Six of the
oocytes were at the MII stage and used for insemination
with ICSI. The semen was collected by masturbation and
was washed twice in 5 mg/mL human serum albumin
(HSA) in human tubal fluid (HTF)/4-(2-hydroxyethyl)-
1-piperazineethanesulfonic acid (HEPES) (InVitroCare,
Frederick, MD, USA). 25 mL of 5 mg/mL HSA in HTF/
HEPES was combined with 25 mL of sterile water to make
a HOS media in order to identify viable spermatozoa. The
washed spermatozoa were placed in the HOS media and
they were considered viable if they had coiled flagella.
Viable spermatozoa were then aspirated into an injection
pipette (Humagen, Charlottesville, VA, USA) and trans-
ferred to 10% PVP (Sage, Trumbull, CT, USA). The mid-
piece of each spermatozoon was disrupted and re-aspirated
for injection. The MII oocytes were injected with the viable
spermatozoa 5 h following VOR. The injected oocytes were
placed in culture media (Sage, Trumbull, CT, USA) and
assessed for fertilization 15 h later.

Results

The spermatozoa concentrations varied in several different
analyses from 24 to 40 M/mL with all having complete
asthenozoospermia. Viability with eosin-nigrosin staining
(Conception Technologies, San Diego, CA, USA) averaged
40%; while Kruger’s strict morphology averaged 4%. One
semen sample was sent off-site to be analyzed (Repromedix,
Woburn, MA, USA) for the ability of the sperm to undergo
decondensation, deoxyribonucleic acid (DNA) synthesis, and
recondensation following oocyte penetration [19]. The
results were 98.4%, which indicated that most of the
patient’s spermatozoa were able to undergo those processes
successfully.

Transmission Electron Microscopy

200 individual spermatozoon flagellum and mid-piece
sections were examined for ultrastructural anomalies. All
spermatozoa flagella sections examined showed total or
partial lack of the inner and outer dynein arms (Fig 1).
Complete axoneme disruption was also a common defect.
Other defects were seen to a lesser extent in conjunction
with the absence of the dynein arms (Fig 2). Results are
summarized in Table 1.

438 J Assist Reprod Genet (2008) 25:437–443



Embryo Culture

Five of the six oocytes injected fertilized normally and one
was digynic. 24 h post insemination, three ongoing

embryos were in syngamy and two were still at the
pronuclear stage. On day three at 63 h post insemination,
all five were high quality 8-cell embryos with two of the
embryos already compacting. All embryos were transferred
to extended culture media (Irvine Scientific, Santa Ana,
CA, USA) at 67 h post insemination and grown to day six.
Two high quality hatching blastocysts (5AB) [20] were
transferred to the patient’s uterus at 135 h post insemina-
tion. The three remaining embryos were all good quality
expanded blastocysts (4BB) and were cryopreserved at
138 h post insemination. A pregnancy test was performed
7 days later and confirmed a positive pregnancy. An early
pregnancy scan at 6 1/2 weeks of gestation revealed a
viable twin pregnancy with cardiac activity. The healthy
twin girls were born weighing 5 lbs 13 oz and 6 lbs 13 oz;
following 37 weeks of gestation.

Discussion

This report shows that even in severe cases of asthenozoo-
spermia related to dynein arm deficiency, ICSI [21] can
overcome the inability of the spermatozoa to reach the
ovum and produce healthy offspring. Additionally, the
asthenozoospermia that results from the lack of the dynein
arms within the spermatozoon flagellum does not adversely

Fig. 1 Transmission electron micrograph of a cross-section of a
spermatozoon flagellum with almost complete abscence of dynein
arms at 200,000× magnification. Note the presence of a truncated
outer dynein arm (blue arrow) and inner dynein arms (red arrow)

Fig. 2 Transmission electron
micrograph of various
spermatozoa from the patient
with PCD. A) A cross section
through a mid-piece region of
flagellum. B) Three axonemes
surrounded by the same outer
membrane. Notice the partial
axonemal disruption (Arrow).
C) Transverse section of a
spermatozoon. D) Same
spermatozoon flagellum at a
higher magnification. Notice the
disruption of the mitochondrial
sheath (Arrow)
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effect the development of the resulting embryo. Examining
the ultrastructural defects of the cilia in patients with PCD
is valuable from an investigative standpoint and in
conjunction with genetic studies may be of great benefit
to the PCD patient. The cilia ultrastructure and genetic
profile of the PCD patient is not only important in terms of
reproduction, but it may also lead to different treatment
options for the respiratory issues associated with this
disease. The key to successful in vitro fertilization treatment
for these patients is selection of viable spermatozoa that can
lead to high quality embryo development. We have added
to the base of literature showing that the HOS test is a good
tool to select viable spermatozoa and we have also shown
that embryos from PCD patients can be successfully grown
to the blastocyst stage prior to embryo transfer.

The HOS test identifies spermatozoa with intact plasma
membranes and does not damage the spermatozoa. It is a
simple, reliable, and non-toxic test, which allows for the
selection of a viable spermatozoon prior to oocyte injection.
Casper et al. showed the HOS test can be used successfully
to select viable spermatozoa and increase the fertilization
rate nearly 2-fold over random selection alone [22].

Cayan and colleagues described the use of immotile
testicular spermatozoa for ICSI on two couples where the
males had ICS/KS. In the first case, the HOS test was used
to select spermatozoa and the cycle resulted in the birth of
a healthy female following a frozen embryo transfer with
three embryos. In the second case, 98% of the spermato-
zoa were missing their inner and outer dynein arms. The
HOS test was not used to inject spermatozoa in the second
case and no pregnancy was achieved [15]. Okada et al.
used immotile spermatozoa that lacked the central micro-
tubules from four males with ICS and polycystic kidney
disease. The spermatozoa used for injection were selected
using the HOS test and 38.6% of the oocytes fertilized
normally and although all the couples had embryos
transfers, none resulted in a viable pregnancy. One male
who only had the defect in 80% of his sperm underwent a
second cycle of ICSI with motile spermatozoa which
resulted in a pregnancy [23].

Westlander et al. reported two cases where the HOS test
was again used to select viable spermatozoa. In the first
cycle of the first case, immotile ejaculated spermatozoa
were used and fertilization did not occur. In the second
cycle of the first case, testicular spermatozoa was used and
resulted with a 75% fertilization rate and a viable preg-
nancy. In the second case, 50% of the oocytes were injected
with immotile testicular spermatozoa resulting in a 56%
fertilization rate and 50% of the oocytes were injected with
immotile ejaculated spermatozoa resulting in a 44%
fertilization rate [16]. In another case where the HOS test
was used for selection of spermatozoa from a husband with
ICS, two grade A embryos at 7- and 8-cells were
transferred on day three and resulted in a pregnancy that
miscarried at 21 weeks. The subsequent FET resulted in the
transfer of two grade A morulae that resulted in a single
intrauterine pregnancy [17].

The HOS test is a more reliable method for selecting
viable spermatozoa than random spermatozoa selection.
Some studies conducted with immotile spermatozoa from
ejaculates using ICSI without the addition of the HOS test
have failed to produce a viable pregnancy. [6, 24, 25] Other
reports have shown that injection of immotile spermatozoa
resulted in complete fertilization failure [26, 27].

Nijs et al. showed immotile ejaculated spermatozoa
fertilized fewer oocytes following ICSI when compared to
spermatozoa which gained motility following incubation.
Additionally, the embryos derived from totally immotile
spermatozoa produced lower quality embryos than embryos
produced from motile spermatozoa. Ongoing pregnancies
were only produced from spermatozoa with delayed
motility or immotile spermatozoa retrieved from the testes
only. For a single KS patient SUZI produced a healthy
pregnancy whereas ICSI did not [6]. Other successful
fertilizations from immotile sperm via sub-zonal insemina-
tion have been obtained as well [4, 28] without subsequent
pregnancies. The Terriou et al. report indicated two sets of
triplet pregnancies but these were from patients that had 5%
non-progressive motility in the semen samples [28].

In the cases of fertilization failure and cleavage arrest, it
is possible the result was due to some inherent anomaly
with the spermatozoa which prevented normal develop-
ment, rather than a technical aspect of ICSI such as
touching the spermatozoon flagellum prior to injection
[29] or selection of non-viable spermatozoa, although either
of the latter instances could be the case. TEM was not done
on any samples so the ultrastructure of the spermatozoa is
unknown. Our clinic routinely uses the sperm DNA
decondensation test [19] to access the fertilization potential
of spermatozoa and fertilization in this case was 100% with
one abnormal digynic zygote. This is the first report to
show complete fertilization from a PCD patient and that
high quality embryos from immotile ejaculated spermato-

Table 1 Ultrastructural defects visualized with transmission electron
microscopy

Defect Percentage of
cells with defect

Total or partial lack of dynein arms 100%
Total disruption of the axoneme 17%
Missing central pair 4%
Displacement of the fibrous sheath
or mitochondrial sheath

10%

Missing radial spokes 3%
Multiple tails 3%
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zoa can be grown to the blastocyst stage prior to transfer
with great success. The sperm DNA decondensation test
may be a good predictor of fertilization potential and
embryo development. Further experiments with the sperm
DNA decondensation test in conjunction with varying
ultrastructural defects may help determine which ultrastruc-
tural defects ultimately affect embryo development and
make viable pregnancies more difficult.

In contrast to the reports that have yielded an unfavor-
able result, several reports have shown the successful
treatment of PCD using ICSI without the HOS test, but
fertilization rates varied from 50% to 73.4%. Olmedo and
colleagues used ejaculated spermatozoa from a male with a
combination of dysplasia of the fibrous sheath and dynein
arm deficiency. Three embryos were transferred at the two-
cell stage which resulted in the birth of a healthy baby girl
[10]. Von Zumbusch et al. treated two couples with KS.
Fertilization rate for the couples was 66% and 50%
respectively and both couples had embryo transfers on
2 day after VOR resulting in the birth of healthy babies.
The authors concluded that “results seem to ethically justify
the use of assisted reproductive technology in similar cases
[13].” Finally, Barros and colleagues reported the birth of
two healthy children following random selection of
ejaculated spermatozoa in one of four patients [8].

Several ultrastructural phenotypes have been shown in
patients with PCD. The first reported ultrastructural defect
for human spermatozoa was a lack of dynein arms along
with some irregularities of accessory fibers and fibrous
sheath. Biochemical tests, rates of oxygen consumption,
and lactic acid production for the immotile spermatozoa
were similar to that of motile sperm [30]. The lack or
reduction of both inner and outer dynein arms was again
seen by other authors [3, 31]. Our patient showed nearly
complete lack of dynein arms in all flagella analyzed.
Without the dynein arms to attach to the microtubule pairs,
the ability of the sperm to move is not possible; which
accounts for our patient’s asthenozoospermia.

The other alterations seen in our patient’s TEMs have
been reported in other papers. Additional aberrations have
included absence of the radial spokes [32], peripheral
microtubule defects, dysplasia for the fibrous sheath [12],
non-specific axoneme defects [33], complete ciliary aplasia,
orientation defects [34], and absence of the central
microtubule pair [28, 31, 35]. Wolff et al. also reported a
case of immotile cilia syndrome where the axonemes of the
spermatozoa tails were complete except they lacked the two
central microtubules. However, the patient did not present
with any other symptoms of ICS such as recurrent airway
infections, bronchiectases or situs inversus [36].

In our patient, these secondary aberrations may be
associated with his PCD but probably not responsible for
the asthenozoospermia since all the spermatozoa examined

lacked dynein arms in addition to the other defects. Isolated
ultrastructural defects are rare. Usually there will be a
combination of multiple aberrations such as dysplasia of the
fibrous sheath, dynein deficiency, and unassembled mito-
chondria at the mid-piece [37, 38]. In one of the few papers
to look at more than just one or a few patients; 247 severely
asthenozoospermic patients where assessed for ultrastruc-
tural defects. The ultrastructural studies showed two main
alterations: 83% had non-specific flagellar anomalies
(NSFA), affecting variable numbers of spermatozoa; 17%
had dysplasia of the fibrous sheath which affected between
70% and 100% of the spermatozoa in several cases [12].
Yokota et al. showed defects in the dynein arms, central
microtubules, and total axoneme defects in one report [39]
and still another report showed disorganization of mito-
chondria in the mid-piece’s capsule and irregular arrange-
ment of the axoneme’s thick fibers in addition to two to
four axonemes surrounded by the same cellular structure
was also seen by other investigators [40].

Other TEM examinations have shown that defects can
vary within the spermatozoa population itself and between
spermatozoa and other cilia within the body. A patient with
immotile spermatozoa and normally functioning cilia
through the rest of his body was reported where the
spermatozoa lacked dynein arms but the other cilia had
normal ultrastructure [41]. There were two separate reports
of patients with repeated respiratory tract infections indica-
tive of PCD, yet both patients had motile spermatozoa
[42, 43].

The previously mentioned TEM studies show that PCD
is obviously a multifactorial condition and can affect any of
the sub-structures of the flagella. It is usually inherited in an
autosomal recessive pattern [1]; however, it has also been
shown to be inherited in an X-linked or autosomal fashion
[44]. PCD occurs somewhere around 1:15,000–30,000 live
births. The range varies widely and may be an underesti-
mate because not all cases are diagnosed [45].

PCD is heterogeneous and caused by mutations in
several different genes on several different chromosomes
[46]. Many genes have been screened for mutations and 2
have been found to affect the ultrastructure of dyneins in
cilia in PCD patients. The first gene to be identified was
DNAI1 and located on chromosome 9p13–21. It is highly
expressed in the testes and trachea and contains 20 exons
[47]. The second gene is the DNAH5 gene is located on
chromosome 5p15-5p14 [48]. A third gene that has not
been proven to affect dyneins but is still a good candidate is
DNAH11 on chromosome 7p21 [49].

It is conceivable that variations of the genetic alterations
that affect the spermatozoa axonemes may also affect the
embryo itself. Centrosomes/centrioles of spermatozoa give
rise to the tail axoneme during spermiogenesis [50]. In
humans, the spermatozoon deposits one of its centrosomes
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in the cytoplasm of the oocyte and forms the sperm aster.
The aster then provides a focal point for the new
microtubule assembly process (MAP) of the embryo. These
MAPs are necessary for normal embryonic fertilization and
subsequent embryo cleavage [51].

As technology allows us to bypass conditions that would
normally prevent conception, it becomes necessary for us to
better understand the mechanisms that cause infertility in
sub-fertile populations so we do not unintentionally pass
along genetic defects to offspring. It is possible that with
better understanding of the genetic, molecular, and proteomic
aspects of the function of spermatozoa that poor motility
may be treated or cured using other methods such as gene
therapy; rather than simply bypassing the problems through
the use of ICSI. Although both baby girls appear healthy and
without signs of respiratory disease, there is a possibility
they are more than likely carriers for the disease. The
children should be monitored for respiratory problems as
they grow and familial genetic profiles may help determine
the genes responsible for the father’s PCD.
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