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Intermolecular cycloadditions are powerful methods for the convergent synthesis of cyclic
compounds from simple precursors.1 While major advances have been made in the area of
metal-catalyzed cycloadditions over the past decade,2 there is great potential for these reactions
using organic molecules as catalysts.3 In 1968, Dorn and coworkers demonstrated that 3-oxo-
pyrazolidin-1-ium-2-ides such as 2 are stable and easily handled compounds.4,5 Fu, Hayashi
and Suga have separately shown that these compounds are efficient substrates in metal-
catalyzed cycloadditions to furnish five and six-membered heterocycles.6 We have been
interested in developing new reactions catalyzed by N-heterocyclic carbenes (NHCs) derived
from azolium salts.7 Our recent studies, along with those of Glorius, Bode, and Nair, have
shown that the combination of NHCs and α,β-unsaturated aldehydes generate unique
homoenolate species.8,9 The use of an organic molecule to catalyze a formal [3 + 3]
cycloaddition of azomethine imines has yet to be realized.10 Herein, we report the direct
synthesis of pyridazinones (3) by the NHC-catalyzed reaction of aldehyde (1) and azomethine
imines (2, eq 1).

(1).
Our proposed pathway for this formal [3 + 3] cycloaddition involves the addition of an NHC
to an α,β-unsaturated aldehyde (1) to afford the extended Breslow intermediate (I) after
addition and rearrangement (Scheme 1). The homoenolate intermediate undergoes addition to
the azomethine imine (2) and subsequently generates enol II. After tautomerization of II, the
resulting activated heteroazolium species III releases the NHC catalyst and affords the
pyridazinone (3) by an intramolecular acylation.

A challenge with NHC catalysis is the presence of two separate electrophiles during a reaction.
A successful process must allow for selective interaction between the carbene and the α,β-
unsaturated aldehyde. Irreversible addition of the carbene to the secondary electrophile (e.g.
azomethine imine) would result in no reaction. Our studies began with cinnamaldehyde (1a),
azomethine imine 2a, and heteroazolium salts A–C (Table 1, entries 1–3). To our gratification,
all three catalysts derived from heteroazolium salts A–C produced the desired product 4 as a
single diastereomer.11 While benzimidazolium salt C afforded the highest yield (39%, entry
3), the process clearly required improvement. Reactions in THF required heating to induce
homogeneity (entries 4–5), but did not improve yields compared to CH2Cl2. Carefully
monitoring the reaction revealed that shorter times (3 h vs. 24 h) significantly improves the
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yield of 4 (entries 6–7). Additionally, increasing the temperature of the reaction to 40 °C favors
the [3 + 3] cycloaddition manifold with a further increase in yield (79%, entry 8). With these
temperature parameters identified, an extensive re-examination of different azolium salts
confirmed that the placement of a single N-mesityl substituent on the benzimidazole core is
necessary for good yields. Decreasing the catalyst loading of C decreases the yield of 4 to 46%
(entry 9).

With the optimal parameters established for this formal [3 + 3] cycloaddition process, we turned
out attention to investigate the scope of this reaction (Table 2, eq 3). A survey of the α,β-
unsaturated aldehyde reveals the process accommodates electron donating groups on the aryl
ring (entries 1–5), but electron withdrawing groups (entry 8) do not yield products. The reaction
also tolerates β-alkyl substituents and extended dienylic systems to afford 9 and 10 in moderate
yields (entries 6–7). An examination of the azomethine imine component indicates that
variously substituted aryl groups are competent substrates. Electron-withdrawing groups on
the aryl ring of the imine afford good to excellent yields of the pyridazinones (entries 9–12).
Placing an electron-donating group on the aryl ring is also a suitable partner (entry 14), albeit
in reduced yield (67%). While enolizable or 2-substituted aryl substituents at R1 of 2 do not
afford any pyridazinones, all productive reactions are highly diastereoselective (>20:1 dr)
favoring the all syn stereoisomers.

The current model for the high levels of syn diastereoselectivity for the products invokes a
hydrogen bonding assembly (IV) between the imine and the carbene-aldehyde adduct. The
catalyst structure enforces an extended geometry of the carbene-aldehyde adduct (I, as the Z
(O) enol) and this nucleophilic intermediate approaches away from the phenyl substituent on
the azomethine ring.12 Our initial investigations of the reactivity of the pyridazinone
compounds have determined that substituted esters and amides (e.g. 19 and 20) can be accessed
in excellent yields by a highly selective ring opening upon addition of methanol or benzyl
amine to a solution of the pyridazinone (4).13

In summary, we have developed the first formal [3 + 3] cycloaddition reaction catalyzed by
N-heterocyclic carbenes. The addition of an N-mesityl benzimidazolyl carbene to an α,β-
unsaturated aldehyde generates a homoenolate intermediate that undergoes an addition/
acylation sequence with an azomethine imine to afford new bicyclic heterocycles with excellent
diastereoselectivity. The pyridazinone products can be manipulated to provide esters or amides
in excellent yields upon addition of alcohols or amines. Further studies generating nucleophiles
with unique properties using N-heterocyclic carbene catalysis are ongoing.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Scheme 1.
Proposed Catalytic Pathway
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Table 1
Optimization of Conditionsa

entry catalyst conditions yield (%)b d.r.c

1 A CH2CI2, 23 °C, 24 h 35 >20:1
2 B CH2CI2, 23 °C, 24 h 29 >20:1
3 C CH2CI2, 23 °C, 24 h 39 >20:1
4 C THF, 50 °C, 24 h 15 >20:1
5 C 10:1 THF/tBuOH, 50 °C, 24h 23 >20:1
6 C CH2CI2, 23 °C, 3 h 45 >20:1
7 C 10:1 THF/tBuOH, 50 °C, 3h 59 >20:1
8 C CH2CI2, 40 °C, 2 h 79 >20:1
9d C CH2CI2, 40 °C, 2 h 46 >20:1

a
2 equiv. 1a and 1 equiv. 2a.

b
Isolated yield after purification.

c
As determined by 1H NMR spectroscopy.

d
10 mol % C, 10 mol % DBU.
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