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The transcription factor NF�B is activated by phosphorylation and
acetylation and plays important roles in inflammatory and immune
responses in the cell. Additionally, posttranslational modification
of the NF�B p65 subunit by O-linked N-acetylglucosamine (O-
GlcNAc) has been reported, but the modification site of O-GlcNAc
on NF�B p65 and its exact function have not been elucidated. In this
work, we show that O-GlcNAcylation of NF�B p65 decreases
binding to I�B� and increases transcriptional activity under hyper-
glycemic conditions. Also, we demonstrate that both Thr-322 and
Thr-352 of NF�B p65 can be modified with O-GlcNAc, but modifi-
cation on Thr-352, not Thr-322, is important for transcriptional
activation. Our findings suggest that site-specific O-GlcNAcylation
may be a reason why NF�B activity increases continuously under
hyperglycemic conditions.

diabetes � O-GlcNAc transferase � O-GlcNAcase

Transcription factor NF�B plays important roles in inflam-
matory, immune, and antiapoptotic responses (1–3). In

mammals, NF�B is present as a dimer composed of various
combinations of Rel proteins such as p65 (RelA), RelB, c-Rel,
p50/p105, and p52/p100. In most cell types, NF�B is composed
of p65 and p50 and is localized in the cytosol where it binds
inhibitor (I�B). Treatment with NF�B-activating agents such as
tumor necrosis factor � (TNF�) activates I�B kinase (IKK)
complexes, inducing phosphorylation in the N terminus of I�B.
The phosphorylation event induces I�B degradation via a ubiq-
uitin-dependent proteolysis. Free NF�B translocates to the
nucleus and activates the expression of target genes (1, 2).

Posttranslational modifications such as phosphorylation (4–9)
and acetylation (10, 11) regulate the transcriptional activity of
NF�B. The activity of NF�B is influenced also by the hex-
osamine biosynthetic pathway, which produces a substrate of
O-GlcNAcylation, UDP-GlcNAc (12). Many nucleocytoplasmic
proteins are known to be dynamically modified with O-GlcNAc.
This modification is modulated by O-GlcNAc transferase (OGT)
and O-GlcNAcase (OGA) (13–18). O-GlcNAcylation levels play
an important role in transcription, translation, nuclear trans-
port, protein stability, and protein–protein interactions and
can be increased under hyperglycemic conditions caused by
diabetes (16–18). Although it is known that O-GlcNAcylation
of NF�B is involved in hyperglycemia-induced NF�B activa-
tion (12) and is required for lymphocyte activation (19), the
specific sites and the function of O-GlcNAcylation on NF�B
are not well understood.

In this work, we show that OGA overexpression down-
regulates O-GlcNAcylation and inhibits hyperglycemia-induced
NF�B activation in rat vascular smooth muscle cells (VSMCs).
In contrast, up-regulation of O-GlcNAcylation after OGT over-
expression and treatment of cells with the O-GlcNAcase inhib-
itors streptozotocin (STZ) (20) and O-(2-acetamido-2-deoxy-D-
glucopyranosylidene)amino-N-phenylcarbamate (PUGNAc)

(21) increase NF�B transcriptional activity. Additionally, we
identify Thr-322 and Thr-352 as O-GlcNAcylation sites in a
mutation study and with mass spectrometry analysis. Our data
show that an increased amount of O-GlcNAcylation on NF�B
p65 increases the transcriptional activity of NF�B. Furthermore,
O-GlcNAcylation on Thr-352 inhibits the interaction between
NF�B and I�B. This O-GlcNAcylated NF�B is translocated to
the nucleus and has a longer half-life in the nucleus than
unmodified protein. This finding may partly answer why NF�B
is continuously activated in diabetic conditions.

Results
OGA Overexpression-Mediated Down-Regulation of O-GlcNAcylation
Inhibits Hyperglycemia-Induced NF�B Activation. We first confirmed
that hyperglycemic conditions induced NF�B activation in rat
VSMCs (22). To examine NF�B-mediated gene regulation, we
analyzed the expression of a �B-luciferase reporter gene con-
struct under normal glucose (5 mM) and high-glucose (25 mM)
conditions. When cells were exposed to high glucose for 24 h,
an increased amount of �B-luciferase reporter gene expression
was observed (Fig. 1A). At this time point, exposure to
high-glucose levels increased levels of O-GlcNAcylation on
total protein and NF�B p65 (Fig. 1B, 1st and 3rd panels from
top); however, O-GlcNAcylation of NF�B p50 was not de-
tected (data not shown). Furthermore, expression of vascular
cell adhesion molecule 1 (VCAM-1), which is known to be
controlled by NF�B, increased under high-glucose conditions
(Fig. 1B, 5th panel).

To determine the role of O-GlcNAcylation in hyperglycemia-
induced NF�B activation, we transfected a vector expressing
FLAG-tagged human OGA into VSMCs and found that OGA
overexpression reduced hyperglycemia-induced NF�B activation
as measured by luciferase assays (Fig. 1C). Also, OGA overex-
pression decreased the observed hyperglycemia-induced in-
crease in VCAM-1 expression (Fig. 1D, 5th panel). As expected,
OGA overexpression decreased levels of O-GlcNAcylation on
total proteins and NF�B p65 (Fig. 1D, 1st and 3rd panels). Taken
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together, these results indicate that an increased amount of
O-GlcNAcylation has an important role in hyperglycemia-
induced NF�B activation.

OGA Overexpression Blocks Hyperglycemia-Induced Reduction in
NF�B p65–I�B� Interactions and Hyperglycemia-Induced Nuclear
Translocation of NF�B p65. Generally, the phosphorylation, ubiq-
uitination, and proteolytic degradation of I�B releases NF�B,
which can then enter the nucleus, bind to DNA, and activate the
transcription of various genes (1–3). Therefore, we investigated
the expression level of I�B, the interaction between NF�B and
I�B, and the nuclear translocation of NF�B under high-glucose
conditions.

When VSMCs were exposed to high glucose for 24 h, the I�B�
expression level was similar to that found under normal-glucose

conditions (Fig. 2A, 1st panel). To investigate how high-glucose
conditions influence the interaction between I�B� and NF�B,
we analyzed the amount of I�B� that coimmunoprecipitated
with NF�B p65 and found that the interaction between NF�B
p65 and I�B� was decreased dramatically under high-glucose
conditions (Fig. 2 A, 2nd and 3rd panels).

We then investigated how OGA overexpression affects the
interaction between NF�B p65 and I�B�. Interestingly, OGA
overexpression inhibited the hyperglycemia-induced decrease in
NF�B p65–I�B� interactions but did not significantly affect total
I�B� levels (Fig. 2 A, 1st 3 panels).

Next, we investigated the nuclear translocation of NF�B p65
in cells under high-glucose conditions by using immunostaining
and immunoblotting. NF�B p65 was present primarily in the
cytosol of the cells under normal-glucose conditions but was
translocated to the nucleus under high-glucose conditions (Fig.
2B). Interestingly, the translocated NF�B p65 was found in the
cytosol when FLAG-tagged OGA was transfected into the cells
under high-glucose conditions (Fig. 2B). This observation was
confirmed by a Western blotting experiment using nuclear
extracts (Fig. 2C). Therefore, O-GlcNAcylation is involved in
hyperglycemia-induced NF�B activation by inducing a change in
NF�B p65–I�B� interactions, resulting in an increase in the
nuclear translocation of NF�B p65.

OGT Overexpression-Mediated Up-Regulation of O-GlcNAcylation In-
creases the Transcriptional Activity of NF�B. To investigate the
influence of increased intracellular O-GlcNAcylation on NF�B
activity, we transfected a vector expressing FLAG-tagged human
OGT into VSMCs. As expected, OGT overexpression increased
levels of total protein and NF�B p65 O-GlcNAcylation levels
(Fig. 3B, 1st and 3rd panels). Interestingly, OGT overexpression

Fig. 1. OGA overexpression-mediated decrease in O-GlcNAcylation sup-
presses hyperglycemia-induced NF�B activation. (A) Rat VSMCs were trans-
fected with the �B-luciferase reporter gene plasmid and then incubated for
24 h under normal (5 mM) or high-glucose (25 mM) conditions. The luciferase
activity was measured and normalized to �-galactosidase activity from a
cotransfected control plasmid. The data shown represent the mean � SD (n �
3); *, P � 0.01 by Student’s t test. (B) VSMCs were exposed to normal-glucose
(lanes 1 and 2) or high-glucose (lanes 3 and 4) levels for 24 h. The levels of
O-GlcNAc, NF�B p65, VCAM-1, OGT, and OGA were determined in total cell
lysates by immunoblotting (IB; 1st, 2nd, and 5th–7th panels, respectively).
NF�B p65 immunoprecipitates (IP) obtained from cellular extracts were ana-
lyzed by immunoblotting for O-GlcNAc and NF�B p65 (3rd and 4th panels,
respectively). Actin was included as a loading control (8th panel). (C) VSMCs
were cotransfected with the �B-luciferase reporter gene plasmid and the
plasmid expressing FLAG-tagged human OGA, and incubated for 24 h under
normal- or high-glucose conditions. The luciferase activity was measured and
normalized to �-galactosidase activity, and the data shown represent the
mean � SD (n � 3); *, P � 0.01 by Student’s t test. (D) VSMCs transfected with
empty vector (lanes 1 and 3) or that encoding FLAG-tagged OGA (lanes 2 and
4) were exposed to normal-glucose (lanes 1 and 2) or high-glucose (lanes 3
and 4) levels for 24 h. The levels of O-GlcNAc, NF�B p65, VCAM-1, OGT,
OGA, and FLAG-tagged OGA were determined in total cell lysates by
immunoblotting (1st, 2nd, and 5th– 8th panels, respectively). NF�B p65
immunoprecipitates obtained from the cellular extracts were analyzed by
immunoblotting for O-GlcNAc and NF�B p65 (3rd and 4th panels, respec-
tively). Actin was included as a loading control (9th panel).

Fig. 2. OGA overexpression inhibits the reduction in NF�B p65–I�B� inter-
actions and nuclear translocation of NF�B p65 under high-glucose conditions.
VSMCs were transfected with either vector or a plasmid expressing FLAG-
tagged OGA and exposed to high glucose for 24 h. (A) Immunoblotting (IB) for
NF�B p65, I�B�, and FLAG-tagged OGA was performed with an anti-NF�B p65
antibody, an anti-I�B� antibody, and an anti-FLAG antibody (1st, 5th, and 6th
panels, respectively). NF�B p65 immunoprecipitates (IP) were analyzed for
I�B� and NF�B p65 expression by using immunoblotting with the correspond-
ing antibodies (2nd and 4th panels, respectively). Actin was used as a loading
control (7th panel). (B) (Upper) VSMCs were immunostained by using anti-
bodies against NF�B p65 followed by anti-rabbit Ig covalently conjugated to
rhodamine (R) to determine the subcellular localization. (Lower) OGA over-
expression was detected with an anti-FLAG antibody conjugated to FITC. The
percentages of cells showing NF�B p65 localization are derived from at least
150 transfected cells with FLAG-OGA in microscopic fields. (C) Immunoblotting
of nuclear or cytosolic extracts of VSMCs by using antibodies against NF�B p65
was performed to determine NF�B p65 nuclear translocation (1st row). The
purity of the nuclear and cytosolic extracts was determined by immunoblot-
ting of histone H2A (nuclear fractions, 2nd row) and �-tubulin (cytosolic
fractions, 3rd row).
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also increased a �B-luciferase reporter gene expression (Fig. 3A)
and the expression of VCAM-1 (Fig. 3B, 8th panel). Further-
more, OGT overexpression inhibited NF�B p65–I�B� interac-
tions (Fig. 3B, 6th and 7th panels) and increased the nuclear
translocation of NF�B p65 (Fig. 3 C and D) in a manner similar
to that observed under hyperglycemia-induced NF�B activation.
Interestingly, O-GlcNAcylation of NF�B p65 and its transcrip-
tional activity are increased in STZ-induced diabetes in mice
[supporting information (SI) Fig. S1] (23). Therefore, these
results suggest that an increased amount of O-GlcNAcylation
up-regulates NF�B transcriptional activity, and O-GlcNAcyla-
tion-induced NF�B activation is closely involved in diabetes.

O-GlcNAcylation of NF�B p65 Occurs at Multiple Sites. To identify
O-GlcNAcylated sites on NF�B p65, we studied His-tagged
NF�B p65 C-terminal deletion mutants and site-directed sub-
stitution mutants of NF�B p65, in which Ser or Thr was changed
into Ala, expressed in NF�B p65 knockout murine embryo
fibroblasts (NF�B p65 KO MEFs) (24) (Fig. 4, 1st row). His-

NF�B p65 mutant proteins were immunoprecipitated from cells
overexpressing OGT with an anti-NF�B p65 antibody (Fig. 4,
2nd row), and O-GlcNAcylation levels were identified with an
anti-O-GlcNAc antibody (Fig. 4, 3rd row). The specificity of
O-GlcNAcylation on NF�B p65 mutant proteins was confirmed
by adding 10 mM GlcNAc during immunoblotting (Fig. 4, 4th
row). As expected, full-length His-NF�B p65 (1–551) was mod-
ified with O-GlcNAc, but the modification of truncated His-
NF�B p65 (1–304) was greatly reduced (Fig. 4, 3rd row).
Therefore, O-GlcNAcylation occurs between amino acids 305
and 551. To map the site further, we tested other truncated
constructs and found that O-GlcNAcylation occurred on His-
NF�B p65 (1–330), but the amount of modification was greatly
decreased on His-NF�B p65 (1–320) (Fig. 4, 3rd row). These
results show that O-GlcNAcylation occurs on Thr-322 of NF�B
p65 because this is the only possible modification site in NF�B
p65 between amino acids 321 and 330.

To test this further, we replaced Thr-322 with Ala and found
that the amount of O-GlcNAcylation of His-NF�B p65 (1–330)
was greatly decreased (Fig. 4, 3rd row). However, full-length
NF�B p65 T322A was modified still with O-GlcNAc (Fig. 4, 3rd
row). Therefore, more deletion constructs were made by using
the full-length His-NF�B p65 T322A to find additional O-
GlcNAcylation sites. From this investigation, we found that
His-NF�B p65 (1–360) T322A was largely modified by O-
GlcNAc compared with His-NF�B p65 (1–330) T322A and
His-NF�B p65 (1–350) T322A (Fig. 4, 3rd row). This result shows
that O-GlcNAcylation also occurs between amino acids 351 and
360 of NF�B p65. There are 5 Ser or Thr residues in this region:
Thr-352, Ser-353, Ser-354, Ser-356, and Thr-357. To define
further the modification site in 351–360 of NF�B p65, additional
Ser or Thr to Ala substitution mutations T352A, S353A, S354A,
S356A, and T357A were made in the His-NF�B p65 (1–360)
T322A protein. O-GlcNAcylation of His-NF�B p65 (1–360)
T322A/T352A was greatly decreased compared with the other
substitution mutants (Fig. 4, 3rd row). From these results, we
conclude that Thr-352 of NF�B p65 is modified with O-GlcNAc.
Additional O-GlcNAcylation sites other than Thr-322 and Thr-
352 may exist because O-GlcNAcylation of the full-length and
His-NF�B p65 (1–520) proteins occurs despite mutations in the
identified sites (T322A/T352A) (Fig. 4, 3rd row). Also, by using
mass spectrometry (25, 26), we identified that O-GlcNAcylation
occurs in peptide 337–360 of NF�B p65 (Fig. S2).

O-GlcNAcylation of NF�B p65 on Thr-352, but Not on Thr-322, Is
Important for O-GlcNAc-Induced NF�B Transcriptional Activation. We
then investigated the functional importance of O-GlcNAcylation
on both Thr-322 and Thr-352. We used Thr to Ala substitution
mutants of NF�B p65 expressed in NF�B p65 KO MEFs to rule
out endogenous NF�B p65 activity (24). Also, we used OGT
overexpression and treatment of cells with O-GlcNAcase inhib-
itors (STZ and PUGNAc) to increase NF�B p65 O-GlcNAcy-
lation. First, we investigated whether the mutations in NF�B p65
changed the transcriptional activity of NF�B by using the
luciferase assay. Plasmids encoding the His-tagged wild-type
NF�B p65 (His-NF�B p65 WT) or NF�B p65 containing
site-specific Thr to Ala substitution mutations (His-NF�B p65
T322A or T352A) were cotransfected with FLAG-tagged I�B�
into NF�B p65 KO MEFs. In the case of either His-NF�B p65
WT or T322A, O-GlcNAcylation increased �B-luciferase re-
porter gene expression, but in the case of T352A, it did not (Fig.
5A). Additionally, in an electrophoretic mobility-shift assay
(EMSA) experiment using nuclear extracts, O-GlcNAcylation
increased the DNA-binding affinity of both His-NF�B p65 WT
and T322A, but O-GlcNAc did not increase the DNA-binding
affinity of T352A (Fig. 5B).

Next, we examined the interactions between the His-NF�B
p65 mutants and FLAG-tagged I�B�. When NF�B p65 KO

Fig. 3. OGT overexpression-mediated increase in O-GlcNAcylation induces
the up-regulation of NF�B activity. (A) VSMCs were transfected with the
�B-luciferase reporter gene plasmid and the plasmid encoding FLAG-tagged
OGT and incubated for 24 h under normal conditions. The luciferase activity
was measured and normalized to �-galactosidase activity, and the data shown
represent the mean � SD (n � 3); *, P � 0.01 by Student’s t test. (B) VSMCs were
cotransfected with the plasmid encoding FLAG-tagged OGT (�) or vector
control (�) and incubated for 24 h under normal glucose conditions. Immu-
noblotting (IB) for O-GlcNAc, NF�B p65, I�B�, VCAM-1, OGT, FLAG-OGT, and
OGA was performed with the corresponding antibodies (1st, 2nd, 5th, and
8th–11th panels, respectively). NF�B p65 immunoprecipitates (IP) were ana-
lyzed for O-GlcNAc, NF�B p65, and I�B� (3rd, 4th, and 6th panels, respectively).
Actin was used as a loading control (12th panel). (C) (Upper) VSMCs were
immunostained by using antibodies against NF�B p65 to determine the sub-
cellular localization. (Lower) OGT overexpression was detected with an anti-
FLAG antibody conjugated to FITC. The percentages of cells showing NF�B p65
localization are derived from at least 150 transfected cells with FLAG-OGT in
microscopic fields. (D) Immunoblotting of nuclear or cytosolic extracts of
VSMCs by using antibodies against NF�B p65 was performed to determine
NF�B p65 nuclear translocation (1st and 4th panels) or total levels of NF�B p65
(7th panel). The purity of the nuclear and cytosolic extracts was determined by
immunoblotting of histone H2A (nuclear fractions, 2nd and 5th panels) and
�-tubulin (cytosolic fractions, 3rd and 6th panels).
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MEFs were cultured in the presence of STZ or PUGNAc or were
transfected with a plasmid expressing OGT, interactions be-
tween either NF�B p65 WT or T322A and FLAG-I�B� were
reduced dramatically, but those between His-NF�B p65 T352A
and FLAG-I�B� did not change to the same degree (Fig. 5C).
Under these conditions, the total levels of His-NF�B p65 and
FLAG-I�B� did not change, but O-GlcNAcylation on His-NF�B
p65 was increased dramatically after STZ or PUGNAc treatment
or upon OGT transfection (Fig. 5C).

We then studied the nuclear translocation of His-NF�B p65
and its mutated forms by using immunostaining. In the case of
either His-NF�B p65 WT or T322A, the proteins were translo-
cated into the nucleus under elevated O-GlcNAc conditions, but
in the case of His-NF�B p65 T352A, most of the protein was not
translocated (Fig. 5D). These results were confirmed with im-
munoblotting experiments by using an anti-NF�B p65 antibody
on nuclear extracts (Fig. 5E). Therefore, O-GlcNAcylation on
Thr-352, but not on Thr-322, can inhibit the interaction between
NF�B p65 and I�B�. Taken together, these results show that
inhibition of the interaction between NF�B p65 and I�B� caused
by O-GlcNAcylation on Thr-352 of NF�B p65 induces the
nuclear translocation of free NF�B p65, resulting in increased
transcriptional activity. Also, these results show that site-specific
O-GlcNAcylation can regulate NF�B activity in hyperglycemic
conditions caused by diabetes.

Discussion
Since the discovery of O-GlcNAcylation (27), it has been re-
ported that O-GlcNAcylation on Ser or Thr residues plays an
important role in the function of nucleocytoplasmic proteins
(16–18). For example, the activity of transcription factors such
as Sp-1 and FoxO1 can be modulated by O-GlcNAcylation
(28–31), and the stability and activity of p53 are also controlled
by O-GlcNAcylation (26). Although it is known that NF�B is
O-GlcNAcylated (12) and that this modification is important for
T and B lymphocyte activation (19), the specific sites of modi-
fication and the functions are not well understood. In this work,
we confirmed that the p65 subunit of NF�B is O-GlcNAcylated,
and we found that this modification plays an important role in

modulating hyperglycemia-induced NF�B activation. Further-
more, we also found that O-GlcNAcylation on Thr-352 of NF�B
p65 interrupts the interaction between NF�B and I�B�, which
increases the nuclear translocation of O-GlcNAcylated NF�B.
These observations suggest that O-GlcNAcylation plays an im-
portant role in protein–protein interactions. Finally, we showed
that an increased amount of O-GlcNAcylation on NF�B p65
under hyperglycemic conditions might explain, in part, the
transcriptional activation of NF�B in STZ-induced type 1 dia-
betic mice.

In our studies, increased levels of O-GlcNAcylated-NF�B p65
were observed in cells under high-glucose conditions and in cells
treated with STZ, PUGNAc, or overexpressing OGT, and the
interaction between NF�B p65 and I�B� dramatically decreased
under these conditions. These results could be caused by O-
GlcNAcylation on NF�B p50 and I�B�, but we could not find
any O-GlcNAcylation on these 2 proteins (data not shown).
Also, by studying Thr to Ala substitution mutants of NF�B p65,
we found that O-GlcNAcylation of Thr-352 played a crucial role
in the interaction between NF�B and I�B�.

As reported, some proteins such as p53 and murine estrogen
receptor � are reciprocally modified with O-GlcNAc and O-
phosphate (26, 32). Because NF�B p65 is also modified with
O-phosphate and this modification plays an important role in
modulating its activity (2), it is possible that the changes in
O-GlcNAcylation level affect not only its activity but also its
phosphorylation states. In our experiments, the phosphorylation
level on NF�B p65 did not change significantly even though its
O-GlcNAcylation level was largely increased by treatment with
STZ, PUGNAc, or OGT (Fig. S3). Also, there are no existing
reports of modification of the O-GlcNAcylation sites, Thr-322
and Thr-352, by O-phosphate, and we could not identify any
phosphorylation on these sites with MS analysis. Therefore,
these results indicate that O-GlcNAcylation on NF�B p65 is a
key regulator of NF�B activation, at least in hyper-O-
GlcNAcylated states such as hyperglycemic conditions.

By using C-terminal deletion and substitution mutants of
NF�B p65, we identified O-GlcNAcylation of amino acids
Thr-322 and Thr-352 of NF�B p65, and the modification of

Fig. 4. O-GlcNAcylation of NF�B p65 occurs at Thr-322 and Thr-352. O-GlcNAcylation of NF�B p65 C-terminal deletion mutant proteins and Ser or Thr to Ala
substitution mutant proteins. NF�B p65 KO MEFs were cotransfected with the vector alone or plasmids encoding the His-NF�B p65 deletion (lanes 1–12) or
substitution mutants (lanes 13–36), along with the plasmid encoding FLAG-tagged OGT for 12 h. His-NF�B p65 immunoprecipitates (2nd row) were obtained from
cellular extracts by using the anti-NF�B p65 polyclonal antibody and were analyzed by immunoblotting for O-GlcNAc (3rd row). Total levels of His-NF�B p65
mutants in these extracts were examined by using the anti-NF�B p65 monoclonal antibody (1st row), and the specificity of O-GlcNAcylation on NF�B p65 mutants
was confirmed by decreasing the modification via the addition of 10 mM GlcNAc (4th row).

17348 � www.pnas.org�cgi�doi�10.1073�pnas.0806198105 Yang et al.

http://www.pnas.org/cgi/data/0806198105/DCSupplemental/Supplemental_PDF#nameddest=SF3


Thr-352 was confirmed with MS analysis. By studying the
site-directed mutants, we found that O-GlcNAcylation of NF�B
p65 on Thr-352, but not on Thr-322, was important for the
transcriptional activation of NF�B through the inhibition of the
interaction between NF�B p65 and I�B�. However, it has been
reported that the binding domain, or Rel homology domain
(RHD), to I�B� exists in the 300 aa residues at the N terminus
of NF�B p65 (33, 34). Interestingly, although Thr-322 is closer
to the RHD than Thr-352, O-GlcNAcylation on Thr-352 of
NF�B p65 decreases the interaction with I�B�, but modification
on Thr-322 does not likely influence the interaction. It is possible
that the O-GlcNAcylation on Thr-352 is closer to the I�B�-
binding site than Thr-322 in a solution state. Therefore, future
studies of the 3-dimensional structure of NF�B p65 and the
modification-induced changes of the interaction with other
proteins would be beneficial.

According to previous reports, hyperglycemic conditions in-
duce NF�B activation via the degradation of I�B� in VSMCs,
and the degradation occurs in relatively quickly (�180 min) (22).
However, in our experiments, the nuclear localization of NF�B
was increased under high-glucose conditions at a relatively later
time point (�24 h), although the level of I�B� was similar to that

observed under normal glucose conditions in our experiments.
Moreover, hyperglycemia-induced NF�B activation was inhib-
ited by OGA overexpression-induced down-regulation of O-
GlcNAcylation. Therefore, this observation supports the possi-
bility that O-GlcNAcylation-induced inhibition of NF�B–I�B�
interactions is involved in the sustained activation of NF�B that
is associated with diabetes (35). Additionally, in the STZ-
induced diabetic mouse model, we found that NF�B p65 O-
GlcNAcylation largely increased, and less I�B� was bound to
NF�B p65 in each organ in diabetic mice compared with normal
mice. Furthermore, according to a previous report, NF�B
activation is involved in complications developed by type 1 or 2
diabetic patients (36). In fact, NF�B was activated dramatically
in peripheral blood cells isolated from diabetic nephropathy
patients (35). Therefore, O-GlcNAcylation on p65 of NF�B
appears to be related to its sustained activation in diabetic
conditions and the development of complications in diabetic
patients. It is likely that other factors also contribute to the
diabetes-associated NF�B activation.

In our proposed model, O-GlcNAcylation of the NF�B p65
subunit, particularly at Thr-352, induces NF�B nuclear translo-
cation through the inhibition of the interaction between NF�B

Fig. 5. Mutation of the NF�B p65 O-GlcNAcylation site at Thr-352 abrogates O-GlcNAc-induced NF�B transcriptional activation. (A) NF�B p65 KO MEFs were
transfected with empty vector, the �B-luciferase reporter gene plasmid, the plasmid encoding wild-type FLAG-tagged I�B�, and the WT or mutant NF�B p65
(T322A and T352A) His-tagged expression vectors. The transfected cells were then incubated for 12 h in the absence (control) or presence of STZ (2 mM), PUGNAc
(100 �M), or transfected with the plasmid expressing FLAG-tagged OGT as indicated, and the luciferase activity was measured and normalized to �-galactosidase
activity. The data shown represent the mean � SD (n � 3); *, P � 0.01 by Student’s t test. (B) NF�B p65 KO MEFs were cotransfected with empty vector (EV) or
plasmids encoding FLAG-tagged I�B�, and plasmids encoding the WT or mutant His-tagged NF�B p65 proteins were incubated for 12 h in the absence (control)
or presence of STZ or PUGNAc. Nuclear NF�B DNA-binding affinity was analyzed by EMSA using 32P-radiolabeled �B-enhancer probes. The supershift assay was
examined with antibodies against NF�B p65 (rabbit polyclonal). (C) Plasmids encoding His-NF�B p65 (WT or mutants) and FLAG-I�B� were cotransfected into NF�B
p65 KO MEFs. After a 12-h incubation in the absence (control) or presence of STZ, PUGNAc, or after transfection with the plasmid expressing FLAG-tagged OGT,
immunoblotting for NF�B p65, I�B�, VCAM-1, OGA, and OGA was performed by using the corresponding antibodies (1st, 2nd, and 7th–9th panels, respectively).
NF�B p65 WT and mutant proteins were also immunoprecipitated from cell lysates, and the immunoprecipitates were analyzed for I�B�, NF�B p65, and O-GlcNAc
by using immunoblotting (3rd, 4th, and 6th panels, respectively). Actin was used as a loading control (10th panel). (D) Plasmids encoding His-NF�B p65 (WT or
mutants) and FLAG-I�B� were cotransfected into NF�B p65 KO MEFs and incubated for 12 h in the absence (control) or presence of STZ or PUGNAc.
Immunostaining for NF�B p65 was performed to determine the subcellular localization of His-NF�B p65 WT and mutants. The table indicates percentage
localization in each compartment, and the percentages are derived from at least 200 transfected cells in microscopic fields. (E) NF�B p65 KO MEFs were
cotransfected with empty vector (EV) or plasmids containing His-NF�B p65 (WT or mutants) and FLAG-tagged I�B�, and incubated for 12 h in the presence or
absence of STZ, PUGNAc, or transfected with a plasmid expressing FLAG-tagged OGT. Immunoblotting of nuclear or cytosolic extracts by using antibodies against
NF�B p65 was performed to determine NF�B p65 nuclear translocation (1st row). The purity of the nuclear and cytosolic extracts was determined by
immunoblotting of histone H2A (nuclear fractions, 2nd row) and �-tubulin (cytosolic fractions, 3rd row).
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and I�B�, resulting in NF�B transcriptional activation (Fig. S4).
We observed that O-GlcNAcylation still occurred on NF�B p65
when Thr to Ala substitutions were present at Thr-322 and
Thr-352. Just as each phosphorylation of p65 of NF�B modulates
its activity (2, 37), it is possible that O-GlcNAcylation on other
sites also can modulate NF�B activity. Therefore, the effects of
O-GlcNAcylation at other sites on NF�B activity should be
investigated in the future.

Methods
Please see SI Methods for the following detailed methods: (i) cell culture,
DNA transfection, and plasmids; (ii) reagents and antibodies; (iii) immu-
noblotting, immunoprecipitation, and immunostaining; (iv) luciferase as-

says; (v) EMSA; (vi) mapping O-GlcNAc sites using ESI-MS/MS; and (vii)
diabetic mouse models.
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