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Abstract
Drug abuse researchers have noted striking similarities between behaviors elicited by Pavlovian sign-
tracking procedures and prominent symptoms of drug abuse. In Pavlovian sign-tracking procedures,
repeated paired presentations of a small object (conditioned stimulus, CS) with a reward
(unconditioned stimulus, US) elicits a conditioned response (CR) that typically consists of
approaching the CS, contacting the CS, and expressing consummatory responses at the CS. Sign-
tracking CR performance is poorly controlled and exhibits spontaneous recovery and long-term
retention, effects that resemble relapse. Sign-tracking resembles psychomotor activation, a syndrome
of behavioral responses evoked by addictive drugs, and the effects of sign-tracking on corticosterone
levels and activation of dopamine pathways resemble the neurobiological effects of abused drugs.
Finally, the neurobiological profile of individuals susceptible to sign-tracking resembles the
pathophysiological profile of vulnerability to drug abuse, and vulnerability to sign-tracking predicts
vulnerability to impulsive responding and alcohol self-administration. Implications of sign-tracking
for models of drug addiction are considered.
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1. Introduction
Drug abuse researchers have noted striking similarities between behaviors elicited by
Pavlovian sign-tracking (also called "autoshaping") procedures and prominent symptoms of
drug abuse (Tomie, 1995a, 1996; Newlin, 2002; Uslaner et al., 2006; Flagel et al., 2007a, b).
Moreover, key elements of sign-tracking procedures are likely experienced at the time that
drugs are consumed. The traditional Pavlovian sign-tracking procedure consists of the
presentation of a small object (conditioned stimulus, CS) that is followed by the response-
independent presentation of reward (unconditioned stimulus, US). Crucial to the understanding
of sign-tracking, the US is delivered regardless of what the subject does. Repeated CS-US
pairings lead to the acquisition of the Pavlovian sign-tracking CR, which is a complex sequence
of motor responses directed at the CS (Brown and Jenkins, 1968; for review, see Tomie et al.,
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1989). Thus, if presentation of a lever CS precedes the response-independent delivery of a food
pellet US, rats approach and contact the lever CS, often grasping, licking, and gnawing the
lever, as though it were food itself (Davey and Cleland, 1982; Tomie et al., 1989).

Sign-tracking has long been associated with seemingly maladaptive patterns of behavior that
are elicited by and directed towards reward-related cues. Remarkably, these behaviors persist
even though they serve only to delay or prevent the delivery of the reward, indicating that the
sign-tracking CR performance is not under strict voluntary control. In their book, "The
Misbehavior of Organisms”, Keller and Marian Breland (1961) described how pairings of an
object with reward lead to the development of bizarre and arguably compulsive responding.
In a typical example, raccoons were trained to pick up wooden coins and deposit them through
a slot into a metal box for a small morsel of crayfish, a highly prized food reward. Though
initially things went well, with further training the raccoons began to experience problems.
They were unable to let go of the coins, spending several minutes handling them with their
forepaws, and dipping the coins into the slot only to pull them out again. In the end, the coins
were licked, chewed, scratched and washed, but rarely deposited. This was not the distraction
of an animal that has lost interest in eating, because making the raccoon hungrier merely made
matters worse. Similar "misbehavior" has been described in squirrel monkeys, pigs, chickens,
turkeys, otters, porpoises, and whales (Breland and Breland, 1961, 1966). Numerous
investigators have now provided rigorous experimental evidence that sign-tracking CR
performance is difficult to control or suppress (Williams and Williams, 1969; Hearst and
Jenkins, 1974; Atnip, 1977; Schwartz and Gamzu, 1977; Holland, 1979; Davey et al., 1981;
Tomie, 1995b; Killeen, 2003; for review, see Locurto, 1981).

Both sign-tracking and drug abuse may be described as poorly controlled consummatory-like
responding that is elicited by and directed at a small object CS that has been repeatedly paired
with reward US. In humans, for example, the alcohol abuser exhibits poorly controlled drinking
responses that are directed at the cocktail glass CS that has been repeatedly paired with alcohol
US, or the cocaine abuser exhibits poorly controlled sniffing responses that are directed at the
coke tooter CS that has been repeatedly paired with cocaine US. This section presents evidence
of additional similarities in the characteristics of behaviors exhibited by drug abusers that are
induced by experience with sign-tracking procedures.

2. Behavioral characteristics
2.1. Relapse-like effects

After sign-tracking CR performance has been acquired, the behavior is not easily forgotten or
eliminated, but rather appears to be quite durable and resilient. Evidence that sign-tracking CR
performance is well retained is provided by reports that following its acquisition, the mere
passing of time without additional training has little or no effect on the performance of sign-
tracking CRs (Carr and Murtazina, 1994; Meneses et al., 2004; Tomie et al., 2002c, 2004a).
For example, sign-tracking CR performance of alcohol drinking in rats is virtually unchanged
following a 27-day retention interval (Tomie et al., 2002c) or following a 41-day retention
interval (Tomie et al., 2004a). Maintenance of sign-tracking CR performance of sipper CS-
directed alcohol drinking over time, without appreciable decay or deterioration in the
performance, is similar to relapse in humans and reinstatement of drug-taking in animals
(Kruzich et al., 2001; Stewart, 2004; for review of reinstatement as a model of relapse, see
Epstein et al., 2006; Fattore et al., 2007). In each of these cases there is little evidence of loss
of responding during the retention interval, even though responding is not practiced during this
extended period of time.

Further evidence of the resilience of sign-tracking CRs is provided by reports of spontaneous
recovery and rapid reaquisition of sign-tracking CR performance. Spontaneous recovery is
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observed following a rest interval and after sign-tracking CR performance has been thoroughly
eliminated by extended experience with CS-only extinction procedures, during which the
subject receives presentations of the CS but no US (Tomie et al., 1980, 1981; Robbins, 1990;
Rescorla, 2004, 2005, 2006). Rapid reacquisition is observed following extensive training with
response elimination procedures, when responding is rapidly reinstated by simply pairing the
CS with the US (Tomie et al., 1980; Tomie and Kruse, 1980; Tomie et al., 1981). Relapse to
drug-taking resembles spontaneous recovery and rapid reacquisition of sign-tracking CR
performance because even after drug-taking has been thoroughly eliminated, mere exposure
to the drug-paired cue or a brief lapse in abstinence, are sufficient to recover pre-elimination
levels of drug-taking.

Drug abuse researchers have successfully employed Pavlovian CS-only extinction procedures
to extinguish CRs indicative of reactivity to drug cues (for reviews see Tomie, 1995a, 1996).
Nevertheless, there are many reports of spontaneous relapse of drug-taking, even though drug
cue reactivity had previously been significantly reduced or eliminated by drug cue extinction
procedures (Wikler, 1973; Monti et al., 2001; Junghanns et al., 2005; Loeber et al.., 2006), and
Hammersley (1992) has attributed relapse to drug-taking following cue extinction therapy to
spontaneous recovery. A role for spontaneous recovery of sign-tracking in relapse to drug-
taking is suggested by reports that alcohol drinking glassware provides cues eliciting alcohol-
related physiological responses (Carter and Tiffany, 1999) and subjective cravings for alcohol
(Cooney et al., 1983; Fox, 2007), and the persistence of these cue-elicited responses contribute
to relapse (Marlatt, 1990; Rohsenow et al., 1994; Sinha and Li, 2007).

Sign-tracking is a consummatory-like response directed at a small object CS paired with reward
US, and because this resembles drug-taking, the analogies to relapse provided by long-term
retention, spontaneous recovery, and rapid reacquisition seem particularly pertinent. It is,
nevertheless, appropriate to acknowledge that addiction theorists have long noted, and prior to
the discovery of sign-tracking, that the remarkable durability and persistence of Pavlovian CRs
was addiction-like (Wikler, 1967). It is not surprising, therefore that several recent prominent
theoretical formulations of addiction and relapse have explicitly emphasized the role of
Pavlovian processes in general (Stewart, et al., 1984; Siegel, 1989; Robbins and Everitt,
1999; Robinson and Berridge, 1993; Corbit and Janak, 2007) and sign-tracking in particular
(Tomie, 1995a, 1996; Newlin, 2002; Uslaner et al., 2006; Flagel et al., 2007a, b; Cunningham
and Patel, 2007).

2.2. Vulnerability to impulsivity
Impulsivity is typically measured using delay discounting procedures, and in observed when
human beings (Bickel and Marsch, 2001) or animals (Charrier and Thiebot, 1996; Evenden
and Ryan, 1996) choose smaller but immediate rewards over larger but delayed rewards.
Impulsivity is related to drug addiction by studies reporting that rats that are intolerant of reward
delay subsequently acquire cocaine self-administration more rapidly and at lower doses (Perry
et al., 2005) and also self-administer more alcohol (Poulos et al., 1995, 1998) than do delay-
tolerant rats (for review, see Olmstead, 2006). In addition, Lewis rats, as compared to Fischer
rats, exhibit more intolerance to reward delay (Anderson and Woolverton, 2005) and more
readily self-administer drugs of abuse, including cocaine (Kosten et al., 1997; Haile and
Kosten, 2001), morphine (Ambrosio et al., 1995; Martin et al., 1999), and alcohol (Suzuki et
al., 1988). In humans, the trait of impulsivity has been proposed to predispose vulnerability to
drug abuse (Zuckerman, 1993; Jentsch and Taylor, 1999; Svrakic et al., 1999; Volkow and
Fowler, 2000; Kreek et al., 2005) and there is evidence that impulsivity, as measured by self-
reports in humans, is higher in alcohol-dependent patients (Patton, et al., 1995; Chen et al.,
2007), and in drug abusers (Allen et al., 1998; Fillmore and Rush, 2002), while recent evidence
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implicates impulsivity is an important feature of early-onset alcoholism (Dom et al., 2006a,
b).

Sign-tracking CR performance has been linked to impulsivity, as measured by delay
discounting, in the same way that impulsive responding has been linked to alcohol drinking.
The link between sign-tracking and impulsivity is based on the finding that individual
differences in sign-tracking predict individual differences in impulsivity. Subject-to-subject
variability in sign-tracking CR performance can be extreme, with large and reliable between-
subject differences in sign-tracking CR performance reported in a number of species, including
ring doves (Balsam, 1985), pigeons (Tomie, 1981), and rats (Locurto, 1981; Tomie et al.,
1998a, b, 2000; Flagel et al., 2007a, b). Individual differences in sign-tracking CR performance
were linked to individual differences in impulsivity, as measured by the tendency to choose
small immediate rewards rather than larger delayed rewards (Tomie et al., 1998a). In that study,
rats that performed more lever-press sign-tracking CRs were more impulsive, as measured by
intolerance of reward delay. A similar type of within-subjects correlation between sign-
tracking and delay discounting has been reported in a study of the effects of lesions of the
subthalamic nucleus, which decreased impulsive choice and impaired sign-tracking CR
acquisition (Winstanley, et al., 2005). Individual differences in impulsivity may also be
substantial and predictive of between-subjects differences in alcohol drinking (Poulos et al.,
1995, 1998). Poulos and his associates have shown that rats, exhibiting intolerance to reward
delay by choosing small immediate rewards over larger delayed rewards, subsequently
consumed more alcohol than rats that were less delay-intolerant. Their work reveals that
impulsivity and alcohol drinking are linked phenomena (Poulos et al., 1997), and provides
support for the hypothesis that those individuals that perform more sign-tracking CRs tend to
be more impulsive and drink more alcohol.

Rat strains that exhibit more impulsive responding as measured by intolerance to reward delay
or delay discounting also perform more sign-tracking CRs. For example, Lewis rats exhibit
more intolerance to reward delay than Fischer rats (Anderson and Woolverton, 2005), and
Lewis rats also exhibit more rapid acquisition and higher asymptotic levels of sign-tracking
CR performance than Fischer rats (Kearns et al., 2006). Intolerance to reward delay or delay
discounting is one of several indices of impulsivity, and there is evidence that sign-tracking
resembles impulsive responding on other behavioral tasks as well (Monterrosso and Ainslie,
1999). For example, depletions of forebrain serotonin in rats increased the number of sign-
tracking approach responses to a CS paired with food and also increased impulsive responding
as measured by conditioned locomotor activity to food (Winstanley et al., 2004).

2.3. Psychomotor sensitization
Behavioral sensitization is defined as an increase in the locomotor-stimulating effect of a drug
after repeated administration (Robinson and Becker, 1986) and is proposed to be a determinant
factor in addictive behavior in rats (Robinson, 1984; Salamone, 1992; Robinson and Berridge,
1993; Stewart, 2000, 2003, 2004) and in humans (Newlin and Thomson, 1991; Hunt and Lands,
1992). In rats, sensitization has been shown with cocaine, morphine, and alcohol, and cross-
sensitization has been shown between alcohol and morphine (Nesby et al., 1997) and between
abused drugs and stress (Sorg and Kalivas, 1991; Tidey and Miczek, 1997; Araujo, et al.,
2003). Repeated activation of the mesolimbic dopamine system may mediate the development
of behavioral sensitization to psychomotor stimulants (Vezina and Stewart, 1990; Robinson
and Berridge, 1993) and to alcohol (Nesby et al., 1997). Alcohol-induced behavioral
sensitization has been shown in human beings (Zack and Vogel-Sprott, 1995), some strains of
mice (Masur et al., 1986; Phillips et al., 1997) and in some strains of outbred rats (Hoshaw and
Lewis, 2001; Correa et al., 2003); however, the conditions conducive to the induction or
expression of behavioral sensitization of locomotor activation in rats remain unclear.
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Sensitization of psychomotor activation has been more reliably reported with drugs other than
alcohol, including cocaine (Pecins-Thompson and Peris, 1993; Mattingly et al., 1994; Schenk
and Partridge, 2000; Zavala et al., 2000; Erb et al., 2003; Haile et al., 2003; Matell et al.,
2004), amphetamine (Robinson, 1984; Paulson and Robinson, 1991; Serwatkiewicz et al.,
2000; Vezina and Queen, 2000; Crombag et al., 2001; Fukami et al., 2004), and opiates
(Balcells-Olivero and Vezina, 1997; Ojanen et al., 2005).

Sign-tracking CR performance and sensitization of psychomotor activation are similar in the
topographical forms of the behaviors expressed. Sign-tracking CRs (Tomie et al., 1989) and
the psychomotor activation syndrome (Wise and Bozarth, 1987; Piazza and Le Moal, 1996)
are skeletal-motor responses, including actions of forward locomotion and directed approach,
that include contact and manipulation responses, culminating in consummatory-like responses,
including gnawing, licking, sniffing, chewing, and swallowing. Conditions conducive to sign-
tracking of alcohol drinking and to alcohol-induced sensitization of psychomotor activation
share a number of elements. For example, both are enhanced by exposures to alcohol that are
repeated and spaced. In sign-tracking procedures, alcohol drinking is enhanced by Intermittent
Sipper procedures and longer intertrial interval (ITI) durations (Tomie et al., 2003c, Exp. 2;
2005a, 2006b). These are not unlike procedures most conducive to the induction of the
psychomotor activating effects of alcohol, where repeated and spaced injections of alcohol
(i.e., intermittent schedules of alcohol exposures), induce stronger psychomotor activating
effects than in controls provided with massed exposures to alcohol (Pecins-Thompson and
Peris, 1993; Lessov and Phillips, 1998; Quadros et al., 2003). Similarly, other abused drugs
induce psychomotor activation effects (Robinson, 1984; Wise and Bozarth, 1987; Wise and
Rompre, 1989) that are exaggerated by repeated and spaced exposures to the drug, relative to
controls receiving fewer but massed exposure to similar amounts of the drug (Salamone,
1992; Stewart, 2003).

Sign-tracking of alcohol drinking and sensitization of alcohol's psychomotor activating effects
are similar in that both are behavioral models of addiction that emphasize similar properties
of the inducing experience. They do, however, differ in a number of important ways. For
example, sign-tracking procedures provide for oral alcohol drinking of small amounts of
alcohol per exposure, with relatively short inter-exposure intervals. In contrast, sensitization
procedures provide for systemic or intraventricular injections of larger doses of alcohol per
exposure, with longer inter-exposure intervals. Despite these dosing differences, the ratio of
the duration of the inter-exposure interval to the amount of drug delivered per exposure is
similar for both sign-tracking and sensitization procedures. Furthermore, both procedures
demonstrate the direct relationship between the duration of the inter-exposure interval and the
amount of sign-tracking or sensitization observed.

Recently additional relationships between sign-tracking and psychomotor sensitization have
been reported. For example, Flagel and her associates have reported that those rats that develop
sign-tracking CR performance show enhanced propensity to exhibit cocaine-induced
psychomotor sensitization, relative to goal-tracking rats that moved to the location of the food
receptacle rather than to the lever CS (Flagel et al., 2007b). They suggested that sign-trackers
are susceptible to a form of cocaine-induced plasticity that may contribute to the development
of addiction. In support of this hypothesis, Flagel and her associates have reported that sign-
trackers exhibited higher levels of D1 mRNA in NAC core relative to goal-trackers after the
first day of training with sign-tracking procedures (Flagel, et al., 2007a), but after 5 days of
training, sign-trackers showed blunted dopaminergic expression patterns relative to goal-
trackers, including lower levels of tyrosine hydroxylase, dopamine transporter, and dopamine
D2 mRNA relative to goal-trackers (Flagel et al., 2007a). These data are consistent with the
hypothesis that behavioral changes induced by sign-tracking procedures are related to changes
in the dopamine system, and in a manner noted by addiction researchers. For example, lower
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levels of D2 receptor have been associated with increased craving (Heinz et al., 2004), and
increased reports of "drug-liking" in humans (Volkow et al., 2002). Finally, Flagel and her
associates (unpublished data) have noted that rats selectively bred for high responsivity to
environmental novelty stress are almost exclusively sign-trackers in food US procedures and
rats selectively bred for low responsivity to environmental novelty stress exhibit almost
exclusively goal-tracking, moving to the location of the food receptacle rather than to the lever
CS. When these rats are employed in sign-tracking procedures employing cocaine US, the same
results are observed. The high-responders to novelty all acquire sign-tracking CR performance,
while none of the low responders do so. Thus, the high responsivity phenotype exhibits sign-
tracking in procedures employing either food US or cocaine US, while the low responsivity
phenotype does not exhibit sign-tracking to signals for either food US or cocaine US.

2.4. Sign-Tracking induced by abused drugs
Our hypothesis is that sign-tracking CR performance is induced by experience with repeated
pairings of an object CS with drug reward US. There is evidence of precisely this effect in
animal studies of drug abuse. The most compelling evidence of this is provided by Uslaner et
al. (2006), who used the insertion of a retractable lever as CS and intravenous administration
of cocaine as US. They reported that when lever CS and cocaine US were paired in a sign-
tracking procedure, rats approached and sniffed the lever CS more than pseudoconditioning
controls that received the lever CS and cocaine US in an unpaired fashion (Uslaner, et al.,
2006). Other drug abuse investigators have employed modified sign-tracking procedures to
induce lever-pressing of drug self-administration in rats. For example, Carroll and her
associates have reported that pairings of the insertion of a lever CS with intravenous
administration of drug reward US induced the automatic "shaping" of lever-pressing for drug
self-administration in rats. Procedures of this sort have been employed to induce reliable lever-
pressing for the self-administration of the cocaine US (Carroll and Lac, 1993, 1997, 1998;
Specker et al., 1994; Gahtan et al., 1996; Lynch and Carroll, 1999; Lynch et al., 2001; Campbell
and Carroll, 2001; Campbell et al., 2002; Carroll et al., 2002; Roth et al., 2002; see also Panlilio
et al., 1996; Weiss et al., 2003 c.f., Di Ciano and Everitt, 2003; Kearns and Weiss, 2004), orthe
self-administration of the amphetamine US (Carroll and Lac, 1997) or the self-administration
of the heroin US (Lynch and Carroll, 1999; Carroll et al., 2002; Roth et al., 2002). In all of
these studies, rats developed increasingly frequent lever-pressing as a function of experience
with repeated pairings of lever CS with rewarding drug US. The role of sign-tracking, however,
remains unclear, because when lever-pressing occurred, the drug reward US was administered
more quickly than when lever-pressing was not observed. Thus, the drug reward US was not
presented independently of responding, as is the case during sign-tracking procedures. An
additional problem is that none of these studies included controls for pseudoconditioning,
leaving open the possibility that the development of lever-pressing was due to mere experience
with repeated presentations of the lever CS per se or to repeated presentations of the drug
reward US per se.

Pairing a visual CS with alcohol US induces sign-tracking CR performance in rats. For
example, after provided rats with pairings of a light CS with alcohol US, Krank (2003) observed
that they approached the location of the light CS, resulting in increases or decreases in operant
lever-pressing for alcohol reinforcement, when the light CS was located either near or far away
from the operant lever, respectively. Sign-tracking using alcohol US has also been reported by
Cunningham and Patel (2007), who reported that only three pairings of a star CS with alcohol
US were required to induce reliable Pavlovian conditioned approach to the star CS as revealed
by place conditioning procedures in mice. Tomie and his associates have employed sign-
tracking procedures consisting of alcohol sipper CS paired with food US to induce alcohol
sipper CS-directed consummatory responding, resulting in alcohol drinking (Tomie et al.,
2002a Exps 1 and 2, 2002c, 2003c Exps 1 and 2, 2004a, 2005b, 2006b). Similar procedures
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have been employed with chlordiazepoxide in the sipper CS to induce sign-tracking of sipper
CS-directed chloridazepoxide drinking in rats (Tomie et al., 2004e). Most significantly, there
is evidence that the drinking of alcohol from the sipper CS, an action that provides the rat with
pairings of sipper CS with alcohol US, induces a pattern of alcohol drinking that is indicative
of sign-tracking of sipper CS-directed alcohol drinking in rats (Tomie et al., 2002c, 2003c Exps
1 and 2; Tomie et al., 2005a, 2006b Exps 1 and 2; see also Tomie et al., 2006a). Thus, the
hypothesis that sign-tracking CR performance develops as a function of repeated pairings of
an object CS with drug reward US is well supported. Our view is that repeated pairings of an
object CS with drug reward US are experienced by humans during the drug-taking sequence,
and this leads to the development of sign-tracking CR performance of reflexive and poorly
controlled drug-taking.

3. Neurobiological substrates
3.1. Stress-related effects

Stressful events play a prominent role in alcohol and drug abuse in humans (Fouquereau et al.,
2003; Goeders, 2004; Kreek et al., 2005) and animals (Stewart, 2003; Capriles et al., 2003;
Kabbaj, et al., 2004; Mantsch and Katz, 2007). Experience with stressful events provokes
neuroendocrine responses as well as changes in neurotransmitter systems (Koob, 2006), and
drug abuse is related to neurobiological responses to stress, including the release of the
glucocorticoid stress hormone corticosterone (Martinelli and Piazza, 2002; Yang, et al.,
2004; Le et al., 2005), and changes in monoamine neurotransmitter activity (Heinz et al.,
2002; Kalivas and McFarland, 2003; Zhang and Kosten, 2005; Salomon et al., 2006; Sorge
and Stewart, 2005). This section reviews evidence that sign-tracking procedures induce
changes in corticosterone levels and monoamine neurotransmitters that resemble the stress-
related responses known to accompany alcohol and drug abuse.

3.1.1. Corticosterone—There are relationships between corticosterone and sign-tracking
in many animal studies that resemble those observed between corticosterone and the self-
administration of abused drugs. For example, addiction researchers have noted that higher
plasma corticosterone levels are associated with higher levels of alcohol intake (Morin and
Forger, 1982; Fahlke et al. 1994a, b; Hansen et al., 1995; Prasad and Prasad, 1995; Higley and
Linnoila, 1997), and with more self-administration of other abused drugs (Wise and Bozarth,
1987; Robinson and Berridge, 1993; Piazza and Le Moal, 1996; Koob, 1999; Stewart, 2003).
A similar type of relationship between plasma corticosterone levels and sign-tracking has been
documented in several ways. For example, pretreatment with ketoconazole, a corticosterone
synthesis inhibitor, decreased the rate of acquisition of sign-tracking CR performance of
cocaine self-administration in rats (Campbell and Carroll, 2001), and adrenalectomy reduced
sign-tracking CR performance in rats that was previously established by pairings of lever CS
with food US (Thomas and Papini, 2001).

There is also evidence that mere experience with sign-tracking procedures induces
corticosterone release in rats (Tomie et al., 2002b Exp 1, 2003a, 2004b), and this finding is
particularly intriguing in view of the postulated relationships between sign-tracking and drug-
taking and between corticosterone and drug-taking. In these studies, rats trained with sign-
tracking procedures that consisted of pairings of lever CS with food US showed higher post-
session plasma corticosterone levels than controls trained with lever CS and food US presented
randomly with respect to one another (Tomie et al., 2002b Exp 1, 2003a, 2004b). For example,
in a number of studies, plasma samples collected immediately following the 20th daily sign-
tracking session revealed higher corticosterone levels in the Paired group relative to the
Random control group (Tomie et al., 2002b Exp 1, 2003a, 2004b). Most significantly, group
differences in plasma corticosterone levels in rats were also observed in plasma samples
collected immediately following the first sign-tracking session (Tomie et al., 2002b Exp 2),
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which preceded the acquisition of sign-tracking lever-press CR performance in the Paired
group. This indicates that the effect of training with sign-tracking procedures on plasma
corticosterone levels is not a by-product of group differences in lever-pressing frequency.
Corticosterone release is induced by experience with lever CS - food US paired sign-tracking
procedures and is evident prior to the expression of sign-tracking CR performance. One
possibility is that corticosterone induces a state of arousal (Merali et al., 1998; see also Killeen
et al., 1978) that is conducive to the expression of sign-tracking CR performance (Tomie et
al., 2002b, 2004b); moreover, higher levels of corticosterone are related to higher levels of
alcohol drinking (Fahlke et al, 1994a, b) and the tendency to self-administer abused drugs
(Piazza et al., 1989; Rouge-Pont et al., 1993; Lucas et al., 1998; for reviews see Piazza and Le
Moal, 1996; Koob, 1999).

The performance-enhancing effects of corticosterone on sign-tracking CR performance are
also revealed by the relationship between individual differences in corticosterone release and
sign-tracking CR performance. Rats that showed higher novelty stress-induced corticosterone
release acquired the lever-press sign-tracking CR more rapidly and maintained higher
asymptotic levels of lever-press sign-tracking CR performance (Tomie et al., 2000). The effect
of vulnerability to novelty stress-induced corticosterone release on sign-tracking CR
performance resembles this effect on drug self-administration (Piazza and Le Moal, 1996).
Corticosterone is thought to activate mesolimbic dopamine neurons. Between-subjects
differences in sign-tracking CR performance (Tomie et al., 2000) and amphetamine self-
administration (Piazza and Le Moal, 1996) are positively correlated with indices of increased
dopaminergic function (i.e., elevations in accumbal levels of dopamine (DA) and DOPAC).
This pattern of results suggests that corticosterone release, postulated to activate mesolimbic
DA neurotransmission producing psychomotor activation (Robinson and Berridge, 1993; Wise
and Bozarth, 1987), may also be involved in promoting the expression of sign-tracking CRs
and drug-taking responses. The possibility that elevated plasma corticosterone levels may
contribute to sign-tracking CR expression as well as to vulnerability to drug abuse adds to the
growing list of common features shared by both (Tomie 1995a, 1996, 2001). The
pathophysiological profiles of vulnerability to sign-tracking and drug abuse are considered in
more detail in Section 3.3.

3.1.2. Monoamines—Additional stress-like effects induced by sign-tracking procedures are
the changes associated with monoamine neurotransmitter levels and monoamine
neurotransmitter turnover in forebrain areas. In addition to the release of corticosterone, sign-
tracking procedures induce stress-like changes in forebrain norepinephrine and serotonin. For
example, sign-tracking procedures induce changes in central monoamine systems that resemble
stress-induced sensitization effects. Paired sign-tracking procedures induce higher levels of
norepinephrine (NE) and serotonin (5-HT) in the prefrontal cortex (PFC) but not in the striatum
relative to Random controls (Tomie et al., 2004b), and this pattern of results bears a striking
similarity to the effects of stressful events, like electric shock (Adell et al., 1988; Yoshioka et
al., 1995; Koob, 1999). Stress may play a crucial role in drug addiction, by sensitizing crucial
neuronal substrates to the activating effects of abused drugs (Piazza and Le Moal, 1996; Koob,
1999; Stewart, 2003); therefore, these stress-like changes induced by experience with CS-US
paired sign-tracking procedures may also serve to accentuate the activating effects of abused
drugs.

A stress-like effect on 5-HT receptor binding has also been observed in sign-tracking (Tomie
et al., 2003a; Meneses et al., 2004). The relationship between stress and reduced 5-HT1A
receptor function has been documented in several ways. Chronic mild stress reduced
adrenocorticotrophic hormone responses to 8-OH-DPAT, a 5-HT1A receptor agonist (Grippo
et al., 2005). Stress reduces 5-HT1A messenger RNA gene expression in hippocampus in rats
(Lopez et al., 1999) and 5-HT1A receptor binding, as measured by autoradiography, in the
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hippocampus in rats and humans (Lopez et al., 1998). Sign-tracking investigators have reported
that corticosterone levels are elevated by omission procedures providing for cancellation of
the food US on trials that the rat performs the lever-press sign-tracking CR, relative to non-
omission controls (Tomie et al., 2003a), suggesting that the omission procedure is stressful.
Autoradiography revealed lower post-synaptic 5-HT1A receptor binding in the omission group
than in the non-omission controls, in several brain areas, including frontal cortex, septum and
caudate putamen (Tomie et al., 2003a). More recently, it has been reported that 3H-8-OH-
DPAT-labeled binding of 5-HT1A receptors was lower in septum and caudate putamen in rats
receiving lever CS - food US sign-tracking procedures than in untrained controls (Meneses et
al., 2004). Several studies suggest 5-HT1A receptors may mediate drug-taking responses in
rats. For example, ipsapirone, a 5-HT1A partial agonist reduced ethanol intake in rats (for
review, see Schreiber et al., 1999), while NAN-190, a selective 5-HT1A receptor antagonist
decreased intravenous self-administration of methamphetamine in rats (Novakoval et al.,
2000). Furthermore, it is known that repeated administration of alcohol (Rothman et al.,
2000; Chastain, 2006) or psychomotor stimulants (Weiss et al., 1992; Levy et al., 1994;
Rothman et al., 2000; Marshall et al., 2007) result in synaptic deficits in 5-HT. Thus, these
stress-like changes in corticosterone and monoamine levels and 5-HT receptor binding induced
by sign-tracking are not unlike the profile of neurobiological features associated with drug
abuse (Piazza and Le Moal, 1996; Marinelli and Piazza, 2002; Stewart, 2003).

3.2. Dopamine pathways
3.2.1. Nucleus accumbens—The addictive properties of various drugs depend on the
mesocorticolimbic DA system (Wise and Bozarth, 1985; Koob and Bloom, 1988; Carelli,
2002; Saal et al., 2003) and its projection to the nucleus accumbens (NAC) from the ventral
tegmental area (VTA) in the brainstem (Zito et al., 1985; Wise and Rompre, 1989; Everitt et
al., 2001; Marinelli and Piazza, 2002; Ghitza et al., 2004). The NAC has been shown to be
crucial for the development of Pavlovian conditioned responses to natural rewards (for review
see Day and Carelli, 2007), abused drugs (Ghitza et al., 2003; Cardinal and Everitt, 2004; Di
Chiara et al., 2004), and to sign-tracking CR performance (Parkinson et al., 1999, 2000,
2002; Di Ciano et al., 2001; Dalley et al., 2002; Cardinal et al., 2002; Everitt and Robbins,
2005).

Lesions of the NAC disrupt the acquisition of sign-tracking CR performance in rats (Parkinson
et al., 2000; Di Ciano et al., 2001; Parkinson et al., 2002; Dalley et al., 2002; Cardinal et al.,
2002) and the maintenance of performance of previously learned sign-tracking CRs (Parkinson
et al., 1999; Parkinson et al., 2002). For example, in rats, DA-depleting lesions of the NAC,
induced by bilateral infusions of 6-hydroxydopamine directly into the NAC, impaired the
acquisition of sign-tracking of light CS-directed contact CRs during training with light CS -
food US sign-tracking procedures (Dalley et al., 2002).

3.2.1.1. Nucleus accumbens core: The NAC is a heterogeneous structure that can be further
divided into anatomically and functionally distinct core and shell subregions (Zahm and Brog,
1992; Zahm, 2000). Selective excitotoxic lesions of the core of the NAC during training
impaired the acquisition of sign-tracking CR performance in rats (Parkinson et al., 2000).
Lesioned rats failed to approach the light CS+ that had been paired with food US on more trials
than sham controls, and lesioned rats failed to acquire a discriminative sign-tracking task, even
though CS+ was paired with food and CS− was not (Cardinal et al., 2002). On the other hand,
unilateral lesions of the medial PFC and the medial caudate-putamen produced attentional
deficits, but had no effect on the acquisition of Pavlovian sign-tracking CR performance in rats
(Christakou et al., 2005).
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The involvement of the NAC core in Pavlovian sign-tracking has also been implicated by the
deleterious effects on discriminative Pavlovian sign-tracking CR performance following
infusions of glutamatergic or dopaminergic receptor antagonists (Di Ciano et al., 2001).
Infusions of NMDA (N-methyl-D-aspartic acid) or the dopamine D1/D2 receptor antagonist
alpha-flupenthixol into the NAC core during training impaired the acquisition of sign-tracking
CR performance in rats. These rats performed fewer conditioned approach responses directed
at the lever CS+ that was paired with food US, relative to vehicle controls, and, in addition,
failed to discriminate between CS+ and CS−, even though CS− was not paired with food US
(Di Ciano et al., 2001).

3.2.1.2. Nucleus accumbens shell: There is evidence that the shell of the NAC is also involved
in the Pavlovian conditioning of appetitive approach CRs. Rats acquired a conditioned
approach response to a compound light/auditory CS paired with sucrose US more rapidly when
d-amphetamine was infused post-session into the shell of the NAC than into the core or dorsal
striatum (Phillips, et al., 2003a). This finding is in agreement with immunohistochemical
evidence showing that Pavlovian approach conditioning is associated with activation of
dopaminergic terminals specifically within the shell of the NAC (Phillips et al., 2003b, c). DA
activity in NAC shell and core was investigated immunohistochemically using antibodies
raised against glutaraldehyde-conjugated DA (Phillips et al., 2003b). During acquisition of
Pavlovian conditioned approach to a visual CS that preceded sucrose US, DA activity in NAC
shell was more elevated than in NAC core during the initial stages of CR acquisition, and
neither area was responsive during asymptotic CR performance (Phillips et al., 2003b).

The shell of the NAC may have an effect on the initial acquisition of Pavlovian conditioning
of approach responses by influencing the rewarding effects of novelty. Single-unit recording
using fast-scan cyclic voltammetry to assess DA release revealed that DA efflux increased only
during the brief period of entry into novelty and the increase was confined to the shell of the
NAC (Rebec, 1998). In this study, neither the accumbal core nor the overlying neostriatum
showed a novelty-related DA change. Using single-unit recording to assess neuronal activity,
approach to novelty was accompanied by roughly equal proportions of neuron excitations and
inhibitions in core but a shift away from excitation toward inhibition in shell. Widespread
activation of core units during approach to novelty suggested a role for core activation in the
initiation of appetitive behavioral responses (Rebec, 1998; Wood and Rebec, 2004, see also
Corbit et al., 2001; Sellings and Clarke, 2003; Ghitza et al., 2004; Balleine, 2005).

3.2.2. Anterior cingulate cortex—Anterior cingulate cortex (ACC) projects to NAC core
and has been implicated as an area related to drug craving (Everitt and Robbins, 2005) and
primed reinstatement of drug-taking responses (Kalivas and McFarland, 2003). In human
cocaine addicts, imaging by positron emission tomography of synaptic activity related to
addict-generated mental imagery of drug craving was associated with bilateral activation of
ACC (Kilts et al., 2001), while in rats, bilateral lesions of the ACC produced a decrease in
acquisition of heroin self-administration and a decrease in relapse of heroin-taking in rats
(Trafton and Marquez, 1971). Lesions of ACC impair sign-tracking CR performance in rats
(Bussey et al., 1997; Parkinson et al., 2000; Cardinal et al., 2002, 2003), and disconnection of
the ACC from the core of the NAC also impaired the acquisition of sign-tracking CR
performance (Parkinson et al., 2000). Lesions of ACC also impair differential responding to
CS+ and CS− in discriminative sign-tracking procedures (Bussey et al., 1997; Cardinal et al.,
2002). The effects of lesions of ACC on sign-tracking are unlikely due to general impairment
of cognitive or motor function, as lesions of ACC impaired sign-tracking, but had no effect on
a variety of Pavlovian conditioning tasks, including goal-tracking, conditioned reinforcement,
conditioned freezing and Pavlovian-Instrumental transfer (Cardinal et al., 2003).
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3.2.3. Pendunculopontine tegmental nucleus—The pendunculopontine tegmental
nucleus (PPTg) is a brain-stem output of the limbic system that projects to dopaminergic
midbrain areas that connect to the nucleus accumbens (Steiniger-Brach and Kretschmer,
2005). The PPTg is involved in motor activity driven by the DA system (Steiniger, 2004) that
is critical for the performance of complex motivated behavior (Bechara and van der Kooy,
1989). The PPTg exerts this influence by altering response selection processes in the NAC
(Steiniger-Brach and Kretschmer, 2005). The PPTg has been implicated in the self-
administration of abused drugs (Corrigall et al., 2002), including alcohol (Samson and
Chappell, 2001). NMDA-lesions of the PPTg disrupt the learning of conditioned place
preference based on injections of morphine or amphetamine (Olmstead and Franklin, 1994).
In sign-tracking, PPTg may play a role in the learning of the association between the CS and
rewarding US. PPTg-lesioned rats fail to respond differentially to CS+ that is paired with the
US reward, as compared to CS−, which is not paired with US reward, as evidenced by the
finding that rats approached the CS+ and CS− with equal frequency, and the latencies to
respond to the two stimuli did not differ (Inglis et al., 2000). Thus, lesions of the PPTg disrupted
the learning of conditioned approach responses in drug-seeking and sign-tracking procedures.

3.3. Vulnerability markers
The neurobiological characteristics of rats that perform more lever-press sign-tracking CRs
(Tomie, et al., 2000) share much in common with pathophysiological markers of vulnerability
to drug abuse (Piazza and Le Moal, 1996). Rats that performed more lever-press sign-tracking
CRs showed more novelty stress-induced corticosterone release, higher DA levels in NAC,
lower DOPAC/DA turnover ratios in caudate putamen, lower 5-HIAA/5-HT turnover in the
VTA, but no evidence of elevated dopamine activity in PFC. Similarly, rats that more readily
self-administer amphetamine showed more novelty stress-induced corticosterone release
(Piazza et al., 1989; Rouge-Pont et al., 1993; Piazza and Le Moal, 1996; Lucas et al., 1998),
higher indices of DA functioning in NAC (Piazza et al., 1989; Rouge-Pont et al., 1993; Piazza
and Le Moal, 1996; Lucas et al., 1998), but not in PFC (Simon et al., 1988; Piazza et al.,
1991) and lower indices of 5-HT functioning in VTA (Piazza et al., 1991; see also Kelland et
al., 1990). These results add to the growing body of evidence suggesting that sign-tracking and
drug abuse may be related phenomena (Tomie, 1995a, 1996; Tomie et al., 2000; Everitt et al.,
2001; Uslaner et al., 2006; Flagel et al., 2007a, b).

4. Sign-tracking as attribution of incentive salience
Addiction researchers have long recognized that stimuli paired with abused drugs acquire
incentive motivational properties (Wikler, 1967; Sherman et al., 1989; Robinson and Berridge,
1993; Robbins and Everitt, 1999; Glasner et al., 2005). These are typically viewed as Pavlovian
CRs that activate subjective, emotional or motivation states that contribute to the incentive to
consume the drug, thereby increasing the likelihood that the user will perform the physical
actions of drug-taking. A more precise formulation of how Pavlovian incentive motivational
processes may contribute to drug abuse is offered by Incentive Sensitization Theory (IST),
which proposes that addictive drugs sensitize the neural reward function, increasing the
positive reward value of drug-taking (Robinson and Berridge, 1993; Berridge and Robinson,
2003). Sensitization of the drug's rewarding effects may provide further incentive for increasing
drug intake, causing the individual to increasingly crave the drug's effects (Robinson and
Berridge, 2000, 2001). Most significantly, stimuli paired with the drug develop incentive
salience, a motivational component of reward that, according to IST, makes objects paired with
reward especially attractive and highly desired (Berridge, 2001). Thus, IST predicts that
stimulus objects paired with reward will become motivational magnets (Berridge, 2001).

It has recently been proposed that sign-tracking CR performance may be the overt behavioral
manifestation of the attribution of incentive salience to reward-related cues (Uslaner et al.,
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2006; Flagel et al., 2007a, b). According to this view, repeated pairings of lever CS with food
US leads to sign-tracking CR performance due to the attribution of incentive salience, which
makes the lever CS highly salient and attractive and desired. Thus, the lever CS becomes a
motivational magnet, compelling the rat to approach and contact the lever CS, even though the
performance is not necessary to obtain food.

The hypothesis that sign-tracking reflects the attribution of incentive salience to the lever CS
is supported by the finding that rats vulnerable to developing sign-tracking CR performance
show greater propensity to exhibit cocaine-induced psychomotor sensitization (Flagel et al.,
2007b), suggesting that individual differences in the tendency to sign-track are associated with
differences in the tendency to attribute incentive salience to a discrete reward-related cue. This,
in turn, suggests that sign-trackers are susceptibile to a form of cocaine-induced plasticity that
may contribute to the development of addiction (Robinson and Berridge, 2000, 2001). These
results suggest that drug abusers are individuals prone to develop pathological levels of
incentive salience attributed to reward-related cues. Although further studies are required to
develop more fully the possible relationship between sign-tracking CR performance and
attribution of incentive salience, this approach may serve to integrate further our understanding
of the behavioral and neurobiological determinants of drug abuse.
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