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ABSTRACT

Investigation of biological processes using selective
chemical interventions is generally applied in bio-
medical research and drug discovery. Many studies
of this kind make use of gene expression experi-
ments to explore cellular responses to chemical
interventions. Recently, some research groups con-
structed libraries of chemical related expression
profiles, and introduced similarity comparison into
chemical induced transcriptome analysis. Resem-
bling sequence similarity alignment, expression
pattern comparison among chemical intervention
related expression profiles provides a new way for
chemical function prediction and chemical-gene
relation investigation. However, existing methods
place more emphasis on comparing profile patterns
globally, which ignore noises and marginal effects.
At the same time, though the whole information of
expression profiles has been used, it is difficult to
uncover the underlying mechanisms that lead to the
functional similarity between two molecules. Here a
new approach is presented to perform biological
effects similarity comparison within small biologi-
cally meaningful gene categories. Regarding gene
categories as units, a reduced similarity matrix is
generated for measuring the biological distances
between query and profiles in library and pointing
out in which modules do chemical pairs resemble.

Through the modularization of expression patterns,
this method reduces experimental noises and
marginal effects and directly correlates chemical
molecules with gene function modules.

INTRODUCTION

Exploring the cellular responses to chemicals is practically
meaningful in biomedical research and drug discovery.
Microarray technology, due to its potential for monitoring
genome-wide expression changes in response to chemical
interventions, has applied to many endeavors in chemical
biology research, including chemical toxicity investigation
(1,2), chemical target discovery (3,4) and chemical regu-
lated pathway identification (5).

Meanwhile some efforts have also been made to con-
struct large-scale libraries of expression profiles corre-
sponding to diverse chemical treatments. Hughes et al.
(6) produced a library of expression profiles correspond-
ing to diverse mutations and chemical treatments in
Saccharomyces cerevisiae. They illustrated for the first
time the utility of transcriptome data in identification as
well as functional classification of unknown genes. In
Fielden et al. (7) and Nie et al’s (8) work, combining
with results from 2-year rodent bioassay, microarray
data of chemical treated rats was used to select gene
biomarkers that distinguish carcinogenic chemicals from
noncarcinogenic ones. Lamb et al. (9), on the other hand,
established a searchable database of expression profiles
corresponding to human cell lines treated with diverse
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chemical molecules. They devised a method for global
expression pattern comparison, and constructed a search-
able system, Connectivity Map, which survey the identities
of biological effects of chemicals by performing profile
similarity search. Ideas and systems related to Lamb’s
work have been used by many research groups and
proved helpful in potential therapeutic agent discovery
(10) and in identifying pathways regulated by small
molecules (11).

Lamb ez al. unprecedentedly introduced the concept of
‘similarity search’ into chemical related transcriptome
analysis and emphasized global pattern comparison of
gene expression profiles. Based on the holistic information
of gene expression profiles, Lamb’s method provided a
new way to decipher the functional relationship among
small chemical molecules even if they have different struc-
tures. However, it is not possible for researchers to see
more deeply into the underlying biology, i.e. in which
biological processes the given chemicals are involved in,
and how do they result in analogs regulatory mechanisms.
If we can shed light on these problems, we may have
a chance to understand how the human body handles
drugs and how side effects of a drug take place.

Based on those considerations and starting from
Connectivity Map (9), we developed a new approach to
perform functional similarity search for chemical mole-
cules. To be different from global expression pattern com-
parison Lamb et al. used, we emphasized on comparing
expression patterns in each gene module. The concept of
‘gene module’ here refers to a set of genes that act in
concert to carry out a specific function (12). For example,
a group of genes involves in cell cycle can be defined as a
gene module that participates in cell cycle regulation.
So far, many rules have been set from different perspec-
tives to compile genes into biologically meaningful cate-
gories, like pathway information (13,14) or function
annotations. Gene ontology (GO) (15), with its effort
on developing structured vocabularies in describing and
classifying gene products, is widely used in exploring
biological features of genes with respect to molecular func-
tions, biological processes as well as cellular components.
It has also been proved useful in dealing with microarray
data, including providing functional annotation of genes
observed differentially expressed, gaining insight into the
underlying biological mechanisms (16,17) and grouping
microarray data according to the functions of the genes
or biological processes they are involved in Ref. (18).
Considering its advantages, we chose GO as the rule to
group genes into units. Each genes unit is called a gene
ontology module (GOM) representing a group of func-
tionally associated genes. Instead of taking all genes’
expression pattern into account, we restricted our expres-
sion pattern comparison into every GOM. Regarding
GOMs as units, a reduced similarity matrix was generated
for measuring the biological distances between query pro-
file and profiles in library and pointing out in which mod-
ules the chemical pairs resemble. Like Coarse-Graining
Approaches (CGA) (19) in theoretical physics, our strat-
egy smoothes over fine detail and extracts crucial elements
from overwhelming information. Through the modulari-
zation of expression patterns, this method reduces
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experimental noises and marginal effects and directly
correlates small chemical molecules with gene function
modules. In our article some cases have been tested to
show that our method is sensitive, and can provide reason-
able results.

MATERIALS AND METHODS
Data source

Data in reference library was downloaded from Connec-
tivity Map (build 01) (http://www.broad.mit.edu/cmap_
build01/). It consists of 564 gene expression profiles
corresponding to human cultured cell lines treated with
164 distinct chemical molecules representing a total of
453 instances. Each instance here denotes a treatment
and vehicle pair.

Data preprocessing

Raw data were first normalized [RMA (20)] and log trans-
formed. Each instance was then processed using the
following three steps:

Step 1: Log ratio of treatment to vehicle (mean) was cal-
culated for each probe;

Step 2: All probes were then mapped to the corresponding
Entrez gene IDs using mean values;

Step 3: A rank ordered list of genes was obtained accord-
ing to the extent of differential expression.

Discovering affected GOMs

Given a query profile, a hyper geometric test is per-
formed for enrichment analysis of every GOM (in default,
2-fold change is used as a threshold to find differentially
expressed genes). P-values are calculated to indicate if
differentially expressed genes are enriched in certain
GOMs. GOMs with P-value <0.01 are selected. Three
basic GO (15) categories [BP (Biological Process), CC
(Cellular Component) and MF (Molecular Function)]
are provided for comparing GOMs with respect to differ-
ent biological meanings.

Expression pattern comparison with reference instances

The expression pattern similarities of query and reference
profiles in every GOM are calculated to generate a
reduced similarity matrix with each column representing
an expression profile corresponding to a chemical inter-
vention in reference library and each row representing
a GOM enriched in the query profile. The value in each
grid of the matrix represents the similarity score between
the query and a reference chemical in certain GOM. It is
derived based on Kolmogorov—Smirnov statistics and
was called connectivity score in Lamb ef al.’s work (9),
here we called it S score. After the calculation of S score,
the P-value is calculated to indicate significance of the
comparison. Instances with P-value <0.05 (in default)
are regarded as having significantly similar (with S
score >0) or reverse (with S score <0) pattern of expres-
sion with the query in this GOM. Finally, reference
instances are ranked decreasingly according to the
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number of matched or reverse-matched (P-value <0.05)
GOMs.

S score calculation. The similarity score is calculated by
summarizing Kolmogorov—Smirnov (KS) scores for both
over-expressed gene set and under-expressed gene set.
We improved the method used in Connectivity Map to
make it fit into expression pattern comparison for every
single GOM. For each GOM, differentially expressed
genes in this GOM are partitioned according to whether
they are up- or down-regulated into two groups. KS scores
for both up (KS,,) and down (KSg,wn) regulated gene
groups are calculated, respectively, using a nonparametric
rank-based strategy based on Kolmogorov—Smirnov sta-
tistics, the procedure is as follows: let 7 be the number of
genes in either the up- or down-regulated gene group and j
denote the jth gene according to the rank of differential
expression, assuming there are a total of NV genes in array,
and the position of the jth gene in the rank ordered whole
gene list (also ranked according to the extent of differential
expression) is V(j), then KS,p/qown 18 calculated as follows:

a= Mtax|:j — V(/)i|
=1

=1 | ! N
v YO G-
b—l\,ﬁx[W— 1 ]
J(a>b
Ksup/down Z{ Cilga(b - )a)

The KS score calculated using Kolmogorov—Smirnov
statistics indicates the extent of similarity of the data
distribution of two samples, when applied here it shows
whether two profiles have the same pattern of expression.
For each GOM, KS,, and KSg4,wn show, respectively,
whether up- and down-regulated genes have the same or
reverse pattern of expression between two chemicals. The
similarity score (S) for each GOM is finally calculated by
integrating KS,,, and KSg,, that set S equaling 0 when
KS,p and KS4,wn have the same algebraic sign and equal-
ing KS,, — KSqyown other wise. Array pair with positive
similarity score in a certain GOM means they have similar
pattern of expression in this GOM, and vice versa.

P-value calculation. In every run of expression pattern
comparison random permutations of genome-wide
(GO term based) gene rank is implemented in default
1000 times to calculate 1000 fake S scores and the percent
of times that the absolute value of the fake S'is larger than
the absolute value of real S is the P-value for the real
S score.

RESULTS
Gene expression modules-based similarity search

The idea of gene expression modules-based similarity
search (GEMS2) is partitioning genes into functionally
meaningful categories, forming a module-based Coarse-
Graining expression pattern and then performing expres-
sion pattern comparison according to the differences

Nucleic Acids Research, 2008, Vol. 36, No. 20 el37

within each category (Figure 1). It is composed of the
following steps:

Step 1: Establish a library of gene expression profiles cor-
responding to different chemical interventions. Data
from Connectivity Map (build 01) (http://www.broad.
mit.edu/cmap_build01/) was used to evaluate our
method.

Step 2: Given a query profile, discover significantly
affected GOMs using hyper geometric test.

Step 3: Within each GOM, search against the library
for profiles having analogous or reverse patterns of
expression. A similarity matrix is constructed taking
each GOM as a unit, and is summarized to measure
the biological distances between query and profiles in
library (for a detailed description, see the Materials and
Methods section).

Web interface

Based on the GEMS2 method and algorithm, a free web-
based service is available to perform online similarity
search (http://www.biosino.org/ GEMS2/).

Case one: searching for molecules having similar functions

We first demonstrate that our method is efficient in finding
chemicals having similar functions. This case comes
from a study (21) that investigated the effect of valproic
acid (VPA) and all-trans-retinoic acid (ATRA) on acute
myeloblastic leukemia cells, OCI/AML2. A total of four
microarray assays were done in their experiments (data
can be downloaded from the gene expression omnibus
by ID GDS1215), one array was treated with VPA and
another with vehicle. These two were analyzed using our
method. After a similarity search, the top 10 chemicals
with highest scores were presented (see Table 1). Among
them, VPA itself appears three times. For the rest, trichos-
tatin A, vorinostat—-HC toxin, though structurally distant
are all HDAC inhibitors. Data in the last column
(Table 1) shows that these chemicals are almost fully posi-
tively correlated with the query, which is consistent with
the fact that they perform a similar function. Besides, the
cell line used in the query case is myeloblastic leukemia
cells which did not exist in our reference library. It indi-
cates that our method is to some extent cell line indepen-
dent and can provide general functional similarity search
among chemical interventions.

Case two: searching for molecules that mimic the cellular
response to hypoxia

We then demonstrate our method is also capable of finding
chemicals that mimic a certain biological state. This case
derives from a work (22) that investigated the effect of
hypoxia on ‘gene expression” in MCF7 cell line. Six micro-
array assays in their experiments (three replicates for
hypoxia treatment and normoxia treatment, respectively,
GDS2758) were analyzed using our method. Search results
are presented (Table 2). All top 10 agents show fully
positively correlation with the query, and most of them
(8 of 10) are reported to have a tight relationship
with hypoxia. Among them deferoxamine appears for
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Figure 1. Workflow of gene expression module-based similarity search. Workflow of expression function pattern similarity search: (A) A query
profile is uploaded and GOMs significantly affected are found using hypergeometric test; (B) for each GOM found in the first step, expression pattern
comparison is performed between the query and every reference instance to calculate for each GOM a S score and a P-value. Instances whose
P-value is above the threshold (default is 0.05) are filtered out. Instances are arranged in descending order according to the number of matched
(or reverse-matched) GOMs; (C) results are returned in both graphic and textual forms.

three times. Deferoxamine is a chelating agent capable of
binding free iron in the bloodstream and removing excess
iron from the body. It is usually used as an hypoxia mimic
that simulates the hypoxic state by altering the iron status
of hydroxylases (23). Dimethyloxalylglycine, a nonspecific

inhibitor of 2-OG-dependent dioxygenase, is another
hypoxia mimicking agent. Prochlorperazine, though the
exact mechanism is unknown, is reported to have the
effect of augmenting hypoxic responsiveness in humans
(24). Colforsin has the ability of raising levels of cyclic
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Table 1. Top 10 reference instances found for profiles of VPA-treated
cells
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Table 3. Top 10 reference instances found for profiles of tumorigenic
breast cancer cells

cMap Molecule Dose Cell line GO counts cMap Molecule Dose Cell line GO counts
ID 1D

1072 Trichostatin A M MCF7 2120+, 1-) 448 Trichostatin A 100nM PC3 276+, 21-)
410 VPA [INN] 10mM HL60 2020+, 0—) 1015  Genistein 1opM  MCF7  26(0+, 26—)
1000 Vorinostat 10 uM MCF7 2020+, 0—) 841 Resveratrol 10opM  MCF7 2500+, 25-)
1050 Trichostatin A 100 nM MCF7 2020+, 0—) 486 Calmidazolium SuM MCF7 240+, 24-)
909 HC toxin 100 nM MCF7 19(19+, 0-) 164 Dexverapamil [INN] 1opM  MCF7  23(0+, 23—)
989 VPA [INN] I mM MCF7 19(19+, 0-) 2 Metformin [INN] 1opM  MCF7  23(0+, 23—)
332 Trichostatin A 100 nM MCF7 18(18 +, 0—) 965 Felodipine [INN] opM  MCE7 200+, 20—)
1112 Trichostatin A 100 nM MCF7 17(17+, 0—) 435 Novobiocin [INN] 100uM  PC3 200+, 20—)
866 Ikarugamycin 2uM MCF7 17(17+, 0—) 381 17-allylamino-geldanamycin 1 pM MCF7 20(19+, 1-)
409 VPA [INN] I mM HL60 16(16+, 0—) 383 Cobalt chloride 100uM  MCF7  20(0+, 20—)

The top 10 instances sharing the largest number of significantly affected
GOMs with VPA-treated cells are listed here. For detailed parameter
settings: BP is chosen as GO mode, the permutation time is set to be
1000, and the P-value for cutting off insignificantly matched or reverse-
matched GO modules is 0.05. ‘plus’ indicates the number of GO terms
positively correlated; ‘minus’ indicates the number of GO terms nega-
tively correlated.

Table 2. Top 10 reference instances found for profiles of hypoxia
treated cells

cMap  Molecule Dose Cell line GO counts
ID

573 Deferoxamine [INN] 100uM  MCF7 57(57+, 0—)
904 5109870 25uM MCF7 57(57+, 0—)
584 Dimethyloxalylglycine I mM PC3 52(52+, 0—)
1010 Thioridazine [INN] 10 uM MCEF7 4949+, 0—)
460 Deferoxamine [INN] oouM  PC3 48(48+, 0—)
1053 Prochlorperazine [INN] 10 pM MCEF7 46(46+, 0—)
485 Deferoxamine [INN] 100pM  MCF7 42(42+, 0—-)
977 Wortmannin M MCF7 42(42+, 0—)
1001 Sirolimus [INN] 100 nM  MCF7 4040+, 0—)
913 Colforsin [INN] 50 uM MCF7 3939+, 0—)

The top 10 instances sharing the largest number of significantly affected
GOMs with hypoxia treated cells are listed here. For detailed para-
meter settings: GO mode: BP; permutation time: 1000; P-value: <0.05.

AMP which leads to the increase of LDH activity. It can
also mimic the effects of hypoxia with regard to the
hypoxia-induced increase in LDH activity (25). This case
demonstrates that our method is quite powerful for finding
chemicals that cause or mimic a certain biological state.

But there are two exceptions in these similarity align-
ments. We know that wortmannin and sirolimus are
PI3K and mTOR inhibitors, respectively. Both of them
lead to the inhibition of hypoxia-inducible factor’s activ-
ity (26,27), which supposed to have a reverse effect to
hypoxia. But our data (Table 2) shows that cell lines
treated by wortmannin and sirolimus have similar
enriched GO pattern of expression compared with that
of hypoxia treated cell lines. A possible explanation for
this is that other mechanisms may exist which result in this
kind of positive correlation.

Case three: searching for molecules that reverse the
expression pattern of tumorigenic breast cancer cells

In this case we demonstrate that our method can also
been used to find novel molecules reversing the effects

The top 10 instances sharing the largest number of significantly affected
GOMs with tumorigenic breast cancer cells. For detailed parameter
settings: GO mode: BP; permutation time: 1000; P-value: <0.05.

of disease, which may provide useful information for
therapeutics. This case is taken from a work (28) that
analyzed expression changes in breast cancer cells having
high tumorigenic capacity. Nine microarray assays (three
normal and six tumorigenic, GDS2617) were analyzed
using our method. Top 10 hits are presented (Table 3).
Trichostatin A is histone deacetylase inhibitor, which
has long been investigated as a potential antitumor
agent against breast cancer (29,30). For the rest, genistein,
resveratrol, metformin, novobiocin are also reported to
have general antitumor effects (31-36). Data in the last
column (Table 3) shows that the effects of all top 10 chem-
icals are negatively correlated with expression pattern of
tumorigenic cells, which is consistent with their antitumor
activities. One the other hand, most GOMs found here
associated with top 10 chemicals are cell cycle related,
which is consistent with the fact that most antitumor
chemicals exert their effects directly or indirectly by influ-
encing cell cycle-associated biological processes.

Dependency of Connectivity Map on probe number
and probe selection

The input of Connectivity Map search system is a small
set of rank-ordered up- and down-regulated gene probes.
There is no specific restriction for probe number or probe
selection. Global similarity search using only a small frac-
tion of genes may cause insufficient information usage,
which may lead to instabilities of search result. Here we
took the data already used (GDS1215: VPA treatment
versus vehicle) to illustrate the problems that may arise
when using Connectivity Map improperly. Table 4
shows both chemicals appears in top 10 and their ranks
are highly diverse when randomly using top 10, 20 and
30 up- and down-regulated genes as signatures, respec-
tively. This case indicates that in order to get reliable
search results by using Connectivity Map, researchers
should carefully select gene signatures and may need a
step-by-step analysis to find a suitable probe dataset in
order to gain a reliable output. On contrary to the
Connectivity Map, our methodology groups genes into
certain number of GOMs which are dependent only on
the structure of GO, and performs a similarity search
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Table 4. The result of Connectivity Map is highly dependent on probe number and probe selection

10 (instance ID/name)

20 (instance ID/name)

30 (instance ID/name)

450 (17-Allylamino-geldanamycin)
313 (NU-1025)
311 (Monastrol)
263 (Clofibrate)
606 (Thalidomide)
611 (Geldanamycin)
868 (5182598)
491 (Dopamine)
607 (Butein)
0 1075 (Fluphenazine)

= O 00 JON WL AW~

607 (Butein)

456 (Quinpirole)

450 (17-Allylamino-geldanamycin)
410 (VPA)

317 (N-phenylanthranilic acid)
703 (Genistein)

483 (Imatinib)

413 (Trichostatin A)

1075 (Fluphenazine)

448 (Trichostatin A)

456 (Quinpirole)
267 (Genistein)

410 (Valproic acid)
703 (Genistein)

1021 (Estradiol)
609 (5666823)

332 (Trichostatin A)
508 (Staurosporine)
371 (Rofecoxib)
389 (Wortmannin)

Log ratios of VPA-treated versus vehicle-treated gene expression values are calculated. Probes are ranked according to the extent of differential
expression. The top 10, 20 and 30 probes up- and down-regulated are picked up. Queries (10 up—10 down, 20 up—20 down, 30 up—30 down) are
used to search against connectivity map, respectively. Top 10 instances positively correlated are presented in the table. (probeNum: indicates the

number of up/down probes used).

that is just based on the comparison of these GOMs.
Therefore, by using our similarity search system it is no
longer necessary to consider how to select gene signatures.
Furthermore, as shown in case one our strategy is sensitive
and can provide reasonable and reliable search results.

DISCUSSION

Algorithms like GSEA (37) and sigPathway (38) have
introduced the ‘gene set’ concept into expression profile
analysis and are proved useful in explaining gene expres-
sion data. Here we brought this concept into chemical
induced expression pattern similarity search, which
involves partitioning genes into small biological categories
and performing expression pattern comparison within
each category.

The main focus of our method consists of two points:
first, expression pattern comparison-based chemical
function similarity search. Be different from traditional
structure comparison that also emphasizes on similarity
comparison, expression profile comparison is more
straightforward because the rule ‘similar structure cause
similar function’ does not always hold; second, we
restricted the similarity comparison into every gene func-
tion module, which can not only tell the extent of overall
similarity of two chemicals but also can provide informa-
tion about in which function modules the two chemicals
are similar. It can be seen as an improvement of Connec-
tivity Map as it can provide more biological information
of the chemicals.

The advantages of this module-based comparison
strategy can be summarized in the following three
points: first, module-based expression pattern comparison
makes it possible to identify in which pathways or func-
tional modules are two profiles similar. This is useful for
deducing functions of unknown chemicals more precisely
from those of well studied. Second, as shown in our case
studies, module-based expression pattern comparison can
help us to find chemicals which though structurally distant
are functionally alike because they affect similar pathways
or biological processes. This advantage will be helpful to
detect main or side effects of chemicals or drugs. Third, in
our methodology gene expression patterns are reduced

into patterns of GOMs, which are depend only on the
structure of GO and the similarity search performed is
just based on the comparison of these GOMs. There is
no longer necessary to consider how to select gene features
as done when using Connectivity Map.

Starting from Connectivity Map, some significant
improvements were made in our method. First, all of
up- and down-regulated genes in the query profile are
used to avoid result instability. Concerning the work of
Lamb and his colleagues (9), the input of Connectivity
Map can be a small set of probes up- and down-regulated.
There is no specific rule to restrict probe number, and
probe selection is also quite flexible largely depending on
the individual researcher’s judgment. This has the risk of
insufficient information usage and the consequence is that
different selection of probe sets may generate diverse and
even conflicting outcomes as shown in the results part
(Table 4). Because all up- and down-regulated genes
(in default using the criteria of 2-fold change) were used
to build patterns of GOMs, our method not only avoids
insufficient information usage, but also provides a much
more stable search result. Second, in Connectivity Map,
only the relative similarity score is provided, which can
only indicate whether two given chemicals are more simi-
lar than two other. There is no way to know to what
extent and in which type of functional level two chemicals
resemble or whether it is statistically significant. We make
up this flaw by using random sampling method (see
Materials and Methods section) to calculate a P-value
for each GOM and give a reasonable evaluation score to
chemical similarities.

Finally, although our method can be named as ‘simi-
larity searching’ approach, it does not focus only on find-
ing the most closely associated chemicals. When search for
related profiles for a given chemical, chemicals ranked
with higher scores only indicate that they share more
GOMs than others ranked with lower scores. It is hard
to say that the former is more relevant to the query than
the latter, especially when two target chemicals have close
ranks. One of the major purposes of our method is pro-
viding as much biological information as possible about
unknown interventions, which overcomes the limitation
that global comparison has.
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So far, whole data from Connectivity Map (build 01)
was used as a basic library for validating the rationality of
our method. Persistent efforts will be made in adding data
from other sources, including different disease states,
other cell lines and organisms to upgrade and enlarge
our data resource, as well as to continue expanding the
system’s applications. In this article, the GO system is
applied as the rule to partition genes. But it does not
mean that this rule is superior to others like pathway
information, etc. The focus of our article is to propose
a new method for expression pattern comparison that
combining priori defined gene set information, and the
selection of rules on how to partition genes is actually
depend on the researchers needs. Till now, our server
only provides GO system to define gene set, and we are
trying to add more partitioning rules in the server and
also considering adding an option for user to upload
their user-defined gene sets.

In the case studies our method has shown its power in
discovering chemicals sharing similar biological mecha-
nisms and chemicals reversing disease states. Both sides
are of great importance in biological and biomedical
research, especially for deciphering potential regulatory
mechanisms of small molecules on biochemical pathways.
Our methodology is also quite useful to help researchers
to discover candidate drugs or new usages of old drugs.
Furthermore, it may shed light on some applications
involved in applied medicine research, such as unknown
toxin identification, side effects discovery or prediction
and design of disease specific therapeutics.
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