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ABSTRACT

Redirecting the splicing machinery through the
hybridization of high affinity, RNase H- incompetent
oligonucleotide analogs such as phosphoramidate
morpholino oligonucleotides (PMO) might lead to
important clinical applications. Chemical conjuga-
tion of PMO to arginine-rich cell penetrating pep-
tides (CPP) such as (R-Ahx-R),; (with Ahx standing
for 6-aminohexanoic acid) leads to sequence-
specific splicing correction in the absence of endo-
somolytic agents in cell culture at variance with
most conventional CPPs. Importantly, (R-Ahx-R),—
PMO conjugates are effective in mouse models of
various viral infections and Duchenne muscular
dystrophy. Unfortunately, active doses in some
applications might be close to cytotoxic ones thus
presenting challenge for systemic administration of
the conjugates in those clinical settings. Structure-
activity relationship studies have thus been under-
taken to unravel CPP structural features important
for the efficient nuclear delivery of the conjugated
PMO and limiting steps in their internalization path-
way. Affinity for heparin (taken as a model heparan
sulfate), hydrophobicity, cellular uptake, intracellu-
lar distribution and splicing correction have been
monitored. Spacing between the charges, hydro-
phobicity of the linker between the Arg-groups and
Arg-stereochemistry influence splicing correction
efficiency. A significant correlation between splicing
correction efficiency, affinity for heparin and ability
to destabilize model synthetic vesicles has been
observed but no correlation with cellular uptake
has been found. Efforts will have to focus on endo-
somal escape since it appears to remain the limiting

factor for the delivery of these splice-redirecting
ON analogs.

INTRODUCTION

Protein transduction domains as penetratin or Tat 48—60
and synthetic cell penetrating peptides (CPP) as oligoargi-
nine have generated a large interest for their seemingly
unique mechanism of membrane translocation and for
their capacity to transport various biomolecules across
biological membranes (1). Both assumptions have had to
be re-visited since cellular uptake does involve endocyto-
sis (2) and transport of biomolecules does not occur as
efficiently as anticipated at least at low concentrations.
In a series of experiments carried out independently by
several groups, CPPs mentioned above turned out ineffi-
cient in transporting uncharged splice correcting oligonu-
cleotide (ON) analogs as peptide nucleic acids (PNA) or
phosphorodiamidate morpholino oligomers (PMO) for a
large part because CPP-conjugated material remained
entrapped in endocytic vesicles (3). Accordingly, peptides
or drugs (such as chloroquine) leading to endosome desta-
bilization did significantly increase splicing correction.

We have recently described a new (R-Ahx-R),~CPP
(in which Arg residues are interspersed with nonnatural
6-aminohexanoic acid amino-acid spacers) which leads to
efficient splicing correction at low concentration in the
absence of endosomolytic agents. (R-Ahx-R), is less cyto-
toxic and much more active to deliver splice correcting
PMO and PNA in vitro than the parent oligoarginine
(R,) peptide and than the prototypic Tat 48—-60 peptide
(4). Importantly, (R-Ahx-R),~PMO conjugates also lead
to efficient exon skipping in murine and dog Duchenne
muscular dystrophy (DMD) models (5) and inhibit the
replication of viruses in several murine models (6-9).

We had no clear explanation for the improved efficiency
of (R-Ahx-R),~PMO and (R-Ahx-R),~PNA conjugates
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as compared to Tat or (Arg), steric block ON constructs.
Increased cellular uptake could not be the answer since,
on the contrary, (R-Ahx-R),~PMO conjugates were taken
up less efficiently than Tat-PMO and (Arg),~PMO con-
jugates in our model system (3). Differences could origi-
nate from a different mechanism of cellular uptake with
(R-Ahx-R),~PMO conjugates taking profit of a more
favorable route than the other CPP conjugates. Again
available data did not support this hypothesis since all
three conjugates were taken up by an energy-dependent
pathway involving binding to cell surface proteoglycans.
Along the same lines, we recently established that blocking
energy-dependent processes through incubation of cells at
low temperature or through ATP depletion decreased spli-
cing correction by (R-Ahx-R),~PMO conjugates and by
Tat-PMO or (Arg),—PMO ones to the same extent (10).

Of possible relevance, (R-Ahx-R);~PMO conjugates
bind less strongly to heparin (taken as a model heparan
sulfate) than Tat- or (Arg),~PMO conjugates (3). This
could provide an explanation if one assumes that heparan
sulfate-bound material has to be released during endocy-
tosis in order to escape to the cell cytoplasm. While suffi-
cient affinity is essential for cell binding and cellular
uptake, a too high affinity could become detrimental at
later steps, a hypothesis which we aim to investigate here.

On the other hand, the inclusion of nonnatural amino
acids as aminohexanoic acid in (R-Ahx-R)4 was expected
to increase the metabolic stability of these conjugates
and as a consequence to increase their biological effi-
ciency. This assumption has to be tempered since the
(R-Ahx-R) repeats are linked by arg—arg peptide bonds
which are amenable to proteolysis by trypsin-like
enzymes. Indeed recent studies in our group indicated
that (R-Ahx-R),~PMO conjugates were rapidly degraded
in cells at these arg—arg bonds (11). We have therefore
investigated a (r-Ahx-R),~PMO conjugate (with r stand-
ing for D-Arg) in terms of cell uptake and splicing correc-
tion activity.

The present structure—activity relationship (SAR)
studies were initiated for the following additional reasons.
Fluorescence microscopy evaluation of the intracellular
distribution of FAM-labeled (R-Ahx-R);~PMO conju-
gates indicated that the majority of the material was
entrapped in endocytic vesicles even at concentrations
leading to efficient splicing correction. It implies that the
biological activity of these conjugates is due to the small
(and not detectable by fluorescence microscopy) portion
of material escaping from endocytic vesicles. Finally,
(R-Ahx-R),~PMO conjugates have shown signs of toxicity
when injected to mice at >20mg/kg dose despite their
absence of cytotoxicity in cell culture experiments (12).
This presents a dosing challenge for in vivo systemic
applications.

Altogether, it is clear that CPP-steric block ON conju-
gates need to be active at lower doses for systemic admin-
istration and clinical applications. It is hoped that a better
understanding of the structural determinants required for
cell binding, cellular uptake and endosome escape will be
helpful for the rational design of more potent and/or less
cytotoxic CPPs. The manuscript essentially aims at com-
paring series of (R-Ahx-R),~PMO conjugates analogs

differing in Arg spacer length, in hydrophobicity of the
spacer and in stereochemistry of Arg. Criteria for the com-
parative evaluation of these conjugates include cellular
uptake, splicing correction efficiency, affinity for heparin,
hydrophobicity and synthetic membrane-destabilizing
potential.

MATERIALS AND METHODS
Synthesis of CPP-PMO conjugates

The antisense PMO (CCT CTT ACC TCA GTT ACA)
was synthesized as described (13,14). CPPs were synthe-
sized using Fmoc chemistry and purified to >95% as
determined by high-pressure liquid chromatograph and
MALDI-TOF mass spectrometry analysis. Conjugation,
purification and analysis of CPP-PMO conjugates were
described previously (3,15).

Cells and cell culture

HeLa pLuc705 cells were cultured as exponentially grow-
ing subconfluent monolayers in DMEM medium (Gibco)
supplemented with 10% fetal bovine serum (FBS), 1 mM
Na pyruvate and nonessential amino acids.

Flow cytometry

To analyze (R-X-R);~PMO conjugates cell internaliza-
tion, exponentially growing HeLa pLuc705 cells
(1.75 % 10° cells seeded and grown overnight in 24-well
plates) were incubated in OptiMEM with FAM-labeled
(R-X-R)4~PMO. Cells were then washed twice with PBS,
detached by incubating for Smin at 37°C with 0.5 mg/ml
trypsin per 0.35mM, EDTA.4Na and washed by centrifu-
gation (5min, 900g) in ice-cold PBS containing 5% FBS.
The resulting cell pellet was resuspended in ice-cold PBS
containing 0.5% FBS and 0.05ug/ml propidium iodide
(PI) (Molecular Probes, Eugene, OR, USA). Fluorescence
analysis was performed with a BD FacsCanto flow cyt-
ometer (BD Biosciences, San Jose, CA, USA). Cells
stained with PI were excluded from further analysis.
A minimum of 20 000 events per sample was analyzed.

Splicing correction assay

(R-X-R)4~PMO conjugates were incubated for 4h in 1 ml
OptiMEM medium with exponentially growing HeLa
pLuc705 cells (1.75 x 10° cells/well seeded and cultivated
overnight in 24-well plates). The conjugates were then
washed twice with PBS, 1ml of complete medium
(DMEM plus 10% FBS) was added and incubation was
continued for 20 h. Cells were washed twice with ice-cold
PBS and lysed with Reporter Lysis Buffer (Promega,
Madison, WI, USA). Luciferase activity was quantified
in a Berthold Centro LB 960 luminometer (Berthold Tech-
nologies, Bad Wildbad, Germany) using the Luciferase
Assay System substrate (Promega, Madison, WI, USA).
Cellular protein concentrations were measured with the
BCA™Protein Assay Kit (Pierce, Rockford, IL, USA)
and read using an ELISA plate reader (Dynatech MR
5000, Dynatech Labs, Chantilly, VA, USA) at 550 nm.
Luciferase  activities were expressed as relative



luminescence units (RLU) per microgram protein. All
experiments were performed in triplicate. Each data
point was averaged over three replicates.

Heparin-affinity chromatography

Three micrograms of each (R-X-R);~PMO conjugate were
injected in triplicate on a 1 ml HiTrap Sepharose/heparin
column (Amersham Biosciences, Freiburg, Germany)
fitted on a Beckman—-Gold HPLC chromatograph
(Beckman Coulter, Fullerton, CA, USA). The conjugates
were eluted in 30 min at a flow rate of 1 ml/min of 2.5 mM
phosphate buffer (pH 7) by a linear gradient of NaCl from
70 to 970 mM. Elution of the conjugates was followed by
UV absorption at 260 nm. Results are presented as eluting
NaCl concentrations and expressed as the mean and stan-
dard deviation of triplicate measurements.

Hydrophobicity reverse phase chromatography

Total 0.1pg of each (R-X-R);~PMO conjugate were
injected in triplicate on a C18 Waters Symmetry Shield
4.6 x 250mm column and fitted on a Beckman-Gold
HPLC chromatograph. The conjugates were eluted at a
flow rate of 1 ml/min of H,O0/0.1% TFA by a linear gra-
dient of acetonitrile from 5% to 95% in 30 min. Elution of
the conjugates was followed by UV absorption at 260 nm.
Results are presented as eluting acetonitrile concentrations
and expressed as the mean and standard deviation of
triplicate measurements.

Cell permeabilization with saponin

Exponentially growing HeLa pLuc705 cells (1.75 x 10°
cells seeded and grown overnight in 24-well plates) were
co-incubated with the (R-Ahx-R),~PMO conjugates and
with 20 pg/ml saponin for 30 min. The conjugates were
removed and the cells were washed twice with PBS and
incubation continued for 24h in complete medium
(DMEM plus 10% FBS). Cells were washed twice with
ice-cold PBS, lysed with Reporter Lysis Buffer and pro-
cessed as described above.

Fluorescence microscopy

To analyze (R-X-R)4,~PMO conjugates intracellular distri-
bution, exponentially growing HeLa pLuc 705 cells
(3.5 x 10* cells seeded and grown overnight in 2 ml culture
dishes) were washed with OptiMEM and incubated with
2uM FAM-labeled (R-X-R),~PMO in the absence or in
the presence of 20 pug/ml saponin for 30 min in OptiMEM
medium. Cells were then washed with PBS prior a
co-incubation step with 10 pg/ml Transferrin-Alexa 546
(red fluorescence) and Hoechst 33342 dye (blue fluores-
cence) for 10 min in order to stain endosomes and nuclei,
respectively. The distribution of fluorescence in live unfixed
cells was analyzed on Zeiss Axiovert 200M fluorescence
microscope (Carl Zeiss, Obercochen, Germany).

CPP-PMO-induced liposome leakage

Large unilamellar vesicles (LUV) were prepared as
described previously (16). In short, lipids dissolved in ben-
zene/methanol (95:5) were freeze-dried overnight and the
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resulting dry lipid powder was hydrated in a buffer con-
taining the ANTS fluorescent dye 8-aminonaphthalene-
1,3,6-trisulfonic acid, disodium salt (Invitrogen, Carlsbad,
CA, USA) together with a DPX quencher p-xylene-bis-
pyridinium bromide (Invitrogen, Carlsbad, CA, USA) at
a final lipid concentration of 10 mM. The suspension was
vigorously agitated with a Vortex, freeze-thawed 10 times
and then extruded 10 times through two stacked 100 nm
polycarbonate filters (Nucleopore, Whatman). Free dye
and quencher were then removed by gel filtration on a
PD-10 desalting column (Amersham Biosciences, Piscat-
away, NJ, USA). To mimic the lipid composition of late
endosomes we used the following lipid mixture: dioleoyl-
phosphatidylcholine (DOPC)/dioleoyl-phosphatidyletha-
nolamine (DOPE)/phosphatidylinositol from soybean
(PI)/bis(monooleoylglycero) phosphate (LBPA) (5:2:1:2)
(23). All lipids were purchased from Avanti Polar Lipids
Inc., Alabaster, AL.

Leakage of ANTS/DPX from the vesicles was measu-
red as an increase in fluorescence intensity of ANTS upon
addition of the CPP-PMO conjugates (5 uM final concen-
tration) to 2ml of vesicles (25 uM) (17). Infinite dilution
of the probe used to determine fluorescence of the com-
pletely unquenched probe was achieved by solubilizing
the membranes with 0.1% (v/v) Triton X-100.

RESULTS
Criteria for the design of (R-X-R), analogs

Most studies on basic amino-acids-rich CPPs emphasized
the importance of the guanidinium side chains of arginines
and of the spacing between the charged groups. Studies
by Rothbard et al. (18) in particular have shown that a
6-carbon 6-aminohexanoic acid linker seemed optimal for
cellular uptake as measured by the whole cell fluorescence
but no data concerning efficiency in terms of cytoplasmic
or nuclear delivery of a biologically functional payload
was provided. We therefore designed a series of (R-X-
R)4~PMO conjugates with X varying from 2 to 8 carbons
(compounds 1-7 in Figure 1A). The present study revealed
a dependence of charge spacing with an optimum for
(R-Ahx-R), (in which X = 6) in terms of nuclear delivery
of the PMO payload as illustrated below. Based on this
first set of data, we designed a series of C6 linked-Arg
peptides differing in terms of hydrophobicity (compounds
8—11 in Figure 2A).

Since metabolic stability has often been proposed as
a factor governing CPP efficiency, the D-Arg modified
(R-Ahx-R),, (r-Ahx-R); (compound 13 in Figure 3A),
has been included.

Finally, we evaluated the splice correcting ability
of (R-X-R),~PMO conjugates with n=<3 as a possible
strategy to reduce cytotoxicity.

Effect of charge spacing on affinity for heparin
and on splicing correction

It is now well admitted that basic CPPs interact with
heparan sulfate-rich cell surface glycosaminoglycans
before being internalized by endocytosis (19). A sufficient
affinity for these negatively charged proteoglycans is
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Figure 1. Effect of charge spacing of (R-X-R),~PMO conjugates. (A) Structures and nomenclature. (B) Heparin affinity chromatography. (R-X-R),—
PMO conjugates (white bars) and the reference (R-Ahx-R),~PMO (gray bar) were injected on a HiTrap Sepharose/heparin column and eluted by a
linear gradient of NaCl. Elution was monitored by UV absorption at 260 nm. Results are presented as eluting NaCl concentration. Each experiment
was made in triplicate. Means of triplicates and standard deviations (error bars) are indicated. Mean values for all conjugates were compared to the
mean value of the reference conjugate using Student’s #-test (xx* and s#* indicate statistically significant differences; NS indicates that the difference is
not statistically significant). (C) Splicing correction efficiency. HeLa pLuc705 cells were incubated for 4h in OptiMEM in the presence of 1 uM (white
bars) of the various (R-X-R),~PMO conjugates or with 1 uM of the (R-Ahx-R),~PMO reference compound (gray bars). Luciferase expression was
quantified 20 h later and expressed as RLU per microgram protein. Each experiment was made in triplicate. Mean values and standard deviations
(error bars) are indicated. Mean values for all conjugates were compared to the mean value of the reference conjugate using Student’s ¢-test. 1, (R-G-
R)4+~PMO; 3, (R-Abu-R),~PMO; 5, (R-Ahx-R),~PMO; 7, (R-Acy-R),~PMO.

required for cell binding and for subsequent cellular
uptake. On the other hand, too much affinity for heparan
sulfate might be detrimental for the release of CPP-ON
conjugates from endocytic vesicles as hypothesized in our
previous publications (3,10).

(R-X-R)4~PMO conjugates with X spacers of increasing
lengths (from 2 to 8 atoms) (Figure 1A) have thus been
compared in terms of affinity for a model heparan sulfate
on a Hi-trap Heparin column (Figure 1B). Increasing
spacer length leads to decreased affinity as monitored by
the NaCl concentration required for elution in keeping
with published data (20). Conjugates in this series were
then compared for their ability to promote splicing correc-
tion in dose-response experiments (Figure 1C and data
not shown). Increasing the length of the spacer led to

increased luciferase expression with an optimum for the
C5-linked material.

Increasing the affinity for heparan sulfates thus appears
being detrimental for splicing correction efficiency. Along
the same lines, (Arg)o~PMO has an even higher affinity
for heparan sulfate than (R-G-R),~PMO and is less
active in splicing correction [(4) and data not shown].

Compound 7 was thus expected to be more active in
splicing correction than compound 5 which was not
observed (Figure 1C). However, increasing the hydrocar-
bon spacer length also increases hydrophobicity which
could itself be promoting unfavorable membrane interac-
tions (see below). Increased hydrophobicity has indeed
been verified by Cl8-column chromatography for com-
pound 7 (Figure 2B).
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Figure 2. Effect of hydrophobicity of the linker in (R-X-R),~PMO conjugates. (A) Structures and nomenclature. (B) Hydrophobicity of (R-X-R),~PMO
conjugates. (R-X-R),~PMO conjugates were injected on a C18-Sepharose column and eluted by a linear gradient of acetonitrile. Elution was monitored by
UV absorption at 260 nm. Results are presented as eluting acetonitrile concentrations. Each experiment was made in triplicate. Means of triplicates and
standard deviations (error bars) are indicated. Mean values for all conjugates were compared to the mean value of the (R-Ahx-R);~PMO reference
conjugate using Student’s 7-test. 7, (R-Acy-R),~PMO; 8, (R-AbuF-R),~PMO; 9, (R-AbuL-R),~PMO; 10, (R-AbuNLe-R),~PMO; 11, (R-AbuA-R),—
PMO; 5, (R-Ahx- R)4~PMO. (C) Splicing correction efficiency. Cells were treated and data were processed as described in the legend of Figure 1C.
(D) Heparin affinity chromatography. Samples were treated and data were processed as described in the legend of Figure 1B. s and s Indicate
statistically significant differences; NS indicates that the difference is not statistically significant.
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significant.

PI uptake has been monitored in parallel as an index of
cell membrane integrity. No significant PI uptake was seen
at doses up to 2.5uM for any one of these compounds
except for compound 7, which leads to a concentration-
dependent membrane destabilization (Figure 4B). This
might also contribute to its lower splicing correction
potential.

Influence of hydrophobicity on splicing correction

Since the hydrophobicity of the linker appeared to influ-
ence splicing correction efficiency, we have compared
a series of PMO conjugates (compounds 8-11 in
Figure 2A) with the same spacing (a 6-carbon atom
spacer as in (R-Ahx-R);~PMO) but with varying side-
chain hydrophobicities.
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Figure 4. Flow cytometry analysis. (A) Cell uptake of the FAM-labeled
(R-X-R)4~PMO conjugates. HeLa pLuc705 cells were incubated for 1 h
in Opti MEM with 1 uM of the various FAM-labeled (R-X-R),~PMO
conjugates (white bars) or with 1 uM of the FAM-labeled (R-Ahx-R)4—
PMO reference compound (gray bar). Cells were washed, trypsinized
and analyzed by flow cytometry. Each experiment was made in tripli-
cate. Means of triplicates and standard deviations (error bars) are
indicated. Mean values for all conjugates were compared to the mean
value of the (R-Ahx-R),~PMO reference conjugate using Student’s
t-test. See Figures 1A, 2A and 3A for structures. (B) PI uptake in
(R-X-R)4~PMO conjugate-treated cells. (R-X-R);~PMO conjugate-
treated cells were incubated with PI immediately before FACS analysis.
Data were processed as described in A.

Some compounds in this series (11 in Figure 2A) have
hydrophobicities comparable to the parent (R-Ahx-R),—
PMO (compound 5) taken as a reference while others
(compounds 8-10) have a significantly higher hydropho-
bicity, as monitored by Cl18-column chromatography
(Figure 2B). These conjugates were analyzed for splicing
correction efficiency at various concentrations (Figure 2C
and data not shown). Splicing correction efficiency is
lower for the more hydrophobic conjugates (compounds
8-10) and remains the most active for compound 5.
As expected, compounds 8—11 had similar affinities for
heparin (Figure 2D). Therefore, differences in splicing
correction in this series were largely influenced by hydro-
phobicity. We cannot explain why compound 11 has a
lower splicing correction activity than compound 5 as
their hydrophobicity and heparin affinity are similar.

Influence of Arg stereochemistry on splicing correction

Increased metabolic stability should improve biological
efficiency and could in part explain the higher efficacy of
(R-Ahx-R)4~PMO as compared to (Arg),—PMO and Tat
43-60-PMO, as discussed previously (3). However, the
(R-Ahx-R)4 portion of (R-Ahx-R);~PMO was found to
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Figure 5. Effect of the number of (R-X-R) repeats onj splicing correc-
tion. HeLa pLuc705 cells were incubated for 4h in Opti MEM with
1uM of (R-Ahx-R);~PMO, (R-AbulL-R),~PMO or (R-AbuL-R);-
PMO. Luciferase expression was quantified 20h later and expressed
as RLU per microgram protein. Each experiment was made in tripli-
cate. Means of triplicates and standard deviations (error bars) are indi-
cated. Mean values for all conjugates were compared to the mean value
of the (R-Ahx-R),~PMO reference conjugate using Student’s r-test.

be degraded in intact cells (11). We therefore synthesized
(r-Ahx-R);~PMO (compound 13 in Figure 3A) in which
one of the two L-Arg residues in each R-Ahx-R repeat was
replaced by a D-Arg (r) residue. Unexpectedly, (r-Ahx-
R)4~PMO was significantly less efficient in splicing correc-
tion than (R-Ahx-R),~PMO (Figure 3B). Both L- and
D-Arg-containing peptides have similar hydrophobicities
(Figure 3C). Interestingly, (r-Ahx-R),~PMO has a sign-
ficantly higher affinity for heparan sulfate than the
parent (R-Ahx-R),~PMO (Figure 3D), thus pointing
again to the role played by this parameter in splicing cor-
rection efficiency.

Influence of the number of repeats on splicing correction

As already mentioned, (R-Ahx-R),~PMO conjugates
become cytotoxic in murine models at high doses. The
cytotoxicity of nonviral delivery vectors for nucleic acids
is generally associated to their resulting cationic charge.
We therefore investigated whether reducing the number
n of repeats in (R-X-R),~PMO conjugates could be pos-
sible. A significant loss of splicing correction efficiency was
found with shorter versions of these PMO conjugates as
shown for (R-AbuL-R),~PMO conjugates (Figure 5).

Cellular uptake does not limit splicing correction

Most (R-X-R),~PMO conjugates were synthesized as
fluorescent FAM conjugates to allow assessment of celular
uptake by FACS analysis and by fluorescence microscopy.
As seen in Figure 4, there is no correlation between cellu-
lar uptake and splicing correction activity. Increasing the
spacing between arginine residues (compounds 1-7) leads
to decreased cellular uptake in parallel to heparin affinity
but on the contrary leads to increased splicing correction.
Remarkably, (R-Ahx-R);~PMO which was the most
active conjugate in this series in terms of splicing correc-
tion turned out the less efficient in terms of cellular uptake.
In addition, changing the hydrophobicity of the spacer
(compounds 8-11) or modifying the stercochemistry of
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Figure 6. Effect of saponin on the intracellular distribution of FAM-labeled (R-Ahx-R),~PMO and Alexa-labeled transferrin. HeLa pLuc 705 cells
were incubated in OptiMEM with 2uM of (R-Ahx-R);~PMO-FAM in the absence (A) or in the presence of saponin (B) for 30 min. Hoechst dye
blue and Alexa-labeled transferrin were then added for 10 min as markers for cell nuclei (blue fluorescence) and for endosomes (red fluorescence),
respectively. Live unfixed cells were analyzed by fluorescence microscopy. Filter selection allows the detection of transferrin (Al and Bl) or of
(R-Ahx-R)4s~PMO (A2 and B2). In C, cells have been incubated for 30 min with Alexa-labeled transferrin and either observed immediately (C1) or

after a 30 min treatment with saponin (C2).

Arg (compounds 5 and 13) had no significant impact on
cellular uptake.

Endosome entrapment limits splicing correction

We next examined whether differences in splicing correc-
tion activity could be explained by differences in endosomal
escape. All (R-X-R),~PMO conjugates have therefore been
synthesized as FAM-labeled derivatives and their intracel-
lular distribution has been analyzed by fluorescence micro-
scopy on live cells to avoid artefactual redistribution upon
cell fixation. As shown in Figure 6A for the parent (R-Ahx-
R);~PMO-FAM conjugate, most of the material was

distributed as punctate cytoplasmic material and none
was detected in the nuclei. Splicing correction is probably
due to the small amount of material which has escaped
from the endocytic vesicles and remains undetectable
by fluorescence microscopy analysis. Not surprisingly, a
similar situation has been observed for other (R-X-R)4—
PMO-FAM conjugates from our SAR studies and no
concluding data have been provided by fluorescence
microscopy comparative analysis (data not shown).
Likewise, previous work from several groups including
our own one had documented an increase in splicing
correction upon treatment with endosomolytic agents



such as chloroquine or calcium ions (3). However, splicing
correction never reached levels achieved with 2-OMe
ON analogs transfected as lipoplexes and accordingly
redistribution of the endosome-entrapped material could
not be documented (21).

We now capitalize on a saponin treatment protocol
which allows to gently permeabilize the plasma mem-
brane. It was shown to open transient holes in the
plasma membrane and to allow the passage of macromo-
lecules while not damaging membranes from intracellular
organelles (22).

As shown in Figure 6B, the (R-Ahx-R),~PMO-FAM
conjugate was widely distributed within the cell with a
clear accumulation in nuclei in saponin-permeabilized
cells. These low molecular mass conjugates are indeed
expected to diffuse freely and rapidly from the cytoplasm
to the nuclei through the nuclear pores. In a different
protocol, cells were loaded with Alexa-labeled Transferrin
(a known marker of endosomes) and then treated with
saponin. At variance with the wide distribution of the
CPP-PMO-FAM conjugates, Transferrin-associated red
fluorescence remained punctate in keeping with the
reported minimal effects of saponin on intracellular archi-
tecture (Figure 6C). Along the same lines, we have verified
that saponin did not lead to a significant release of
(R-Ahx-R)4~PMO conjugate preloaded in endocytic vesi-
cles (data not shown).

We next compared luciferase expression in dose-
response experiments in saponin-treated and untreated
cells. As shown in Figure 7 for the (R-Ahx-R), -PMO
conjugate, splicing correction was more efficient in
saponin-treated than in untreated cells. Significant lucifer-
ase expression could already be detected upon 30min
incubation in saponin-treated cells and increased to a
much higher level than in untreated cells. In addition,
splicing correction in saponin-treated cells reached similar
levels for conjugates found much less active in nonper-
meabilized cells than (R-Ahx-R),~PMO (Figure 7B).

These data were expected if saponin permeabilization
of the plasma membrane allows to bypass endocytosis
and as a consequence endosome segregation. Differences
in splicing correction efficiency between (R-X-R),~PMO
analogs were also expected to be largely abolished if
caused by differences in trafficking efficiency.

pH-dependent destabilization of liposomes as
a model of endosomal escape

Our data have confirmed that cellular uptake is not the
limiting factor in the efficiency of splicing correction by
(R-X-R),~PMO conjugates and therefore intracellular
trafficking and endosomal escape likely to be major limit-
ing factors. To evaluate the ability of CPP-PMO conju-
gates to escape from endosomes we employed a liposome
leakage assay. Late endosomes are characterized by a
rather unusual lipid composition enriched in LBPA (23)
and have a pH 5.5 lumen (24). We therefore prepared lipo-
somes from a lipid mixture mimicking the lipid composi-
tion of late endosomes DOPC/DOPE/PI/LBPA (5:2:1:2)
and monitored the effect of low pH on the CPP-PMO
induced leakage of a fluorescent dye entrapped in the
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Figure 7. Luciferase expression in saponin-permeabilized cells.
(A) Splicing correction in dose-response. HeLa pLuc 705 cells were
incubated for 30 min in OptiMEM at the indicated concentrations of
the (R-Ahx-R);~PMO conjugate in the absence (white bar) or in the
presence of 20pg/ml saponin (gray bars). Luciferase expression was
quantified 24h later and expressed as RLU per microgram protein.
Each experiment was made in triplicate. Means of triplicates and stan-
dard deviations (error bars) are indicated. Mean values for all conju-
gates were compared to the mean value of the (R-Ahx-R)s~PMO
reference conjugate using Student’s z-test. (B) Splicing correction
efficiency by various (R-X-R),~PMO conjugates. HeLa pLuc 705 cells
were incubated for 30 min in OptiMEM with 1 uM of the conjugates in
the absence (white bars; —) or in the presence of 20 pg/ml saponin (gray
bars; +). Luciferase expression was quantified 24 h later and expressed
as RLU per microgram protein. Each experiment was made in
triplicate. Means of triplicates and standard deviations (error bars)
are indicated. Mean values for all conjugates were compared to the
mean value of the (R-Ahx-R);~PMO reference conjugate using
Student’s r-test. 1, (R-G-R),~PMO; 13, (r-Ahx-R),~PMO; 5, (R-Ahx-
R)4+~PMO.

lipid vesicles. We compared conjugates 1, 5, 9 and
(Arg)s—PMO. All conjugates induced a fairly modest leak-
age that was strongly promoted at pH 5.5. In correlation
with the data on splicing activity, (R-Ahx-R),~PMO con-
jugate was by far the most active in this group, followed
by (R-G-R),~PMO, (R-AbulL-R),~PMO and (Arg)s—
PMO. Interestingly, the more hydrophobic (R-AbulL-
R),~PMO conjugate induced considerably less leakage
than (R-Ahx-R),~PMO (Figure 8). Our data thus indicate
that the liposome destabilizing activity of the different
CPP-PMOs correlated with their splicing correction
activity. This again indicates that the efficiency of
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Figure 8. CPP-PMO-induced leakage of encapsulated dye from lipid vesicles mimicking late endosome membrane. (A) Influence of CPP structure.
Conjugates (5 uM final concentration) were added to 2 ml of liposomes (25 uM) loaded with ANTS and DPX in MES buffer (pH 5.5). Single representative
curves are shown for each conjugate. (R-G-R)4;~PMO (black curve); (R-Ahx-R),~PMO (red curve); (R-AbuL-R),~PMO (green curve); Rg-PMO (yellow
curve). (B) pH dependence. Extent of encapsulated dye leakage after 30 min incubation with different CPP-PMO conjugates was measured in either Tris
(pH 7.4: white bars) or MES (pH 5.5: black bars) buffer. Each experiment was made in triplicate. Mean and standard deviation (error bars) are shown.
Increase in leakage extent at pH 5.5 as compared to pH 7 is statistically significant for conjugates 1 and 5. At pH 5.5 differences in leakage extents between
all tested conjugates are statistically significantly. Statistical significance of the difference in the mean values was tested using paired, two-tailed Student’s
t-test at significance level of 0.05. 1, (R-G-R),~PMO; 5, (R-Ahx-R),~PMO; 9, (R-AbuL-R),~PMO.

endosomal escape is a major contributing factor for the
efficient nuclear delivery of these CPP-PMO conjugates.

DISCUSSION

New arginine-rich CPPs have recently been proposed for
the nuclear delivery of neutral ON analogs as PMO (3) or
PNA (10). They represent a significant improvement over
first generation CPPs as Tat, Pen, oligoarginine or oligo-
lysine since they allow a sequence-specific splicing correc-
tion at lower concentrations (EC 50 ranging between 0.5
and 2.0 uM) which do not lead to membrane permeabili-
zation and, importantly, do not require endomosomolytic
drugs or treatments. Importantly as well, (R-Ahx-R)4—
PMO conjugates lead to a sustained expression of dystro-
phin in skeletal muscles when injected intraperitoneally
(5mg/kg) in DMD mice (25,26). These encouraging data
should however be tempered since these may be still high
doses too close to the toxic doses found in other murine
models (6).

The present SAR study has therefore been initiated
in order to delineate step(s) limiting the splice correcting
activity of (R-Ahx-R),~PMO as well as important mole-
cular features of the (R-Ahx-R),~CPP moiety.

Spacing of the guanidinium charged groups in arginine-
rich CPPs has been extensively studied by Wender et al.
(20) and found to be a key determinant of their cellular
uptake. A series of (R-X-R),~PMO conjugates with a
X linker extending from two to eight atoms have been
compared in terms of cellular uptake, splicing correction
efficiency and affinity for heparin (Figure 1B and R. Abes
and H. Moulton). As expected, heparin (chosen as a
model heparan sulfate) affinity decreased significantly
with an increase in X linker length and with a decrease
in cationic charges density (Figure 1B). In keeping with
this observation, cellular uptake as monitored by FACS

analysis decreased in parallel (Figure 4). However, the
ranking of these (R-X-R);~PMO conjugates in terms of
splicing correction efficiency had a bell-shaped profile with
(R-Ahx-R)4,~PMO being significantly more efficient
than (R-G-R),~PMO (Figure 1C and data not shown).
These observations do strongly suggest that another step
than cellular uptake is responsible for differences
in splicing correction efficiency among these (R-X-R)s—
PMO conjugates.

Whether too much affinity for heparan sulfates could
be detrimental for dissociation of the heparan-bound
material in endocytic vesicles and for endosomal escape
is a possibilty but it is unfortunately not amenable to
direct demonstration. It is worth pointing out that similar
conclusions could be drawn from our previous compari-
son of (Arg)o-PMO, Tat-PMO and (R-Ahx-R),~PMO
conjugates. (R-Ahx-R),~PMO was found more active in
the splicing correction assay despite binding less efficiently
to heparin and being taken up less well than the parent
(Arg)o—PMO and than Tat-PMO (3).

The (R-Acy-R)4,~PMO conjugate (compound 7 with a
C8 linker) did not follow the ranking observed for other
conjugates in this series since it had lower heparin-binding
affinity but corrected splicing less efficiently than (R-Ahx-
R),~PMO. This might be explained by the higher hydro-
phobicity of its longer spacer as evidenced by an increased
retention on a Cl8-affinity column (Figure 2B).

In keeping with this hypothesis, increasing the hydro-
phobicity of the X linker above a threshold value
(Figure 2B) while maintaining charge spacing in a series
of (R-X-R)4,~PMO analogs (Figure 2B) had little impact
on cellular uptake (Figure 4) but decreased significantly
splicing correction efficiency (Figure 2C). Being too
hydrophobic might conceivably lead to entrapment into
membranes and as a consequence might be detrimental to
endosomal release.



The parent and most active (R-Ahx-R)4~PMO conju-
gate was rather resistant to proteolytic degradation in
serum but was still cleaved by cellular proteases (11).
It was thus anticipated that the (r-Ahx-R),~PMO in
which some L-Arg residues have been replaced by their
p-analog would become more protease-resistant and as a
consequence more active in the splicing correction assay.
Unexpectedly, (r-Ahx-R),~PMO was significantly less
active than (R-Ahx-R),~PMO thus indicating that meta-
bolic stability is not a limiting factor at least in these
in vitro experiments. Whether (r-Ahx-R);~PMO might be
of interest for in vivo applications will have to be evaluated
using transgenic murine models for splicing correction.
Whether the lower biological activity of (r-Ahx-R)s—
PMO could be due to its increased affinity for heparin is
a possibility. Alternatively, earlier work from our group
(11) has shown that the peptide part of (R-Ahx-R),~PMO
was rapidly degraded in cells thus releasing free PMOs.
It is fully possible that the more stable CPP entity may
decrease the rate of endosomal release of PMO. Along the
same lines, linking a splice correcting PNA and a CPP
(RePen in this case) by a stable linker gave rise to a
lower efficiency than in the case of a reducible disulfide
linker (27).

Altogether these SAR studies have pointed to the influ-
ence of heparin affinity and hydrophobicity on the splice
correcting activity of CPP-PMO conjugates. Remarkably,
relatively small changes in these parameters had a rather
significant impact on biological activity. Quite clearly, cel-
lular uptake could not be an explanation since, on the
contrary, we have observed in some instances an inverse
correlation between cellular uptake and biological activity.

In order to determine whether differences in biological
activity could be explained by differences in intracellular
trafficking, we deliberately permeabilized cells by a brief
treatment with saponin, using conditions known to have
little impact on the internal cellular architecture (22). Sapo-
nin treatment clearly lead to a complete re-localization
of FAM-labeled conjugates (Figure 6 and data not
shown) from a dotted cytoplasmic to an homogeneous
nuclear distribution in keeping with a direct membrane
translocation in the presence of saponin and an endocytic
process in its absence. As expected from these data, splicing
correction efficiency was largely increased in saponin-trea-
ted cells for all (R-X-R),~PMO (Figure 7 and data not
shown) thus indicating that retention within cytoplasmic
vesicles remains a major road-block even for the most
active of our conjugates.

We thus tentatively conclude at this stage that (R-X-
R)4~PMO accumulate in cytoplasmic vesicles after bind-
ing to cell surface glycosaminoglycans and endocytosis.
Differences in splicing correction might thus be primarily
due to the efficiency with which these conjugates escape
from endocytic vesicles and reach the cytoplasm.

Since a direct evaluation of endosome leakage in intact
cells could not be easily monitored, we have capitalized on
synthetic lipid vesicles with a lipid composition mimicking
that of the late endosomal membrane. We observed a
modest but significant fluorescent dye release in the pre-
sence of (R-X-R),~PMO. Importantly, the release of the
probe was strongly promoted at pH 5.5 that is the
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characteristic pH for late endosomes. Although prelimin-
ary, these studies do indicate that more active (R-X-R)4—
PMO conjugates in this series destabilize more efficiently
these lipid vesicles than less active ones.

In conclusion, our studies support the now well-
accepted scheme of cellular internalization involving
initial binding to cell surface glycosaminoglycans, endocy-
tosis and entrapment within cytoplasmic vesicles. Most of
the material unfortunately remains segregated in endocy-
tic vesicles even for the most active of our conjugates and
efforts should now be geared at improving endosomal
escape. Model systems described here might turn rather
useful in future SAR studies if pH-dependent liposome
destabilization can be correlated with splicing correction
efficiency. The most active conjugates will also have to be
monitored for their biodisponibility, metabolic stability
and biological activity in animal models.
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