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Abstract
The interactions of HIV-1 Env (gp120-gp41) with CD4 and coreceptors trigger a barrage of
conformational changes in Env that drive the membrane fusion process. Various regions of gp41
have profound effects on HIV entry and budding. However, the precise interactions between gp41
and the membrane have not been elucidated. To examine portions of membrane proteins that are
embedded in membrane lipids, we have studied photoinduced chemical reactions in membranes using
the lipid bilayer specific probe iodonaphthyl azide (INA). Here we show that in addition to the
transmembrane anchor, amphipatic sequences in the cytoplasmic tail (CT) of HIV-1 gp41 are labeled
by INA. INA labeling of the HIV-1 gp41 CT was similar whether wild-type or a mutant HIV-1 was
used with uncleaved p55 Gag, which does not allow entry. These results shed light on the disposition
of the HIV-1 gp41 CT with respect to the membrane. Moreover, our data have general implications
for topology of membrane proteins and their in situ interactions with the lipid bilayer.

The human immunodeficiency virus (HIV1) gains entry into its target cell through a fusion
process driven by its membrane protein gp41 (1). HIV-1 Env (gp120-gp41) is present on the
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surface of the virus in a metastable form generated by cleavage with furin of the gp160 Env
precursor (2). Upon binding to its target cell, the interactions of HIV-1 Env with CD4 and
coreceptors trigger a barrage of conformational changes in Env that drive the membrane fusion
process (3). The HIV-1 envelope glycoproteins’ disposition and reorganization as a result of
conformational changes is critical for entry and neutralization (4). Although different regions
of HIV-1 gp41 have profound effects on its fusogenic potency, the precise interactions of gp41
with membranes have not been elucidated. To examine portions of membrane proteins that are
embedded in membrane lipids, we have studied photoinduced chemical reactions in
membranes using the lipid bilayer specific probe iodonaphthyl azide (INA).

INA is composed of three moieties. The core of the compound is a naphthalene ring that confers
a very high hydrophobicity. Its partition coefficient in biological membranes of ∼105 (5)
ensures its selective and exclusive targeting to the lipidic bilayer. Its azido moiety allows its
photoactivation. Upon irradiation with near UV light, the azido group undergoes
transformation into a highly reactive nitrene that will covalently bind the proteins and lipids
in its vicinity (6). Finally, the iodine on this compound provides a very sensitive detection
through its radioactive form. [125I]-INA has been extensively used to exclusively label the
portions of membrane proteins that are embedded within the lipid domain (6-13). We applied
hydrophobic labeling to the HIV-1 Env expressed on the virus or on the surface of cells to
assess the topology of the Env glycoprotein.

MATERIALS AND METHODS
Reagents and Cells

Dulbecco's modified Eagle medium (DMEM), RPMI, fetal bovine serum (FBS), G418,
hygromycin, and antibiotics were obtained from Invitrogen (Carlsbad, CA). 293T and HeLa
cells were cultured in DMEM supplemented with 10% FBS and antibiotics (DMEM-10).
Different HIV-1 Env were transiently expressed on the surface of HeLa cells using the
recombinant vaccinia vectors vSC60 (IIIB/Lai BH8 Env) or vPE17 (14) (IIIB/Lai BH8 Env
truncated at AA733). GHOST (3) X4/R5 (G345), a HOS-derived cell line that stably expresses
CD4, CXCR4, and CCR5 was obtained from the AIDS repository. G345 were propagated in
DMEM-10 supplemented with 500 μg/ mL G418, 100 μg/mL hygromycin, and 1 μg/mL
puromycin. Anti HIV-1 p17 and p24 antibodies were purchased from Advanced
Biotechnologies Inc (Columbia, MD). Anti gp41 Mab Chessie 8 (epitope PDRPEG) was
originally developed by George Lewis (15) and obtained from the NIH AIDS Research and
Reference Reagent Program. Unconjugated mouse IgG True Blot was purchased from
eBioscience (San Diego, CA) and was labeled using Alexa fluor 680 succinimidyl ester
(Invitrogen, Carlsbad, CA) following the manufacturer's instructions. All other chemicals were
obtained from Sigma (St. Louis, MO) and from the highest purity available.

Virus Production
Virus particles were obtained through transfection of the pNL43 (AF324493) (PR+) or pNL43/
PR− plasmids (16) into 293T cells. The PR+ virus has a normal functioning protease whereas
the PR− virus is protease defective. The cells were maintained in culture in DMEM-10 and
transfected with Lipofectamine 2000 (Invitrogen, Carlsbad, CA). Transfections were
performed in 10 cm dishes plated at 106 cells/dish. Virus-containing super-natants were
harvested 2 days post-transfection, and virions were concentrated (10 to 20×) by centrifugation
(20 000×g for 2h). Following centrifugation, pelleted virons were resuspended in 0.5 mL of
RPMI supplemented with 10% FBS.
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INA Labeling
[125I]-INA was prepared as previously described (7). [125I]-INA or INA was added to the cells/
virus in suspension under subdued light. The cells/virus were then incubated at 4 °C for 10
min. Reduced glutathione was added to a final concentration of 20 mM in order to quench any
activated INA molecule that would partition out of the lipidic bilayer. The cells were irradiated
with UV light using a 100-W ozone-free mercury arc lamp placed in a lamphouse with a
collector lens (Olympus, Center Valley, PA). Samples were irradiated through a 310-nm cutoff
filter placed in front of the lens (to allow transmission of the 313-, 334-, and 365-nm mercury
emission bands) and through a water filter (to prevent sample heating) at a distance of 5 cm
from the light source. At that point, the light dose was 10 mW/cm2·s. Irradiation times were 2
min.

Quantification of Protein Labeling
Upon INA activation, the virus/cells were lysed for 2 h at 25 °C. The lysis buffer consisted of
2% Triton X-100 in Tris-buffered saline (TBS; 50 mM Tris, 138 mM NaCl, 2.7 mM KCl, pH
8) supplemented with protease inhibitors. The insoluble material was spun down at 20 000g
for 15 min. The supernatant was then diluted twice in TBS, and the samples were subjected to
immunoprecipitation using Chessie 8, anti p17, or anti p24 antibodies. Upon overnight
incubation with the respective antibody, protein G-agarose was added, and the sample was then
mixed by rotation for 2 h. Each sample was washed five times with TBS containing 1% Triton
X-100. Proteins were separated by 14% SDS–PAGE and transferred to nitrocellulose
membranes. Blots were incubated for 1 h in Odyssey blocking buffer (LICOR, Lincoln, NE).
The blots were incubated with the appropriate primary antibody for 2 h at room temperature
in Odyssey blocking buffer containing 0.2% Tween-20, washed four times for 10 min each
with 0.1% Tween-20 in PBS (PBST), incubated with Alexa Fluor 680 labeled True Blot
antibody in Odyssey blocking buffer with 0.2% Tween-20, and washed four times for 10 min
with PBST. Immunoreactivity was detected by using an Odyssey infrared imaging system (LI-
COR, Lincoln, NE). The blots were then exposed to PhosphorImager screens and quantitated
using a Typhoon system (GE Healthcare, Chalfont St. Giles, United Kingdom).

In Gel Digestion and MS Analysis of gp41
Full-length glycosylated gp41 was purified as described earlier (17) and submitted to digestion
with V8 protease (Sigma, St. Louis, MO) as follows. The V8 protease was resuspended in 125
mM Tris HCl, pH 6.8. Two to four micrograms of V8 was then added to the purified gp41
(about 30 μg), and the digestion was left to proceed for 1 h at 37 °C. The sample was then
submitted to SDS-PAGE and the gel stained with sypro ruby (BioRad, Hercules, CA). The gel
bands corresponding to gp41 were destained with 1% hydrogen peroxide. Gel slices were
washed with water and 1% formic acid, dried in a Speedvac, rehydrated in 25 mM
NH4HCO3 (pH 8.2) containing 10 mM DTT, and incubated at 56 °C for 1 h. The rehydration
solution was replaced with 25 mM NH4HCO3, pH 8.2 containing 55 mM iodoacetamide and
incubated for 45 min at ambient temperature in the dark. The gel slices were washed with 25
mM NH4HCO3, pH 8.2, dehydrated in a SpeedVac, and rehydrated with 25 mM NH4HCO3,
pH 8.2, to which 20 ng/μL porcine trypsin had been added. After overnight digestion at 37 °
C, peptides were extracted three times with 70% ACN/ 5% trifluoroacetic acid. The combined
supernatants were ZipTipped, lyophilized, and stored at −20 °C until analysis. The sample (1
μL) was cocrystalized with an equal volume of a saturated solution of α-cyano-4-
hydroxycinnamic acid in 50% ACN/1% trifluoroacetic acid and spotted directly on a stainless
steel matrix-assisted laser desorption ionization (MALDI) plate. Mass spectra were acquired
using a 4700 MALDI-TOF/TOF mass spectrometer (Applied Biosystems, Framingham, MA)
operating at a laser frequency of 200 Hz. The mass spectra were internally calibrated (<20
ppm) using trypsin autolysis products. Postacquisition baseline correction and smoothing was
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carried out using software provided as part of the mass spectrometer. Alternatively, mass
spectra were acquired using a TofSpec 2E (Micromass, Manchester, UK) operated using an
acceleration voltage of 15 kV. In that case, bradykin and ACTH clip were used as internal
calibrants, and postacquisition baseline correction was achieved using the MassLynx software
(Waters, Milford, MA).

In Silico Analysis of INA-Labeled Peptides
The monoisotopic masses of the peptides were recovered and analyzed in silico. We first
computed the anticipated peptide size pattern resulting from the digestion of gp41 with trypsin
and V8 protease. Upon irradiation, INA loses a nitrogen molecule to generate the nitrene radical
according to Scheme 1. Since little is known on the exact chemical reaction that nitrene
undergoes with the different amino acids, we modified the predicted pattern with the addition
of the monoisotopic MW of the moiety that binds to the protein, 266.954 Da, and the possible
loss of hydrogen or hydroxyl moiety that can result from the addition. This gave us the in silico
peptide size pattern. In order to identify any site of modification in the protein, we studied the
discrepancies between this in silico pattern and the actual pattern experimentally obtained in
the INA labeled sample. Any difference lower than 25 ppm was considered as a possible
identification for INA modification.

RESULTS
Identification of gp41 Peptides by μLC/MS2 Analysis

The analysis of gp41 membrane inserted regions by photosensitized labeling necessitated the
development of new technologies for membrane protein purification and fragmentation.
HIV-1IIIB Env was expressed on the surface of HeLa cells using the recombinant vaccinia
construct vSC60 and labeled with INA. Full-length gp41 was purified to homogeneity by
continuous elution electrophoresis with simultaneous detergent exchange followed by affinity
chromatography (17). Following in-gel tryptic digestion, sequence analysis was performed by
microcapillary reverse-phase HPLC nanoelectrospray tandem mass spectrometry (μLC/MS2)
using a Finnigan LCQ DECA XP quadrupole ion trap mass spectrometer at the Harvard
Microchemistry Facility. Optimization of the in-gel tryptic digestion protocol resulted in 49%
coverage of the protein by amino acid count (data not shown). However, the coverage did not
identify peptides corresponding to the N-terminal region of HIV-1 gp41 (fusion peptide).
Moreover, using this method, we could not ascertain the presence of INA in any of the peptides
of gp41. This artifact could result from the INA group interfering with the peptide's ability to
undergo ionization, the running of the peptide on the chromathography column or the peptide's
fragmentation pattern.

Analysis of INA-Labeled Peptides by MALDI-MS
Since MS2 sequencing analysis did not reveal INA-labeled portions of HIV-1 gp41, an
alternative strategy was employed. Full-length INA labeled gp41 was purified to homogeneity
according to our published method (17). Upon digestion, the samples were submitted to
MALDI-MS analysis to avoid the possible artifacts inherent to the MS2 analysis mentioned
above. We yielded an average coverage of about 35%. Our goal is to identify any site of
modification in the protein. The attachment of INA to the protein produced discrepancies
between the anticipated peptide sizes predicted from an in silico digest of the unmodified
protein and the actual MS peptide map obtained for the INA labeled sample. When the
experimental masses were matched against an in silico digest of the protein along with the
predicted mass of the modification, gp41 peptides labeled by 0−4 INA molecules were
identified (Figure 1A,B). Two peptides from the C-terminal tail (LLP-1 and LLP-2) that
interact with lipid membranes were labeled with several INA molecules each. The peptide that
includes the transmembrane domain was labeled with one INA molecule. The labeled peptide
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was at the C-terminal end of the transmembrane domain. In order to examine portions of HIV-1
gp41 labeled as a result of fusion, we performed the same analysis following the coculture of
env-expressing and target cells. We used as effector cells Hela infected with vSC60 and as
targets G345. These cells were incubated together for 3 h at 37 °C, at which time fusion is
complete (18,19). The pattern of gp41 labeling with INA after fusion yielded a similar result,
i.e., the labeling with INA of the transmembrane domain and the two amphipathic peptides
LLP-1 and LLP-2 (Figure 1B).

[125I]-INA Labeling of the Cytoplasmic Tail (CT) of gp41
In order to confirm that massive INA labeling of WT HIV-1 gp41 occurred at the CT, we
examined INA labeling of HIV-1 gp41 whose C-terminal tail was truncated (104 amino acids
from the C-terminal). The truncated gp41 was expressed in HeLa cells through the vaccinia
vPE17 vector, and the wild type gp41 was expressed in the same cells using vaccinia vSC60
vector. Following photoreaction with [125I]-INA, both forms of gp41 were isolated by
immunoprecipitation, and the extent of [125I]-INA labeling was measured by autoradiography
of the isolated proteins using a “Typhoon” phosphorimager. The truncated form of gp41 loses
about 80% of its [125I]-INA labeling, as shown in Figure 2. Since this truncation corresponds
only to the loss of one-third of the protein, this experiment shows that there is a highly specific
labeling of the truncated domain and that a preponderant fraction of the labeling observed in
the wild type protein can be attributed to the interaction of the C-terminal domain with the lipid
phase of the membrane. To rule out the possibility that INA traverses the viral membrane and
reacts with the gp41 CT outside of the lipidic environment, we examined Gag labeling by INA.
p17 is presumably associated with gp41 (20) and only interacts with the membrane through its
myristoyl moiety (21) whereas p24 is a soluble protein that has no known direct interaction
with the lipidic bilayer. Figure 3 shows only background labeling of matrix proteins as
compared with gp41, indicating that the gp41 CT regions are indeed embedded in the viral
membrane.

Effect of p55 Cleavage on gp41 [125I]-INA Labeling
It has been shown that gp41 is more stably associated with immature rather than mature viral
particles (22,23), and cleavage of the p55 Gag precursor protein by the viral protease is required
to generate Envs with maximal fusogenicity. In order to examine the gp41 topology in HIV-1
virions with uncleaved p55 Gag, we generated such particles from protease-defective HIV-1
(PR−). As shown in Figure 4 the amount of INA incorporation into HIV-1 gp41 was similar
for PR− and PR+ particles. These results are consistent with the hypothesis that the gp41-Gag
associations that prevail with uncleaved Gag do not affect the association of the gp41 CT with
the viral membrane.

DISCUSSION
Membrane fusion mediated by HIV-1 envelope glycoproteins (gp120/gp41) is a critical step
in the entry of the virus into susceptible cells. The fusion reaction involves the binding of the
trimeric viral envelope glycoprotein gp120/gp41 to cell surface receptor CD4 and chemokine
coreceptor CXCR4 or CCR5. These interactions trigger conformational changes in the
envelope proteins (3) that ultimately lead to the formation of a six-helix bundle core structure,
comprising the N- (N-HR) and C- (C-HR) terminal heptad repeat regions of the gp41
ectodomain (24-26), and membrane fusion (1,27). In previous studies, we have dissected these
steps kinetically and analyzed the molecular features of the intermediates (28,29). Although
the resolution of the gp41 core structure has guided our thinking about the way gp41 mediates
membrane fusion, some crucial pieces of the puzzle are still missing. The high-resolution gp4l
structures do not include the fusion peptide (FP), the membrane proximal external region
(MPER), the transmembrane anchor (TM), or the cytoplasmic tail (CT). Generally, information
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regarding the interactions of these regions with the bilayer membrane has been gleaned from
studies of interactions between peptides representing sequences of these regions and lipid
membranes (30-32). However, a direct comparison of membrane-interactive properties of these
peptides with liposomes and their function in the intact envelope glycoprotein is fraught with
pitfalls. For instance, the ability of HIV-1 gp41 to promote membrane fusion can be completely
abolished by a single amino acid G10V mutation within the fusion peptide (33). However, that
same mutation did not affect the ability of the peptide to mediate lipid mixing in liposomes
(Viard et al., unpublished). Nieva and Suarez (34) have performed a theoretical analysis to
detect amino acid sequences of viral envelope glycoproteins putatively engaged in interactions
with the target membranes using the classical Kyte–Doolittle hydropathicity scales as well as
the hydrophobicity-at-interface scale, as proposed by Wimley and White (35). Of interest in
this context is the fact that peptide sequences that score high on the Kyte–Doolittle scale but
low on the Wimley–White scale (such as TM, LLP-1, and LLP-2) show significant INA
labeling in this study. Conversely, a peptide sequence, like MPER, that scores low on the Kyte–
Doolittle scale but high on the Wimley–White scale and is membrane-active in liposome assays
does not seem to be labeled by INA. This observation is consistent with the hypothesis that
INA labeling requires some measure of insertion of the peptide into the hydrophobic portion
of the lipid bilayer, and that in the context of the full length protein, interactions with the
membrane will be altered.

According to the “sticky finger” models (36), it is generally assumed that the fusion peptide
inserts into the target cell following the triggering of gp120-gp41 complexes by host cell CD4
and coreceptors. However, in the case of HIV-1 gp41 fusion peptide insertion has yet to be
demonstrated. This has been done for influenza hemagglutinin (37) and VSV (38) by the group
of Joseph Brunner, the pioneer of hydrophobic membrane protein photolabeling techniques,
using carbene-based hydrophobic markers incorporated in liposomes. Liposomes are, however,
not suitable targets for HIV, and our labeling approach is based on the use of aryl azides that
can be added to viruses or cells and activated in situ. This technique was proved efficient in
following the incorporation of viral proteins into target cells as a result of fusion of influenza
virus (11), VSV (12), and HIV/SIV (18). We could not, however, detect differential labeling
of portions of gp41 resulting from the fusion process. If for VSV and influenza all the spikes
can be simultaneously activated and undergo conformational change upon low pH triggering,
HIV relies on the sequential interactions with its receptor and coreceptor. The percentage of
total Env molecules that are actually engaged in the fusion process is thought to be low (39,
40), and their study might require a specific isolation.

Nevertheless, this study has been able to reveal some important aspects of the topology of
HIV-1 gp41 in the membrane, specifically located in the CT. HIV and SIV CTs are remarkably
long, and alteration in their length or mutations in conserved sequences have revealed their
participation in different steps of the virus life cycle. During the circulation of the virus, the
length of the tail has been correlated to a differential exposure of the virus to neutralizing
antibodies (41). At the stage of entry, the cytoplasmic tail has also been implicated in regulating
the kinetics of fusion and in the ability of the Env to promote syncytia (42,43). Mutational
analysis has shown that the tail interacts with p55 Gag protein at the stage of budding, allowing
the incorporation of the envelope protein into the virion (44-46). Interestingly, this interaction
has been related to the ability of the virus to fuse with its target. Inhibition of the protease
activity encoded in the virus prevents the cleavage of p55 and has been shown to regulate fusion
(22,23). Studies with peptides derived from two α helical “lentivirus lytic peptide” domains
(LLP-1 and LLP-2) that are highly conserved in HIV-1 have suggested that these domains
strongly interact with the cytoplasmic leaflet of plasma membrane (47-50). The INA-labeling
data presented in this study are consistent with this model (Figures 1-3). We find that INA
labeling of the HIV-1 gp41 CT was the same in a wild type virus as in a mutant HIV-1 virus
with uncleaved p55 Gag, which does not allow entry (Figure 4). Although these data do not
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reveal differences in Gag-gp41 CT interactions between PR+ and PR− virions, they do set
limits on models that consider effects of p55 Gag on HIV-1 Env glycoprotein-mediated fusion.
In very general terms, our data show how topology of membrane proteins can be determined
and how membrane proteins interact with the lipid bilayers in living cells and viruses.
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Scheme 1.
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Figure 1.
In silico mapping of INA incorporation into gp41. gp41 was labeled with INA and purified to
homogeneity. Upon digestion with V8 and trypsin, the peptides generated were analyzed by
MALDI analysis (representative spectra shown). The observed peptides were compared to the
theoretical computed ones. Differences corresponding to the possible incorporation of INA
molecules within 25 ppm were conserved. (A) gp41 recovered before fusion. (B) gp41
recovered after fusion.
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Figure 2.
Labeling with [125I]-INA of wild type and tailless mutant of gp41 expressed in Hela cells with
the vSC60 and vPE17 vaccinia constructs respectively. (A) Western blot detection of gp41
with Chessie 8 and reading of the same blot by phosphorimager. (B) Quantitation of the
radioactivity in gp41 normalized by the amount of protein recovered as detected by western
analysis.
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Figure 3.
Incorporation of [125I]-INA into viral proteins. PR+ (wild type NL43) virus was labeled with
[125I]-INA and p17, p24, and gp41 were recovered by immunoprecipitation. Upon running on
a gel and blotting, each protein was detected by western analysis and their incorporation of
[125I]-INA was measured on a phosphoimager. The resulting quantitation shown represents
the average of three experiments.
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Figure 4.
Incorporation of [125I]-INA into gp41 of PR+ and PR− viruses. PR+ and PR− viruses were
labeled with INA and gp41 was recovered by immunoprecipitation. (A) Western blot detection
of gp41 with Chessie 8 and reading of the same blot by a phosphorimager. (B) Quantitation of
the [125I]-INA incorporation in gp41 normalized by the amount of protein recovered as detected
by western analysis. The resulting quantitation shown represents the average of three
experiments.
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