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Abstract
When duplex DNA is altered in almost any way (replicated, recombined, or repaired), single strands
of DNA are usually intermediates, and single-stranded DNA binding (SSB) proteins are present.
These proteins have often been described as inert, protective DNA coatings. Continuing research is
demonstrating a far more complex role of SSB that includes the organization and/or mobilization of
all aspects of DNA metabolism. Escherichia coli SSB is now known to interact with at least 14 other
proteins that include key components of the elaborate systems involved in every aspect of DNA
metabolism. Most, if not all, of these interactions are mediated by the amphipathic C-terminus of
SSB. In this review, we summarize the extent of the eubacterial SSB interaction network, describe
the energetics of interactions with SSB, and highlight the roles of SSB in the process of
recombination. Similar themes to those highlighted in this review are evident in all biological
systems.

The genomes of all cellular organisms are organized as double-stranded (ds) DNA, with the
information content, in the form of nucleotide bases, sequestered in the interior of the protective
double helix 1; 2. To provide DNA replication, recombination, and repair machinery access to
genomic information, dsDNA must be unwound to form single-stranded (ss) intermediates.
Such processes are obligatory, but they are not without risks. ssDNA is prone to chemical and
nucleolytic attacks that can produce breaks or lesions that are difficult to repair and can self-
associate to create impediments to genome maintenance 3-9. To help preserve ssDNA
intermediates, cells have evolved a specialized class of ssDNA-binding (SSB) proteins that
associate with ssDNA with high affinity and in a sequence-independent manner 10-21. SSB
binding protects ssDNA from degradation 10; 22-25, and, more globally, defines the
nucleoprotein substrates upon which DNA replication, recombination, repair, and replication
restart processes must act. With these central roles in genome maintenance, it is no surprise
that SSB proteins are conserved throughout all kingdoms of life and are indispensable for cell
survival 26-28.

Beyond their eponymous roles in DNA binding, SSB proteins have a second, less well-
appreciated role in which they physically associate with a broad array of cellular genome
maintenance proteins. SSB interaction with heterologous proteins targets enzymes to active
genome maintenance sites and, in many cases, stimulates the biochemical activities of SSB's
partner proteins. In this review, we focus on several aspects of eubacterial SSB interactions
with heterologous proteins. First, we summarize the extent of SSB's interaction network by
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describing what is known about its many partner proteins. In this section, we focus primarily
on E. coli SSB as a workhorse for understanding SSB structure and function. Second, we
consider the thermodynamc mechanisms underlying the binding of heterologous proteins to
SSB and the ways in which ssDNA binding by SSB influences its interaction with other
proteins. These are important features for defining the specificity of binding to SSB. Finally,
we summarize how heterologous proteins have adapted to carry out DNA recombination
reactions in the cellular environment where mediator proteins regulate recombinase loading
onto ssDNA/SSB nucleoprotein substrates. Although this review focuses on eubacterial SSBs,
it is clear that eukaryotic SSB proteins have similarly evolved to interact with numerous
genome maintenance enzymes as has been described in excellent reviews 26; 29. Thus,
throughout the kingdoms of life ssDNA/SSB complexes are not merely inert particles but are
instead dynamic centers that play a key role in choreographing the processes surrounding DNA
replication, recombination, and repair.

SSB PROTEIN OVERVIEW
Eubacterial SSB proteins are linked by two common structural features. The first is the use of
oligonucleotide/oligosaccharide-binding (OB) domains to bind ssDNA through a combination
of electrostatic and base-stacking interactions with the phosphodiester backbone and
nucleotide bases, respectively 30-37. The second is SSB oligomerization that brings together
four DNA-binding OB folds in the protein's active form 34; 38-42. E. coli SSB, which encodes
a single OB fold in each monomer and functions as a tetramer, has served as the prototypical
SSB protein for decades 12; 19; 34; 35; 39; 43. Rare exceptions to the E. coli SSB-type
arrangement exist, including the SSBs from the Deinococcus-thermus genera, which contain
two OB folds per monomer and assemble as homodimers 44-47 (Figure 1). SSB proteins in
non-eubacterial systems have distinct quaternary structures, including the heterotrimeric
eukaryotic Replication Protein A (RPA) 29, which acts as a heterotrimer, and several
bacteriophage and viral SSB proteins that function as monomers (T4 gp32) 41 and dimers (T7
gene 2.5) 41; 42.

Eubacterial SSB proteins can bind ssDNA in a highly cooperative manner, which leads to
clustering of SSB protein tracts to form protein filaments on long ssDNA 12; 13; 15. However,
E. coli SSB only binds ssDNA with high cooperativity in one of its binding modes (see below).
The eukaryotic RPA SSB protein also does not display significant cooperativity in its binding
to ssDNA 29; 48. Hence the general role of this cooperativity remains unclear. Due to the
presence of four ssDNA binding sites, the E. coli SSB tetramer can bind to long stretches of
ssDNA in multiple binding modes differing in the number of OB-folds that interact with the
ssDNA 49-51. The primary ssDNA binding modes are denoted as the (SSB)65, (SSB)56 and
(SSB)35 modes, where the subscript reflects the average number of nucleotide residues
occluded by each tetramer in the complex. In the (SSB)65 mode, ∼65-nucleotides of ssDNA
wrap around and interact with all four subunits of the tetramer, whereas in the (SSB)35 mode,
∼35-nucleotides interact with an average of only two subunits (Figure 1). The (SSB)65 binding
mode is a limited cooperativity mode in which SSB shows little tendency to form protein
clusters along ssDNA; the (SSB)35 binding mode, on the other hand, is a high, unlimited
cooperativity mode in which SSB can form long protein clusters along ssDNA 14; 15; 50. The
relative stabilities of the different SSB-DNA binding modes is influenced by monovalent salt
concentration, Mg2+ concentration as well as the polyamines, spermine and spermidine 49;
51; 52, with the (SSB)65 mode being favored at monovalent salt concentrations above 200 mM.
The (SSB)35 mode is also favored at high SSB to ssDNA ratios 15; 50. Whether these different
SSB binding modes have specific functions in vivo is not clear, although it has been proposed
that they may be used selectively in different processes in the cell. For example, under
conditions where RecA protein stimulates DNA strand exchange in vitro, SSB binds primarily
in the low cooperative, fully wrapped (SSB)65 binding mode 53. The (SSB)35 mode, which
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binds with high nearest neighbor cooperativity, has been proposed to function in DNA
replication 37. The yeast RPA also undergoes a salt-dependent transition from a lower to a
higher site size ssDNA binding mode 48.

Eubacterial SSB proteins have been shown to bind more than a dozen different proteins (Figure
2). For all cases tested thus far, complex formation requires the C-terminal region of SSB
(SSBCt), suggesting a conserved mechanism by which proteins can recognize and bind to SSB.
Indeed, the C-terminus of eubacterial SSB proteins, which ends in an Asp-Phe-Asp-Asp-Asp-
Ile-Pro-Phe sequence in E. coli SSB, is very well conserved 54 (Figure 1). Owing to its high
density of Asp residues, this region is often referred to as SSB's “acidic tail,” but the
hydrophobic tripeptide that forms the extreme C-terminus is well conserved among SSBs and
is critical for protein interactions (see below). Thus, the C-terminus of SSB should more
accurately be considered as an amphipathic sequence element. In contrast to the well-folded
OB domains, the C-termini of bacterial and bacteriophage SSB proteins appear to be
structurally dynamic as they are readily removed by proteolysis 20; 55-57. Further, the C-
terminus is not visible in the crystal structure of full-length E. coli SSB 35. Proteolysis of the
SSB-Ct is stimulated by ssDNA binding, and deletion of the SSB-Ct influences the relative
stabilities of the (SSB)35 and (SSB)65 binding modes 58. Recent studies have shown that the
C-terminal tail of the phage T7 gene 2.5 SSB protein can compete with ssDNA for binding to
the OB-fold 59.

Mutations within the SSB C-terminus have detrimental effects on E. coli cell survival. One
well-studied mutation (ssb113) changes the penultimate Pro of the E. coli SSB C-terminus to
a Ser 60; 61. This mutation confers temperature-sensitive lethality by producing an SSB variant
that is competent to bind DNA but can no longer support DNA replication at non-permissive
temperatures 60 and is hypersensitive to DNA damage even under permissive conditions 23;
62-65. A second set of mutations that alter the C-terminal-most E. coli SSB residue, Phe177,
similarly impair viability 66-68. In both cases, mutations that alter the SSB-Ct sequence
produce proteins that fail to interact properly with at least some of SSB's binding partners.
Deletion of 10 amino acids from the C-terminus of SSB renders the cells expressing that protein
inviable 69. These dramatic phenotypes have greatly illuminated the importance of SSB's
interactions with heterologous proteins to cellular genome maintenance pathways.

I. INTERACTION OF SSB WITH DNA METABOLISM PROTEINS IN
EUBACTERIA

In this section, we gauge the extent of SSB's interaction network by reviewing known
eubacterial SSB-interacting proteins, with a particular emphasis on E. coli proteins. Members
of the interaction network are grouped through their involvement in DNA replication,
recombination, replication restart, repair, or as “other SSB-binding proteins”, but it should be
recognized that in many cases these proteins function in several of the listed areas. Rather than
provide an extensive background on each protein, we have limited discussion of each to focus
primarily on what is known about the protein interactions with SSB and the biochemical and
cellular consequences of such interactions.

DNA REPLICATION
DNA Polymerase III – χ subunit. (χ binds SSB via the SSB-Ct; disruption of this
binding is lethal to cells)—The DNA polymerase III holoenzyme (Pol III HE) is the multi-
subunit replicative DNA polymerase in E. coli 70-77. Within the Pol III HE, the γ clamp loader
(comprised of γ, δ, δ', χ and ψ subunits) forms a subcomplex that loads the β processivity factor
onto DNA and helps tie the holoenzyme together through a network of protein-protein
interactions 74; 78; 79. Although χ and ψ are not required for clamp loading onto DNA 80,
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they do form a complex that facilitates the assembly of the clamp loader itself 81. Moreover,
χψ binds SSB directly via the χ subunit 67; 68; 82; 83, which allows the Pol III HE to clear
potentially inhibitory SSB proteins from lagging-strand DNA during DNA replication 62; 67;
82. SSB113 and an SSB truncation variant lacking the C-terminal 26 amino acids of the protein
fail to bind χ, establishing the SSB C-terminus as the site of the protein-protein interaction
67; 68; 83. The χ/SSB interaction plays a crucial role in Pol III HE function by driving
detachment of primase from RNA primers, which stimulates primer hand-off to the Pol III HE
68. This activity appears to be essential for cell viability in E. coli and accounts for the
conditional-lethal ssb113 phenotype 67; 84.

Primase. (Primase binds SSB, possibly at the SSB-Ct)—E. coli Pol III HE cannot
initiate DNA synthesis but instead extends preformed nucleic acid primers. RNA primers in
bacteria are generated by a specialized RNA polymerase called primase (the product of the
dnaG gene) 70; 77; 85-88. Primase constitutes the lone priming protein in E. coli 86; 89; 90,
functioning in both leading- and lagging-strand synthesis in oriC-dependent replication and in
replication restart processes 70; 87; 89; 91; 92.

E. coli primase interacts with the replicative helicase, DnaB, through its C-terminal protein
interaction domain 92-101. DnaB/primase complex formation recruits primase to the
replication fork, helps coordinate leading and lagging strand synthesis by Pol III by regulating
Okazaki fragment synthesis, and initiates bi-directional replication at oriC 92; 96; 100;
102-105.

In addition to its association with DnaB, primase also interacts with SSB. Primase/SSB
interaction strengthens the association between primase and the RNA primers it synthesizes
68 and is disrupted by the χ subunit, forming the basis of an involved handoff mechanism in
which primase dissociates from the RNA-DNA duplex, allowing clamp-loader assembly to
occur 68. The domains of primase and SSB that are required for complex assembly have not
been identified, but apparent competition between primase and χ for SSB suggests that primase
might bind to the C-terminus of SSB.

DNA RECOMBINATION
RecQ DNA helicase. (RecQ binds SSB via the SSB-Ct; interaction stimulates
RecQ helicase activity)—E. coli RecQ functions as the DNA helicase in the RecF-
recombination pathway 106-110, which helps repair gapped and UV-damaged DNA and can
repair dsDNA breaks in recBC-deficient cells 111-119. Notably, many RecF-recombination
pathway proteins interact with SSB, as will be described below and in section III. E. coli RecQ
also plays roles in the SOS DNA damage response 120 and in the suppression of illegitimate
recombination 121. RecQ promotes cell death in ruv recA(ts) uvrD E. coli cells, apparently by
driving the accumulation of excessive recombination intermediates 122. RecQ-mediated
recombination initiation 123, plasmid DNA catenation and supercoiling reactions 124; 125,
and converging replication fork resolution 126 have been reconstituted in vitro. The latter two
activities required the addition of Topoisomerase III, a type-Ia topoisomerase that appears to
have coordinated activities with RecQ proteins in eukaryotes and bacteria 127-131.
Interestingly each of RecQ's reconstituted reactions is stimulated by or requires SSB to proceed.

SSB has been shown to physically associate with RecQ and to stimulate RecQ DNA helicase
activity 132-134. SSB interaction with RecQ is mediated by the 9 C-terminal-most residues of
the SSB-Ct 132. SSB increases the efficiency of RecQ-mediated unwinding of a 71-basepair
duplex formed between an oligonucleotide and M13 circular ssDNA; gp32 from bacteriophage
T4 also stimulates this unwinding 133. SSB stimulates unwinding of a 30-basepair duplex
DNA with a 70-base single-stranded 3’ overhang; in this case, gp32 and RPA inhibit
unwinding, as does an E. coli SSB variant that lacks its SSB-Ct 132. These studies indicate
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that in some contexts interaction between RecQ and SSB is required for SSB stimulation.
Moreover, E. coli Topoisomerase III has recently been shown to interact with SSB 126; 135,
which could indicate that it acts with RecQ in a complex that is nucleated by SSB. Deletion
analysis has shown that the RecQ winged-helix subdomain is the site of interaction with SSB
132. This subdomain appears to be utilized as a platform for protein interactions in eukaryotic
RecQ helicases as well 136-138.

RecJ exonuclease. (RecJ DNA binding and exonuclease activities are
stimulated by SSB in vitro)—E. coli RecJ is an exonuclease that degrades ssDNA in a 5’
to 3’ direction 139. It functions as a member of the RecF-recombination pathway 10; 11;
140-142 and, in conjunction with RecQ, RecJ acts at stalled replication forks to degrade nascent
lagging strand DNA prior to resumption of replication 111; 112; 115; 143. Additional roles
for RecJ in base excision repair 144; 145 and in the excision step of methyl-directed mismatch
repair 146; 147 have been reported.

In vitro, RecJ binds to the 5’ end of ssDNA and requires a 5’ overhang for cleavage 148. Unlike
most nucleases, RecJ DNA binding and degradation are stimulated by SSB 148. Because T4
gp32 does not provide similar enhancement and RecJ is able to supershift SSB-bound DNA,
this enhancement is likely to be due to a specific physical interaction between E. coli SSB and
RecJ 148. Strengthening this view, RecJ has been observed in complex with SSB in affinity
purification studies 132; 135. The domains of RecJ and SSB that mediate their interaction have
not been identified.

RecG DNA helicase. (RecG binds SSB (likely via the SSB-Ct); RecG DNA binding
and ATPase activities are stimulated by SSB in vitro)—RecG is a monomeric DNA
helicase 149-152 that binds forked DNA structures 153 and promotes regression of stalled
replication forks 154-156. RecG has been implicated in a multitude of genome maintenance
activities, including ssDNA gap repair and recombinational repair of dsDNA breaks 10; 157,
chromosome segregation 158, stabilization of stalled replication forks 159, and resolution of
Holliday junctions 11; 160-163. RecG binds and remodels numerous nucleic acid structures,
including 3-way and 4-way DNA junctions160; 161, D-loops164, and R-loops149; 165. RecG
can promote rapid, ATP-dependent regression of replication forks in vitro with low
processivity 166 and can inhibit RecA-mediated strand exchange under conditions that are
suboptimal for RecA 166-168.

SSB stabilizes E. coli RecG binding to negatively supercoiled DNA, the substrate upon which
its ATPase activity is most highly stimulated 169. Maximal ATP hydrolysis also greatly
increases when SSB is included in RecG reactions 169. In B. subtilis, RecG colocalizes with
SSB at foci that are thought to be stalled replication forks 134. This colocalization is ablated
in cells where SSB lacks its 35 C-terminal most amino acids, suggesting that RecG binds the
SSB-Ct and requires SSB to associate with the replisome.

RecO. (RecO binds SSB (likely via SSB-Ct), which stimulates RecOR RecA
loading)—RecO is a mediator protein in the RecF recombination pathway 106; 170; 171.
Strains harboring mutations in recO exhibit numerous defects in DNA replication,
recombination, and repair 107; 116; 172-180 and in the SOS response 181; 182, but recO
mutations can also suppress illegitimate recombination caused by an excess of RecET 183;
184. Disruption of recO confers resistance to thymineless death 185 and sensitivity to UV
irradiation 119; 171; 186-188. UV sensitivity in strains with mutations in recF 106 and recR 
189 (also RecF-pathway genes) can be suppressed by over-expression of RecO and RecR
190 as well as by certain RecA mutants 191, suggesting that these proteins function in a
common pathway. RecO binds ssDNA and dsDNA and possesses a DNA-annealing activity
192; 193. This annealing activity is stimulated by SSB and inhibited by RecR 194. Together
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with RecF and RecR, RecO functions as a modulator of RecA activity 10; 195-199. RecO and
RecR facilitate RecA loading onto SSB-coated ssDNA 200-202. RecO and RecR produce an
apparent stabilization of RecA filaments that is likely related to the continued association of
RecR with the RecA filament after it forms 201; 202. The putative stabilization may reflect an
actual suppression of RecA filament disassembly or an enhanced re-loading of any RecA
protein that dissociates. Roles for RecO in DNA recombination are described in greater detail
in section III of this review.

SSB directly binds RecO 200 and limits the formation of RecOR complexes on ssDNA 199.
The ability of RecOR to load RecA is greatly reduced when RPA or an SSB variant lacking
the C-terminal eight amino acids are substituted for wild-type protein 199, suggesting that
direct physical interaction between SSB and RecO is necessary for maximal efficiency of the
RecOR-stimulated reaction. A similar effect has been observed in Thermus thermophilus:
RecO-assisted loading of RecA is achieved by means of the direct protein-protein interaction
between RecO and SSB 203. In this case, RecO binds both SSB and ssDNA and in doing so
displaces SSB from the DNA.

DNA REPLICATION RESTART
PriA DNA helicase. (PriA binds SSB via the SSB-Ct; assocaition with SSB
stimulates PriA helicase activity)—The primosome was originally identified as a
collection of E. coli proteins required for the conversion of the phage ϕX174 genome from its
single-stranded form to its double-stranded (replicative) form 204. In total, the primosome
consists of seven proteins: DnaB, DnaC, DnaG, PriA, PriB, PriC, and DnaT 76; 205. Of these,
DnaB, DnaC, and DnaG (primase) are necessary for initiation of replication of the E. coli
genome at oriC 70, whereas the remaining proteins drive origin-independent initiation
(replication restart) at the sites of collapsed replication forks 206-208. PriA initiates assembly
of the PriA/PriB/DnaT primosome by binding DNA structures that result from replication
failure and attracting PriB and DnaT 164; 207; 209-218. PriA also appears to be an important
anti-recombinase by binding stalled replication forks and preventing RecA binding and activity
219. In B. subtilis cells, PriA continuously colocalizes with the replication machinery 134. E.
coli cells with deleterious priA mutations harbor numerous defects including UV sensitivity
and defects in DNA repair, the SOS response, and chromosomal segregation 210; 217;
220-226.

PriA is a helicase that unwinds DNA with a 3’-to-5’ polarity 227-229. PriA can unwind DNA
duplexes of up to 40 bp on its own but requires SSB to process longer duplexes 228. PriA can
bind SSB-coated DNA 230 and can displace SSB from DNA 231. Its helicase activity is
stimulated by SSB on branched DNA substrates resembling replication fork lagging strands
but is inhibited by SSB on partial duplex DNA 213; 232. SSB is able to weakly stimulate PriA-
mediated unwinding of forked substrates that have no exposed ssDNA, suggesting that part of
the enhancement effect is due to SSB sequestering DNA that PriA has already unwound 232.

SSB stimulation of PriA appears to be a consequence of the two proteins physically interacting
via the SSB-Ct 232. Neither archaeal nor viral SSB are capable of stimulating PriA activity,
and E. coli SSB variants with the ssb113 point mutation or the C-terminal 10 amino acids
truncated fail to stimulate PriA activity 60; 232.

PriB. (PriB binds SSB in an undefined manner)—PriB is the second member of the
PriA-primosome to assemble 230; 233. It acts to stabilize PriA binding to ssDNA and assists
in primosome assembly by facilitating PriA binding to DnaT 233. Mutations in priB do not
exhibit the UV sensitivity, recombination deficiency, or constitutive activation of the SOS
response seen in priA mutants, but contribute to a very slow growth phenotype when combined
with priC mutations 234 and can influence plasmid copy number 235. PriB is a 12 kDa protein
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that exists as a dimer in solution 236; 237 and shares extensive sequence and structural
homology with SSB 236; 238; 239. Indeed, the similarities between SSB and PriB are of such
a degree that it has been hypothesized that PriB arose due to a duplication of the ssb gene
240. Consistent with this hypothesis, PriB binds to ssDNA 236; 237, although in an unexpected
fashion: while SSB binding of ssDNA is reliant upon base-stacking with the side chains of
aromatic residues as well as electrostatic interactions 34; 241, PriB appears to utilize a mainly
charge-based interaction made possible by multiple lysine residues 211, and is still able to
strongly bind an oligonucleotide even when its lone surface-exposed tryptophan is mutated
242.

PriB is also able to bind SSB-coated DNA, suggesting a protein-protein interaction 237. Like
SSB, PriB stimulates PriA helicase activity on forked DNA substrates and this stimulation is
further increased when SSB is present 243. Consistent with previous observations, SSB inhibits
PriA helicase activity on partial duplex DNA even when PriB is present 232; 243. PriB
physically interacts with the helicase domain of PriA and bridges a ternary complex between
PriA and DnaT 211. What role an interaction between PriB and SSB might play remains
unclear.

DNA REPAIR
Exonuclease I. (Exonuclease I binds SSB via the SSB-Ct; interaction stimulates
exonuclease activity; the structure of Exonuclease I in complex with SSB-Ct is
known)—Exonuclease I (ExoI) is a DnaQ-family exonuclease that processively degrades
ssDNA in a 3’-to-5’ direction 244-249. The gene that encodes ExoI in E. coli is known both
as xonA and sbcB owing to the two distinct phenotypes that stem from different ExoI variants
249-251. sbcB (suppressors of recBC) mutations restore cellular recombination activity and
reduce sensitivity to DNA damage from UV light in recBC- cells 249; 251; 252. The strong
reduction of ExoI activity in these cells appears to allow 3’ ssDNA ends to remain intact and
available as RecF pathway recombination substrates 106; 108. Ordinarily, ExoI would degrade
the ssDNA ends, leaving DNA structures that cannot be efficiently recombined 106; 108;
245; 249. xonA mutants also acquire UV-resistance but are deficient in recombination activity
compared to recBC- sbcB E. coli cells 249; 250; 253. The nucleolytic activity of ExoI is
important for degradation of incorrectly base-paired DNA in mismatch repair 146; 147; 254.
SSB also plays a central role in mismatch repair, which indicates that ExoI has adapted to act
on SSB/ssDNA complexes 254. Like RecJ, ExoI activity is stimulated by the presence of SSB.
This distinguishes both RecJ and ExoI from several other nucleases that are inhibited by SSB
25. ExoI also plays roles in the preservation of genome integrity by acting as a
deoxyribophosphodiesterase at apurinic and apyrimidinic sites 255; 256 and by suppressing
frameshift mutations 257; 258. The former activity is stimulated by SSB in vitro 259.

Several experiments have demonstrated a direct physical interaction between E. coli ExoI and
SSB, and have shown that this interaction is mediated by the SSB-Ct 10; 16; 25; 54; 66; 259.
This interaction is relatively strong (Ka∼ 7.1 × 106 M−1 54) and, consistent with an ExoI/SSB-
Ct interaction, SSB113 and C-terminal deletion variants fail to interact with ExoI 54; 66.
Recently, the structure of ExoI bound to a peptide composed of the nine C-terminal residues
of SSB was determined 54 (Figure 2C). In this structure, the C-terminal-most phenylalanine
of the SSB peptide packs into a hydrophobic pocket that is flanked by a basic surface that is
thought to contact acidic SSB-Ct residues that lie N-terminal to the phenylalanine 54.
Significantly, mutations that alter residues on the surface of ExoI that disrupt SSB binding also
abolish SSB stimulation of ExoI activity. Similar results are seen when the SSB tail is altered
or removed, suggesting that SSB acts to recruit ExoI to ssDNA 54.
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Uracil DNA Glycosylase. (Uracil DNA glycosylase binds SSB via the SSB-Ct;
interaction impacts uracil excision activity in a DNA-dependent manner)—Uracil
DNA glycosylase (UDG) catalyzes the first step in a base excision repair pathway by creating
an abasic site through removal of uracil from DNA 145; 260-265. The DNA harboring the
abasic site is then degraded and resynthesized 144; 145; 262. UDG has also been implicated
as a generator of dsDNA breaks when two uracils, located on opposite strands of a DNA duplex
and separated by seven or fewer bases, are recognized and targeted for repair in rapid succession
266.

SSB affects uracil excision activity by E. coli UDG in different ways depending on substrate
structure. On a ssDNA substrate that lacks secondary structure, SSB decreases excision up to
three-fold, but in a ssDNA molecule containing a tetraloop, SSB enhances UDG activity 7- to
140-fold depending on the position of the uracil 267. SSB proteins from other bacterial species
are also able to stimulate UDG uracil excision in a species-specific manner, but activity is
decreased when a UDG from any of the tested species is mixed with a heterologous SSB
268; 269. Surface plasmon resonance experiments suggested that these changes in activity
depend upon a physical interaction between UDG and SSB 268.

Handa and colleagues investigated UDG/SSB interactions in an exhaustive study 270.
Interaction between E. coli and M. tuberculosis UDG and SSB proteins was demonstrated by
yeast two-hybrid screens. In vitro, direct interaction between the proteins was demonstrated
by far Western blot analysis and interaction on ssDNA was shown using electrophoretic
mobility supershift assay 270. Surface plasmon resonance experiments yielded an association
constant (Ka) for E. coli UDG and SSB of 5.9 × 106 M−1, which is similar to the Ka for ExoI/
SSB complexes 54; 66; 270.

E. coli UDG can bind a chimeric SSB consisting of the C-terminal 47 amino acids from E.
coli SSB appended to the N-terminal 130 amino acids of M. tuberculosis SSB. It binds this
chimera, designated MtuEcoSSB, with lower affinity than wild type, but it does not bind the
reciprocal chimera at all (EcoMtuSSB, in which the C-terminus of M. tuberculosis SSB is
present). MtuEcoSSB is capable of stimulating E. coli UDG activity, but EcoMtuSSB has an
inhibitory effect 270. Therefore, the C-terminus of SSB appears to be required for UDG binding
and the attendant biochemical stimulation.

DNA Polymerase II. (DNA Polymerase II binds SSB; interaction enhances
processivity and replication beyond abasic sites)—DNA polymerase II (Pol II) is a
DNA repair polymerase 271-274. It is induced early in the SOS response up to 8-fold over
basal levels 272-280. Pol II participates in repair of and synthesis across various lesions
281-286 including thymine dimers 287 and as such is especially important in replication and
repair of UV-damaged DNA 179; 287; 288. Pol II plays a role in maintaining the fidelity of
replication 281; 283; 289; 290, which is severely compromised when its proofreading
exonuclease activity is removed 289; 291; 292.

Pol II was the first SSB interacting partner to be identified; indeed, in the manuscript
announcing the isolation of SSB, Sigal and colleagues noted that the “DNA unwinding protein”
that they purified to homogeneity had a strong stimulatory effect on DNA synthesis by Pol II
13; 18. Soon after, SSB was found to facilitate binding of Pol II to ssDNA, to stimulate the Pol
II-associated nuclease activity, and to form a complex with Pol II in the absence of nucleic
acid 19; 24.

When functioning alone, Pol II is poorly processive, synthesizing approximately five
nucleotides before dissociating from the template strand; however, Pol III HE processivity
factors (the β subunit and the clamp-loader complex) increase Pol II processivity to about 1600
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nucleotides in an SSB-dependent manner 293; 294. The processivity factors and SSB are
required for by-pass of abasic sites 293. β may play a role in determining when Pol II is activated
in SOS-induced cells 295, as deactivation of Pol II in a strain with a mutant β restored viability
to cells that would otherwise have been inviable 296.

DNA Polymerase V. (DNA Polymerase V binds SSB via the SSB-Ct; interaction
with SSB is critical for translesion synthesis activity in vitro)—DNA polymerase
V (Pol V) carries out translesion synthesis on damaged DNA 297; 298. Pol V is encoded by
the genes umuD and umuC and forms when two molecules of UmuD undergo RecA-mediated
cleavage to their active UmuD’ form 299-301 and assemble with one molecule of UmuC
302-305. In vitro, Pol V translesion synthesis activity requires RecA and SSB 303; 304;
306-310. Increasing concentrations of SSB increases initiation of Pol V bypass synthesis
308. This stimulation has recently been demonstrated to arise, in part, from a physical
interaction between SSB and Pol V 311.

SSB increases Pol V access to the 3’ end of a DNA gap that is flanked by RecA filaments
311. The SSB113 protein and viral SSB proteins can substitute for E. coli SSB in this respect.
However, when SSB113 is included in a translesion synthesis assay, little synthesis is observed,
whereas the reaction is substantially more efficient in the presence of wild-type SSB 311.
Interestingly, viral SSB proteins (gp32 from T4 phage and ICP8 from herpes simplex virus 1)
allowed for attenuated activity in which DNA synthesis proceeds up to, but not beyond, the
DNA lesion 311. When Pol III HE subunits β and γ (proteins that have been shown to assist
with Pol V activity 308; 312) were included in reactions containing the viral SSBs, translesion
synthesis occurred. Because Pol V coprecipitates with SSB but not SSB113, a physical
interaction between the SSB C-terminus and Pol V is likely to play a crucial role in maximizing
Pol V translesion synthesis activity 311. This conclusion is strengthened in light of the physical
interaction between SSB and MucB, a plasmid-encoded UmuC homolog 313.

OTHER SSB-BINDING PROTEINS
Exonuclease IX. (Exonuclease IX binds SSB in an undefined manner)—E. coli
Exonuclease IX (ExoIX) was initially identified as a putative exonuclease since it shares 60%
identity with the DNA polymerase I 5’-to-3’ exonuclease domain 314. Indeed, partially purified
preparations of ExoIX appeared to possess exonuclease activity 315; however it has since been
shown that this activity is most likely due to an Exonuclease III contamination in ExoIX
preparations, and that ExoIX itself is devoid of exonuclease activity 316. The function of ExoIX
in the cell remains unclear, as it has no apparent enzymatic activity and strains harboring ExoIX
deletions (xni-) are indistinguishable from wild type 317. However, ExoIX does interact
directly with SSB as demonstrated by coprecipitation and crosslinking experiments in the
absence of nucleic acid 316.

Bacteriophage N4 virion RNA polymerase. (N4 RNA polymerase binds SSB
(most likely via the SSB-Ct) and requires SSB to stabilize a promoter hairpin)—
RNA polymerase from bacteriophage N4 (vRNAP) specifically requires E. coli SSB for early
transcription 318-320. N4 injects vRNAP into its host along with its genome in the initial stage
of infection 321; 322. Even though N4 encodes its own SSB protein 323, its binding activity
appears to be specialized to destabilize a hairpin structure that functions as a promoter, making
the phage reliant on E. coli SSB as well 318. Interestingly, the N4 SSB functions as a
transcriptional activator late in the phage's replication process, but does so through stimulation
of E. coli RNA polymerase 324; 325. E. coli SSB not only allows the N4 promoter hairpin
structure to remain intact, but also assists in displacing nascent RNA from the ssDNA template,
a task vRNAP is unable to accomplish alone 320. SSB binds both the ssDNA template and the
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RNA product, preventing the formation of a DNA-RNA hybrid. The result of maintaining both
species in their non-duplex form is increased access to ssDNA and template recycling 320.

The stimulation of transcription by SSB is dependent upon the presence of the SSB-Ct element.
Wild type SSB increases vRNAP transcription by twenty-fold, but variants that lack the C-
terminal ten residues of SSB fail to stimulate, but do not inhibit, transcription 320. Although
a direct protein-protein interaction between vRNAP and SSB has not been explicitly
demonstrated, experimental evidence strongly suggests that one exists.

PROTEOMIC INDENTIFICATION OF SSB-BINDING PROTEINS
Two large-scale studies that probe networks of interacting E. coli proteins have been published
to date (Table 1). The first utilized dual affinity-tagged proteins to identify binding partners of
essential proteins 135, whereas the second used hexahistidine affinity-tagged variants of the
majority of the E. coli proteome to define interaction networks 326. Surprisingly, the His-
tagging study detected just two of the known binding partners of SSB (RecG and UDG), which
were only found when the partner proteins are the tagged bait (that is, tagged SSB failed to co-
purify with either partner) 326. Two other His-tagged proteins (DNA photolyase and YbcN, a
hypothetical protein) also were found to co-purify with SSB, but neither interaction has been
confirmed outside of the co-purification study. Only two proteins co-purify with His-tagged
SSB in the study: Peptidase D and RhlE, a putative helicase. It is possible that the purification
conditions for His-tagged proteins are too stringent for most SSB-interacting proteins to remain
stably bound to SSB throughout the purification method, which led to the large number of
apparently false negative results for SSB-interacting proteins in the study.

In contrast to the His-tagged proteins screen, the dual affinity-tag study identified 52
interactions involving SSB: 37 when SSB was C-terminally tagged, and 15 others in which a
partner protein was tagged 135. This study validated interactions in experiments in which co-
purifying partner proteins were tagged and the same interaction was detected reciprocally in a
second, separate purification. This reduced SSB interacting proteins to the 13 verified
complexes listed in Table 1. It is worth noting that since this study used C-terminal affinity
tags to identify protein complexes, many false negatives could arise since the SSB-Ct forms a
critical binding site for its partner proteins.

While nearly all of the listed binding partners have a clear role in nucleic acid metabolism,
there are some indications that neither study has sampled the complete SSB interaction
network. First, between the dual-affinity and His-tag studies, only one common binding partner
was detected (RecG). This indicates experimental conditions greatly altered the spectrum of
identified interacting proteins. Given that interactions with SSB can be relatively weak and
dependent upon solution conditions, this is not surprising. Second, at least one of the
“validated” protein interaction partners, Topoisomerase I, is not believed to interact directly
with SSB 327, consistent with these purification schemes detecting both direct and indirect
binding partners. Finally, since validation requires that both protein partners be amenable to
similar tagging and purification procedures, some interactions may be lost as false negatives
in validation screens. In the dual affinity-tag screen, there were several candidates that one can
imagine as interacting with SSB in the list of non-validated partner proteins, such as DNA
gyrase and Topoisomerase IV. However, since the reciprocal interaction was not detected, they
are considered non-validated. Selected non-validated proteins such as these may warrant
further investigation.

II. THERMODYNAMICS OF SSB-PROTEIN INTERACTIONS
The proteins that have been shown to interact directly with E. coli SSB protein all appear to
contact the unstructured C-terminal region of the SSB protein, in particular the last 9 amino
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acids. One question that arises is whether there is any specificity associated with these different
interactions; i.e., is SSB binding to these different proteins determined solely by its unstructured
C-terminus or are there other interactions that are specific to the protein partner? A second
question is whether the stoichiometry of binding and/or specificity is influenced by SSB
binding to DNA (either ssDNA or more complex junction structures) and furthermore whether
the mode of SSB binding to ssDNA influences its interactions with these other proteins. Of
course, answers to these questions require quantitative thermodynamics studies; however, to
date, only a few of the proteins known to interact with SSB protein have been studied using
direct quantitative methods (Table 2). Furthermore, even for those that have been studied
quantitatively, the solution conditions used for those studies often differ and since solution
conditions generally affect these interactions, questions of specificity are currently difficult to
answer.

Binding of SSB to the χ subunit of the Pol III HE in the presence and absence of ssDNA was
investigated using Surface Plasmon Resonance (SPR) 67; 82; 83, analytical ultracentrifugation
(AU) 83and gel filtration 67. The interactions of PriA helicase with the SSB C-terminal
peptide232, RecO with SSB 200, and E. coli UDG with SSB 268 have also been examined
using SPR methods, and, AU has been used to study the interaction of exoI with SSB and SSB
with mutations in its C terminal mutants 66. Isothermal titration calorimetry (ITC) has been
used to characterize the interactions of SSB and its C-terminal peptide with RecQ helicase
132, PriA helicase, and the χ subunit of the Pol III HE (Kozlov and Lohman, unpublished
results).

As discussed above, E. coli SSB tetramers can bind to long ssDNA in a number of different
binding modes that display distinct ssDNA binding properties, differing in the number of
subunits that interact directly with the ssDNA, the inter-tetramer cooperativity, the affinity and
the occluded site size 12; 34; 35; 66; 328. The transitions among these different binding modes
can be modulated by the monovalent salt concentration 51, divalent and mutivalent cations
49; 52, as well as the SSB to ssDNA binding density 14; 50; 53; 58. It is therefore conceivable
that the ability of SSB to recruit other proteins through interactions with its C terminus might
be influenced by the particular mode of SSB binding to ssDNA. In addition, due to the acidic
nature of the C-terminus of SSB, there is likely to be an electrostatic component to its interaction
with other proteins. For these reasons, changes in solution conditions and especially salt
concentration and type are likely to affect the binding properties of these proteins to SSB and
its complexes with DNA.

Protein Binding to SSB and its C-terminal peptides at high salt
Most studies of SSB binding to other proteins have been carried out under high salt conditions
(100−300 mM NaCl)67; 83; 132. These are conditions that at equilibrium in vitro favor the
fully wrapped high site size, (SSB)65 mode of binding to ssDNA. Under these conditions, the
affinities of SSB (without DNA) for the χ subunit67; 83, and for RecQ helicase 132 are within
the range of 2×105 to 4×105 M−1 (Table 2A and 2C). Similar values have been reported for
the interaction of RecQ 132 and PriA 232 with peptides containing the last 9 or 15 amino acids
of the SSB C-terminus also at similar high salt concentrations (Table 2B and 2C). Importantly,
C-terminal deletion mutants of SSB that are missing the last 8 132 or 26 amino acids 83 as
well as the SSB-113 mutant (Pro 176 to Ser) do not show any detectable affinity for χ 67; 83
or RecQ 132. The affinities of C–terminal peptides carrying the Pro to Ser substitution are also
reduced dramatically for χ 67, RecQ 132 and PriA232. On the basis of these data it appears
that at high salt concentrations (100−300 mM NaCl) SSB displays little specificity for χ vs.
RecQ and interacts weakly ((2−4)×105 M−1) with these proteins using primarily its
unstructured C-terminus. The reported stoichiometries of binding (proteins per SSB tetramer)
are 4 for RecQ 132, but only 2−3 for χ67; 83. The lower values for χ might be explained by

Shereda et al. Page 11

Crit Rev Biochem Mol Biol. Author manuscript; available in PMC 2009 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the fact that they were obtained using SPR83, where chemical coupling of SSB to the chip
surface could result in some occlusion of potential binding sites.

Protein binding to ssDNA/SSB complexes at high salt
Under high salt conditions no differences in affinities were reported for the binding of χ or
PriA to a pre-formed ssDNA/SSB complex compared to SSB alone (Tables 2A and 2B). The
equilibrium constants reported for χ in the presence of poly(dT) using AU 83 and for SSB
bound to (dT)65 using SPR67; 83, are within the same range as reported for SSB alone with
stoichiometries of ∼ 4 χ proteins bound per SSB tetramer. This is also the case for PriA binding
to SSB even in the presence of (dT)70. Therefore, it appears that the presence of ssDNA at high
salt conditions has little effect on χ-SSB interactions, although PriA does display a higher
affinity for SSB than does χ.

Interestingly, the presence of the ψ subunit, which is also a component of the Pol III HE and
interacts with the χ subunit, does not affect the affinity of χ for SSB alone (3.7×105 M−1)82,
whereas on a DNA template coated with SSB the affinity increases to 3×108 M−1 when the
γδδ' subunits (clamp loader assembly) are also present. Hence, the presence of ssDNA and
auxiliary proteins appears to increase the affinity between SSB and χ considerably (∼1000
fold).

Protein binding to ssDNA/SSB complexes and SSB at lower salt
In contrast to the results obtained at high NaCl concentrations, the binding of ssDNA to SSB
has a more pronounced effect on SSB-χ binding affinity at lower salt concentrations. The
equilibrium constant for χ binding to SSB determined by AU at 5 mM NaCl ((4.0±1.0)×105

M−1) increases ∼ 20 fold (7.4×106 M−1) when SSB is complexed with poly(dT) 83(Table 2A).
PriA also shows an increase in affinity for SSB in the presence of ssDNA (Table 2B), with a
binding affinity that is ten-fold higher than for χ, demonstrating some degree of SSB specificity
for PriA.

With increasing salt concentration, the affinities of PriA and χ for ssDNA/SSB complexes
decrease (Tables 2A and 2B). However, essentially no change in affinity is observed for the
interaction of χ with SSB alone as the salt concentration increases from 5 mM to 300 mM
NaCl83. This is somewhat surprising, especially since a ∼3−5 fold increase in affinity is
observed for just the C-terminal peptide (9 or 15 amino acids long) binding to χ at low salt (20
mM NaCl) as determined by ITC (Table 2A). A significant decrease in affinity upon increasing
salt concentration was also reported for SSB binding to Exonuclease I 66.

In summary, for χ and RecQ, the interaction with SSB at high salt concentrations (100−300
mM NaCl) is characterized by moderate affinities ((2−4)×105 M−1), which are unaffected by
ssDNA (although this is shown only for χ) and are similar to the affinities determined for the
interaction of these proteins with the C-terminal SSB peptide. Presently there is not enough
data to estimate quantitatively the effect of low salt conditions on the equilibrium constants
for SSB-protein binding, although strengthening of the interaction is expected 66. On the other
hand it is evident that at low salt both χ 67; 83 and PriA (Kozlov and Lohman, unpublished
results) interact with ssDNA/SSB complexes with much higher affinities than with SSB alone.
The affinities of these proteins for SSB and ssDNA/SSB complexes also decrease with
increasing salt concentrations. This latter effect may simply reflect an effect on the electrostatic
component of the interaction or it could suggest that SSB bound in different binding modes
(e.g., (SSB)35 at low salt or (SSB)65 at high salt) possesses different binding properties for
these proteins.
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III. ROLE OF SSB IN BACTERIAL RECOMBINATION PROCESSES
Recombination is a process focused on the repair of DNA strand breaks, primarily double
strand breaks and single strand gaps. Both types of DNA damage are found most commonly
at the sites of stalled or collapsed replication forks 7; 11; 329-334. The single strand gaps at
stalled replication forks can be quite extensive 178; 208; 335; 336. Inevitably, SSB protein
binds to the ssDNA in these gaps. Its role is not simply protective. As already described, SSB
is a facilitator of ssDNA metabolism, and its interactions with the proteins of recombinational
DNA repair are critical to the course of that repair. In this section, we consider the roles played
by SSB in recombination both as a facilitator and an impediment to the overall process.

The late 1970s and early 1980s witnessed a renaissance in the understanding of bacterial
recombination, centered on the functional characterization of the RecA protein, both in vivo
and in vitro. The primary roles of RecA protein, in recombination 337-340, in the induction of
the SOS response 341; 342, and in SOS mutagenesis 343-345, were established. In
recombination, RecA protein promotes a series of DNA strand exchange reactions that lie at
the heart of all recombinational processes 346-348. In the induction of the SOS response, RecA
protein acts as a coprotease – facilitating the autocatalytic degradation of the LexA repressor
of SOS genes 349; 350. In the mutagenesis that accompanies the SOS response, RecA protein
acts as an essential activator and probable subunit of the error-prone translesion DNA
polymerase V 309; 310.

Just out of the limelight, it became apparent at about the same time that SSB played a significant
role in just about everything RecA protein did 346; 351-356. The RecA and SSB proteins were
linked in their functions by three other proteins: RecF, RecO, and RecR 171; 195-197; 200;
357; 358. Notably, as was described above, RecO protein interacts with the SSB 194; 197;
200, and in particular the SSB C-terminus 199.

Two SSB mutations played key roles in elucidating the function of SSB in recombinational
DNA repair. The first is ssb113, which was described above as producing a SSB-Ct variant
mutation (Pro176Ser) that diminishes heterologous protein interactions with the SSB C-
terminus 60. The ssb113 alteration results in a temperature-sensitive conditional lethality at 30
°C that is not suppressed by overexpression of the mutant protein 60. The second is the ssb1
mutation, which codes for an SSB with a mutation in the OB fold (His55Tyr) and confers a
temperature-sensitive phenotype, with much SSB function abrogated at 42 °C 359. The ssb1
mutation is known to destabilize the SSB tetramer 359-361. Overproduction of the SSB1
protein suppresses the temperature-sensitive phenotype 359. Both mutant proteins confer a
variety of defects in DNA metabolism in the strains expressing them, including sensitivity to
UV irradiation, growth defects, and recombination defects 60; 61; 359; 362. Studies of SSB113
led to some of the first suggestions that SSB interacted directly with multiple other proteins
60. The ssb113 mutation produced severe defects in DNA synthesis and an increase in double
strand breaks that led to chromosome degradation, while the ssb1 mutation produced more
modest effects 61. Wang and Smith suggested that SSB played a key role in protecting exposed
ssDNA during recombinational DNA repair 61. Lieberman and Witkin 354 noted that the DNA
degradation and UV sensitivity seen at 42 °C in an ssb1 mutant cell was not rescued by the
inactivation of recBCD (exonuclease V), or by overexpression of the wild type recA gene. This
indicated that multiple nucleases were involved in the chromosomal degradation, and RecA
did not function properly in recombinational DNA repair unless normal SSB was present. The
ssb113 mutation blocks the induction of SOS at 30 °C (its restrictive temperature). The increase
in UV sensitivity and decline of SOS-associated functions such as mutagenesis seen in the
ssb113 strains was suppressed by the introduction of a recA allele (recA730 = recA E38K) that
promotes constitutive SOS induction 354. The results implied that SSB played some direct
role in the activation of RecA protein for SOS induction and SOS mutagenesis.
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Although many proteins interact with the C-terminus of SSB, the details of the interaction are
likely to vary from one protein to the next. A deletion of 10 C-terminal amino acids of SSB
renders E. coli cells inviable 69. This implies that key interactions required for basic processes
such as DNA replication occur at the SSB C-terminus. However, the alteration of the proline
at position 176 in ssb113 allows cell growth while rendering the cell UV sensitive 60. This
indicates that interactions required for DNA repair are disrupted by the Pro176Ser change in
ssb113, but the interactions required in replication remain intact.

Effects of SSB on RecA protein function
SSB plays a complicated role in RecA reactions. RecA binding to ssDNA generally occurs in
two phases, nucleation and filament extension. Nucleation must involve one or a few RecA
monomers, and recent work suggests the number is about 4−5 363; 364. Under most conditions,
RecA filament extension is relatively fast, allowing single filaments to coat long ssDNA
molecules contiguously. Filament extension on ssDNA occurs in the 5' to 3' direction 201;
365, with little addition of subunits to the 5′-proximal end detectable 366. RecA disassembles
from the 5'-proximal end 367, in a reaction that requires ATP hydrolysis 366. Disassembly
from filaments bound to ssDNA occurs at a rate of about 70 subunits min-1 at 37 °C 366. This
is substantially slower than filament extension, so that the growing ends of RecA filaments
nucleated on a circular ssDNA soon encounter the disassembling end of the same or other
filaments on the same DNA. Filament extension is blocked or impeded by secondary structure
in the ssDNA substrate 352.

SSB has different effects on the two phases of RecA filament formation. RecA filament
nucleation is inhibited, and under some conditions blocked entirely, if SSB is allowed to coat
the DNA prior to RecA addition 200; 201; 346; 352; 367; 368. This inhibition is relieved in
some RecA mutant proteins. These include RecA E38K (RecA 730 191; 369), RecA V37M
(RecA 803 370), RecA T121I (RecA 2020 371; 372), RecA E38K, I298V (RecA 441
373-375), and a truncation of the RecA C-terminus of 17 amino acid residues (RecA ΔC17;
E.A. Wood and M.M. Cox, unpublished results). The involvement of the RecA C-terminus
(also highly negatively charged) in the suppression of RecA loading has some possible
mechanistic implications. The RecA C-terminus (the last 25 amino acid residues) is a kind of
autoregulatory flap, removal of which enhances a range of RecA functions 309; 310;
376-382. A plausible scheme is that the RecA C-terminus buries a surface on RecA protein
that is required for a RecA interaction with SSB or the ssDNA bound to SSB, an interaction
that is in turn necessary for SSB displacement and RecA nucleation. One or more of the other
amino acid residues (E38, V37, T121) whose mutation also creates a protein more adept at
bypassing the SSB block to nucleation may also be involved in interactions needed to cover
the SSB displacement surface on RecA. For wild type RecA protein, mediator proteins alleviate
the slow nucleation imposed by pre-bound SSB, as described below. These mediators may
interact with the RecA C-terminus as part of their function.

When SSB is added to the ssDNA after, rather than before, RecA protein in an experiment that
also includes ATP, the subsequent RecA reactions are enhanced rather than inhibited 383;
384. The early addition of RecA provides an opportunity to get past the slow nucleation step.
In contrast to nucleation, the extension phase of RecA filament formation is facilitated by SSB.
The wild type E. coli RecA protein is unable to disrupt secondary structure in ssDNA that is
encountered during filament extension, leading to the formation of abbreviated filaments that
do not uniformly coat the DNA. The SSB protein binds to and disrupts the ssDNA secondary
structure. Extending RecA filaments readily displace SSB, allowing RecA to form a contiguous
filament on the DNA. This general scheme, first proposed in the mid-1980s 352; 385; 386, is
now seamlessly consistent with more than two decades of work on the reactions promoted by
RecA and SSB 387; 388.
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RecA protein promotes DNA strand exchange in vitro optimally under conditions that include
relatively high concentrations of free Mg2+ ion (∼10 mM). The SSB binding mode under these
conditions may play a major role in the course of the reactions. Under these conditions, SSB
binds primarily in the low cooperative, fully wrapped (SSB)65 binding mode 15; 49; 50. The
(SSB)35 mode, which binds with high nearest neighbor cooperativity, has been proposed to
function in DNA replication 389.

There is some evidence for a persistent association of SSB with RecA protein filaments after
contiguous RecA filaments are formed on ssDNA 384; 390. A similar interaction has been
detected between the eukaryotic RecA-homologue Rad51 protein and the eukaryotic RPA
protein 391. However, the positive effects of SSB on RecA filament formation (and of RPA
on Rad51 filament formation in eukaryotes) are not limited to species-cognate SSBs 392;
393, and no indication of a persistent E. coli RecA-SSB complex has been evident in studies
employing electron microscopy. If an association exists, it is relatively weak, does not occur
between RecA and SSB when neither is bound to DNA 200, and does not play a role that is
essential (or even stimulatory) to the RecA-mediated DNA strand exchange reactions
commonly carried out in vitro. In those DNA strand exchange reactions, the RecA filaments
form on ssDNA, and the bound DNA is then aligned with a homologous duplex DNA. A strand
switch ensues, in which one strand of the duplex DNA is transferred to the original ssDNA to
create a new duplex, and one strand of the original duplex is displaced. The SSB involved in
facilitating the RecA filament formation prior to strand exchange is bound to the displaced
ssDNA once strand exchange is complete 394. The RecA protein remains bound to the product
duplex DNA, or dissociates, depending on solution conditions 395-397. In vivo, a persistent
association of SSB with the RecA filaments could help choreograph the efficient transfer of
the SSB to the displaced strand, and the transferred SSB could serve as a target for the binding
of multiple other proteins involved in post-recombinational processes. In fact, direct transfer
of SSB between two DNA strands has been documented and is facilitated when SSB is bound
in the (SSB)35 binding mode such that two SSB OB-folds are unoccupied by ssDNA 398. A
persistent association of SSB with a RecA nucleoprotein filament, one that leaves ssDNA
binding surfaces on the SSB unoccupied, might serve a similar function. Such a role might not
translate into a measurable advantage of a RecA filament-SSB interaction during in vitro
reactions, but may merit further experimental investigation. Notably, the SSB protein of
Mycobacterium smegmatis interacts directly and in a species-specific manner with M.
smegmatis RecA nucleoprotein filaments 399. This interaction relies on the C-terminus of M.
smegmatis SSB 399.

The E. coli mediators, RecF, RecO, and RecR proteins
The SSB barrier to RecA nucleation gives rise to a need for protein mediators – proteins that
bypass the barrier and facilitate the nucleation process. The same problem exists in the loading
of RecA-class recombinases in all organisms, and mediators and their critical loading functions
are now recognized as common in bacteria, archaeans, and eukaryotes 400-403. There is
potential for damaging genomic rearrangements inherent in recombination. Mediators provide
a critical opportunity for every cell to regulate recombinase function at a point prior to the
initiation of any recombinational process. The E. coli RecF, RecO, and RecR proteins are
considered the prototypes of this class of proteins. However, considerable mechanistic
variation may exist in different species and classes of organisms, as well as phages and viruses
encoding recombination systems.

The genes coding for the RecF (40.5 kDa 106), RecO (27 kDa 186), and RecR (22 kDa 189;
404) proteins were discovered independently as functions that had modest effects on
recombination and UV resistance in E. coli. The phenotypes of mutations in the three genes
are very similar, and the effects of mutations in two or three of the genes are in many cases
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equivalent to the effects of any one of them, defining them as an epistatic group 170; 189.
Several additional lines of evidence indicate that these three proteins function together early
in recombinational processes, and tie them to a role in facilitating RecA filament assembly on
SSB-coated ssDNA. Mutations in all three genes are suppressed by the recA E38K 191; 369,
recA V37M 370, recA T121I 371; 372, recA E38K, I298V 373-375, and a truncation of the
recA gene that removes 17 codons at the end encoding the C-terminus (E.A. Wood and M.M.
Cox, unpublished results). As already noted, the mutant RecA proteins produced by these same
genes generally exhibit an enhanced capacity to displace SSB and bind ssDNA. In addition, a
gene in bacteriophage λ called ninB or orf can replace the functions of all three recFOR genes
in lambda recombination 405; 406. Overexpression of SSB in E. coli produces a recFOR-like
phenotype 358, providing another link between RecFOR and the SSB barrier to recombinase
nucleation. Mutant bacteria missing any of the recFOR functions exhibit a delayed activation
of the SOS response, most easily interpreted as a block to the formation of the RecA filaments
required to facilitate the autocatalytic cleavage of the LexA repressor 182; 370.

Some results indicate that the recF, recO, and recR genes possess some functional distinctions.
The three genes are not ubiquitous in bacteria, nor are they reliably coincident. A survey of
recombination functions in 117 bacterial species demonstrates that bacteria tend to have all
three genes, only the recO and recR genes, recR alone, or none 407. The recF gene is absent
from 29 species in the survey, while recR is absent from only 10. There are only two cases
where a recF gene is not accompanied by both recO and recR, and in both cases it is recO that
appears to be missing 407. This may reflect a high substitution rate that seems to exist for
recO, and an accompanying difficulty in identifying some recO homologues by classical search
algorithms. A recO gene was subsequently identified in one of the two species in question (T.
thermophilus), and its protein product has been studied at some length 203; 408. Taking the
potential for discovery of a few more recO genes into account, the standard (or at least most
common) complement of mediator functions in bacteria is either recFOR or recOR 407.

Even where all three genes are present, some results indicate that they do not always function
together. In a strain lacking the function of PriA protein, the additional loss of recO produces
different results than the loss of recF 175; 409. Mutation of recR or recF suppresses the strong
effects of recO mutation, suggesting that RecF and RecR are deleterious to the cell in the
absence of RecO 175. The RecF protein, but not RecO or RecR, is needed for the activation
of DNA polymerase V and mutagenic translesion DNA synthesis (TLS) 179, providing one
instance in which RecF may function without the other two proteins. SOS induction, UV
resistance, and viability at 42°C are all reduced if RecF protein is overexpressed in vivo 410.
Overexpression of the RecOR proteins suppresses many of the effects of either RecF
overexpression 411 or a recF null mutation 190. These varied results indicate that RecOR may
function on its own, or as part of a larger RecFOR system, and RecF may have a few
independent functions.

This evidently complex situation is mirrored in vitro. Structural information about these
proteins is becoming available, and this should promote mechanistic insight as it is coupled to
ongoing biochemical analysis. All of the structures made available to date are from the RecFOR
homologues of D. radiodurans. The D. radiodurans RecF protein exhibits an unexpected
structural similarity with the head domain of the eukaryotic Rad50 protein 412. However, it
lacks the long coiled-coil domain of Rad50 412. RecF is a member of the ATP-binding cassette
(ABC) ATPase family of proteins, and possesses a weak ATPase activity 413-415. RecF binds
to DNA, with increased affinity for dsDNA 413; 414; 416. ATP binding triggers RecF
dimerization 412. ATP hydrolysis triggers dissociation from DNA 415. RecR protein forms a
complex with RecF and improves the stability of RecF-DNA complexes 413; 414.
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The D. radiodurans RecO protein contains an N-terminal domain that adopts an OB-fold, a
novel α-helical domain, and a zinc-binding C-terminal domain 417; 418. RecO catalyzes
complementary DNA strand annealing and invasion of duplex DNA by a complementary
ssDNA 192-194. The RecO binds directly to ssDNA, a property established for the RecO
proteins derived from E. coli, T. thermophilus, and D. radiodurans 192-194; 197; 203; 417;
418. Notably, it is the RecO protein that interacts with SSB 194; 197; 199; 200.

The RecR homologs in D. radiodurans and B. subtilis both bind DNA 419-421, although the
E. coli RecR protein has no known intrinsic enzymatic or DNA binding activities. The D.
radiodurans RecR structure is a tetrameric ring, with each monomer featuring a helix-hairpin-
helix motif, a zinc finger motif, a Toprim domain, and a Walker B motif 420; 421.

In vitro, the E. coli and T. thermophilus RecR proteins bind to their cognate RecF and RecO
proteins 197; 200; 202; 203; 408; 413; 414. Both T. thermophilus RecF and RecO proteins
interact with the C-terminal TOPRIM domain of T. thermophilus RecR 408, providing a
plausible explanation for an apparent competition between RecF and RecO for RecR binding
that has been observed for the E. coli proteins 202. The structure of a D. radiodurans RecOR
complex has also been elucidated 422. The proteins form a heterohexamer, with two RecO
subunits on opposite faces of the RecR tetramer ring, and the OB domains of the RecO subunits
proximal to the RecR ring 422. No structures of thse proteins with ssDNA or SSB are yet
available.

The RecOR proteins clearly function together, and under many conditions these two proteins
are necessary and sufficient to load RecA protein onto SSB-coated ssDNA 197; 199; 200;
202; 203. No conditions have yet been found in which one protein or the other alone can mediate
the RecA loading process. As already noted, the RecO protein interacts directly with SSB
199; 200; 203. Significantly, removal of the 8 C-terminal residues of SSB eliminates most
RecO function in the loading reaction 199, indicating that a RecO interaction with the SSB C-
terminus is critical to the loading pathway. Early models indicated that RecOR does not
displace SSB, but instead binds to it to form a RecO-RecR-SSB complex that facilitates RecA
nucleation 200; 201. A recent examination of the loading process with the T. thermophilus
proteins provided evidence for SSB displacement 203. The rate-limiting step in E. coli RecOR-
mediated loading of RecA protein is the binding of RecO to ssDNA 199. This is inhibited by
SSB, in spite of the direct interaction of RecO with the SSB C-terminus 199. The only set of
conditions in which a small (8−10 min) lag in RecA loading was abolished was one in which
the RecO was bound to ssDNA prior to the SSB 199. A model for the RecOR-mediated RecA
loading process is presented in Figure 3.

Under most conditions, the RecF protein is either neutral or inhibitory for RecA loading on
SSB-coated ssDNA when added to reactions containing RecOR 197; 199-202. The RecF
protein has other demonstrable functions on the RecA filament formation process. RecFR
complexes bind tightly to dsDNA, and can block the extension of RecA protein filaments
initiated in ssDNA gaps into adjacent duplex DNA regions 414. RecF also interacts directly
with the E. coli RecX protein, and antagonizes its function 423. The RecX protein blocks RecA
filament extension, and the RecF function in this case may facilitate RecA protein extension
in some instances. However, neither of these functions appears to fully explain the phenotypes
of studied recF mutant strains.

When DNA substrates are used that incorporate short duplex regions on the ssDNA (generated
by annealing short oligonucleotides to a bacteriophage ssDNA circle), the E. coli RecF protein
has a positive effect on the RecA loading process in concert with RecR protein 117. This may
reflect a special role for RecF protein in augmenting the loading process at the ends of DNA
gaps. The positive effect of RecF is seen only when SSB is present at very high concentrations,
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corresponding to a 6−10 fold excess relative to available ssDNA binding sites (117; M. D.
Hobbs and M. M. Cox, unpublished data), a requirement that is not yet explained.

With accumulating structural and biochemical data, this system seems poised for rapid
advancement. Although RecF may have a special function in augmenting RecOR at the ends
of gaps, there is no evidence that RecF binds specifically to those gap ends 414. Thus, there is
potential for the discovery of additional targeting proteins in this system. A complete
understanding of the RecFOR loading mechanism will facilitate studies of this critical function
in all organisms. It should also facilitate an improved understanding of the dynamic nature of
the SSB interaction with many other proteins.

IV. SUMMARY AND PERSPECTIVE
By binding both ssDNA and proteins central to every aspect of genome maintenance,
eubacterial SSB proteins form a prominent interface at which genome maintenance pathways
converge. As we have attempted to highlight in this review, the notion that SSB proteins are
inert protective factors in bacterial cell biology vastly underestimates the contributions of this
central scaffolding protein to genomic information storage and fidelity. From defining the
substrates upon which DNA replication, recombination and repair must operate to playing an
active role in nucleating complexes of enzymes, SSB proteins are central players in genome
biology. Future work is needed to assess whether and how protein complex formation with
SSB is regulated in vivo to determine which of the many competing interactions will
predominate in a particular situation. In addition, the SSB-Ct-dependent nature of SSB/
heterologous protein complexes could offer distinguishing features against which novel
antibacterial therapies might be developed.
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Figure 1.
(A) Schematic representation of SSB. The E. coli SSB OB domain (residues 1−115) is shown
as a box with its structurally dynamic C-terminal tail (residues 116−177) as a line. The sequence
of the E. coli SSB-Ct element is displayed with its conservation across 280 eubacterial species
represented as a logo424 in which the height of the residue relates to its frequency at the given
position. Logo residues are colored to indicate the hydrophobic (red), electronegative (blue),
polar (black), or electropositive (green) nature of their side chains. (B) Ribbon diagram of the
proposed structures of the E. coli (SSB)35 (left) and (SSB)65 (right) ssDNA binding models
34. Each monomer in the tetramer is separately colored and its C-terminus is shown
schematically as a dashed line. ssDNA is shown as a red tube. (C) Ribbon diagram of the crystal
structure of D. radiodurans SSB 44. OB folds are colored as for E. coli SSB, but with two OB
folds in each monomer of the dimer. C-terminal tails are displayed as dots.
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Figure 2.
(A) Schematic representation of SSB interactions. SSB proteins (yellow) are depicted at
tetramers with C-termini (Ct) interacting with ovals symbolizing proteins involved the major
genome maintenance pathways of DNA replication (teal), recombination (purple), replication
restart (orange), and repair (green). (B) List of proteins that are known to physically interact
with SSB with their requirement for the SSB-Ct for interaction given. Citations for the
interactions are given in the text. Highlighting colors indicate the major genome maintenance
activities of the proteins (color coding as in (A)) and the sections in which each is described
(except for Topoisomerase III, which is described in the recombination section with RecQ).
(C) Binding site for the E. coli SSB C-terminus on Exonuclease I 54. Surface representation
of Exonucelase I is stained in blue, red, and white to highlight positive, negative, and
hydrophobic electrostatic features, respectively. The final four residues of the SSB C-terminus
are shown in ball and stick form. Features shown to be critical for SSB binding by Exonuclease
I are labeled.
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Figure 3.
Loading of RecA protein onto SSB-coated ssDNA by the RecOR proteins. The RecO protein,
in a complex with RecR, first binds to the C-terminus of SSB. The RecOR complex with SSB
is then rearranged to permit direct binding of RecOR to the ssDNA and displacement of an
SSB tetramer. Once RecOR is loaded, RecA interacts with RecOR (perhaps in a way that alters
the conformation of the RecA C-terminus so as to expose an intrinsic loading surface), and
RecA nucleation occurs. This is followed by rapid and unassisted RecA filament extension.
This figure is based on recent studies of the loading process 199; 203.
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Table 1
SSB-interacting proteins found from proteomic studies.

SSB-interacting protein Found in dual-affinity experiment? Found in His-tag experiment?
DNA polymerase III α Yes, as bait No
DNA polymerase III χ Yes, as bait No
PriA DNA helicase Yes, as prey No
RecG DNA helicase Yes, as prey Yes, as bait
RecQ DNA helicase Yes, as bait/prey No
RecJ exonuclease Yes, as bait/prey No
Exonuclease I Yes, as prey No
RNase H Yes, as bait No
DNA photolyase No Yes, as bait
Uracil DNA glycosylase No Yes, as bait
Topoisomerase I Yes, as bait No
Toposimerase III Yes, as bait/prey No
HU- α Yes, as prey No
SecA translocase Yes, as prey No
DnaK chaperone Yes, as prey No
Peptidase D No Yes, as prey
RhlE putatitve helicase No Yes, as prey
YbcN hypothetical protein No Yes, as bait
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Table 2
Thermodynamic binding data for SSB protein complexes*

(A) χ/SSB interaction

[Salt] Method SSB-Ct peptide binding
data

SSB binding data SSB/ssDNA binding data

High
300 mM AU 83 ND N=4 N=4

K=(2+/−1) × 105 K=(2+/−1) × 105

200 mM ITC a ND ND N=2.8+/−0.6
K=(4.5+/−1.1) × 105

ΔH=−7.7+/−1.1
150 mM SPR 67;b ND N=2.9+/−0.1 N=5.1+/−0.4

K=(3.3+/−0.3) × 105 K=(4.6+/−0.1) × 105

150 mM SPR 83 ND N=2.5 N=4.4
K=(2.7+/−0.5) × 105 K=(4.2+/−0.5) × 105

100 mM SPR 67; c ND K=3.7 × 105 K=(1 −3) × 108 d

Low
20 mM ITC a N=0.9+/−0.1 ND N=4.2+/−0.3

K=(1.3+/−0.6) × 106 K=(6.1+/−2.1) × 106

ΔH=−8.6+/−1.8 ΔH=−9.0+/−0.4
N=4

5 mM AU 83 ND K=(4.0+/−1.0) × 105 N=4
K=(7.4+/−1.0) × 106

none Gel filtration 67 ND ND K=1.9 × 107

(B) PriA/SSB interaction

[Salt] Method SSB-Ct peptide binding
data

SSB binding data SSB/ssDNA binding data

High
200 mM ITC a ND N=3.7+/−1.4 N=4.6+/−0.5

K=(1.0+/−0.8) × 106 K=(1.8+/−0.5) × 106

ΔH=−5.1+/−0.6 ΔH=−6.8+/−0.3
150 mM SPR 232 K=(4.2+/−0.3) × 105 ND ND

Low
20 mM ITC a N=1.0+/−0.1 N=1.7+/−0.2 N=5.2+/−0.2

K=(1.8+/−0.7) × 106 K=(2.2+/−1.1) × 107 K=(7.1+/−1.8) × 107

ΔH=−6.9+/−0.6 ΔH=−28.0+/−1.0 ΔH=−28.7+/−1.2
(C) RecQ/SSB interaction

[Salt] Method SSB-Ct peptide binding data SSB binding data SSB/ssDNA binding data

High
150 mM ITC 132 N=0.90+/−0.02 N=3.4+/−0.6 ND

K=(1.5+/−0.3) × 105 K=(1.5+/−0.4) × 105

ΔH= −9.3 +/−1.1 ΔH= −18.0 +/−2
(D) UDG/SSB interaction

[Salt] Method SSB-Ct peptide
binding data

SSB binding data SSB/ssDNA binding data

Intermediate
50 mM SPR 268 ND ND K= 5.9 × 106

*
- binding parameters: N - stoichiometry of protein binding, K (M−1) - association constant, ΔH (kcal/mol) - enthalpy change

a
Kozlov and Lohman, unpublished data

b
Parameters obtained fitting SPR data presented in Table I of Kelman et al (ref.67), to the N noninteracting sites model

c
Includes ψ protein

d
Determined in the presence of γδδ’ or τδδ’ subunits of pol III HE
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