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Abstract
The objective of this study was to reconstruct the type A influenza epidemic that occurred in the
Research Triangle Park (RTP) region of North Carolina during the 2003–04 flu season. We describe
an agent-based influenza transmission model that uses Influenza-like Illness (ILI) data gathered from
state agencies to estimate model parameters. The design of the model is similar to models represented
in the literature that have been used to predict the impact of pandemic avian influenza in Southeast
Asia and in the continental United States and to assess containment strategies. The focus of this model
aims to reconstruct a historical epidemic that left traces of its impact in the form of an ILI epidemic
curve. In this context, the work assumes aspects of a curve fitting exercise.
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1. INTRODUCTION/APPROACH
The goal of the model we developed was to increase understanding of the underlying
mechanisms of a particular phenomenon i.e., a previously occurring influenza epidemic. In
this paper, we demonstrate how we reconstructed the type A influenza epidemic that occurred
in the Research Triangle Park (RTP) region of North Carolina during the 2003–04 flu season.
The RTP region is made up of six counties (see Table 1), and its population during that period
was slightly more than one million persons. The model attempts to estimate the severity of a
historic epidemic by reconstructing the epidemic curve. The reconstruction of the epidemic
uses an agent-based model (ABM) of influenza transmission that generates epidemics in
response to user supplied assumptions about the transmissibility traits of the flu pathogen and
the number of social network specific contacts. The only available legacy information recorded
about the epidemic is the number of cases of influenza like illness (ILI) processed by local area
hospital emergency rooms during the epidemic period.

In the following sections, we describe the ILI data used and the structure of our model; we then
define the model’s parameters. Next, we describe the power sweep of the exogenous model
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parameters to identify a candidate epidemic that resembles (by some criteria) the ILI epidemic.
Finally, we provide a discussion of our results.

This study is important for several reasons. First, ILI data is a source of data that has not been
(to our knowledge) used in the context defined here. Our assumption is that ILI epidemic curves
coexist with corresponding past influenza epidemics; consequently, the influenza epidemic
curve and the ILI epidemic curve will have the same footprint and shape. The ILI data uses a
standardized case definition, and even without knowing the proportion of ILI cases that are
ultimately diagnosed as influenza cases, these data could provide additional information on
the extent and transmissibility of the epidemic. Furthermore, ILI data is being collected
nationally and is growing in coverage and quality. Therefore, the first purpose of our study
was to demonstrate how to use this burgeoning data to reconstruct past influenza epidemics.
Second, our reconstruction provides a better understanding of the extent of historical
epidemics, which will help other modelers predict future epidemics. Accurately reconstructing
past epidemics provides an additional element for validating predictive models, through
retrodiction or other methods.

1.1 Other Published Agent Based Models of Influenza Transmission
Developing strategies for mitigating the severity of a new influenza pandemic is a global public
health priority. The Models of Infectious Disease Agent Study (MIDAS) is a research
partnership between the National Institutes of Health (NIH) and the scientific community to
develop computational models for policymakers, public health workers, and researchers to help
all parties make better-informed decisions about emerging infectious diseases—both man-
made and naturally occurring. MIDAS researchers have developed models that can assist the
public health community understand how best to respond during outbreaks and epidemics.
Influenza prevention and containment strategies include antivirals and vaccines, as well as
nonpharmaceutical measures, which include case isolation, household quarantine, school or
workplace closure, and travel restrictions. As part of the MIDAS initiative, Ferguson et al.
developed large-scale mathematical models to explore the complex landscape of intervention
strategies. Specifically, they developed a large-scale epidemic simulation to examine
intervention options using Southeast Asia (attempting to contain the epidemic at its source)
[1], Great Britain, and the United States as examples [2].

Longini et al. also examined the possibility of containing a flu epidemic at its source by
modeling a rural region of Thailand [3].

Germann et al. [4] used a large-scale stochastic simulation model to investigate the spread of
a pandemic strain of influenza virus through the U.S. population of 281 million individuals for
R0 (the basic reproductive number) from 1.6 to 2.4. They modeled the impact a variety of
levels and combinations of influenza antiviral agents, vaccines, and modified social mobility
(including school closure and travel restrictions) had on the timing and magnitude of this
pandemic.

Eubank et al. [5] developed a discrete event simulation approach that uses random sample
individual-specific activity structures. These structures provided the time, locations, and types
of activities for all individuals in Chicago, Illinois. Contacts between individuals in the
population were computed from the times and places of this activity set. An influenza model
was used to simulate disease propagation through the population based on this contact structure.
This model’s main assumption regarding transmission is that it occurs at a fixed rate, so the
probability of becoming infected is a function of duration of contact rather than type of contact.
The model also collected and displayed characteristics of the disease, such as the attack rates
by various demographics. Six scenarios were simulated and analyzed. These scenarios differ
in the percent of cases diagnosed (and treated) and the percentage of persons complying with
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social distancing directives. While the severity of the pandemic drastically changes as these
two factors change, many similarities between the different simulations exist.

There are also unique and important models outside of MIDAS. For example, a study by Glass
et al. [6] addressed the role of social distancing on the spread on influenza in the US. The
powerful influence of school aged children was highlighted, with school closure and keeping
teenagers at home reported to reduce attack rates by 90%. This model is an agent-based model
with many characteristics similar to the MIDAS models. For example, the study emphasized
the characteristics of social networks and their role in disease spread. One important difference
in model structure is that this model focuses on a synthetic community substantially smaller
than those studied by the MIDAS models. However, there are consistent results reported
between this model and the MIDAS models.

Another example is provided by Haber et al. [7]. This model is a stochastic simulation model
that is derived from a model described in Longini et al. [8]. The simulated region is described
as a small urban US community that is infected by a H2N2 virus with properties that
characterize the pandemic of 1957–58. For each simulated day, a susceptible person makes
contacts with other persons within mixing groups that may lead to infection. The probability
that a person becomes infected depends on the following:

• The number of different persons with whom the index person has contact with in each
mixing group,

• The total duration, in minutes, of all the contacts with each person pair, and

• The per-minute rates of infection transmission if the contacted person is infectious.

• The number and duration of contacts may be different on weekdays and weekend
days.

These traits differ from the MIDAS models and the model described here.

2. DESCRIPTION OF INFLUENZA-LIKE ILLNESS (ILI) DATA
The 2003–04 U.S. influenza season began earlier than previous seasons and was moderately
severe; influenza A (H1), A (H3N2), and B viruses co-circulated, and the predominant strain
was influenza A (H3N2) [9]. Fig. 1 displays the epidemic based on Influenza-Like Illness (ILI)
sentinel data reported at participating hospital emergency rooms in the entire state of North
Carolina as well as in the RTP region.

The ILI data has the following limitations.

• It describes a set of symptoms that embed influenza along with a number of other
reportable conditions that include colds, pneumonia, and miscellaneous respiratory
conditions.

• The sentinel hospitals that reported the ILI data in 2003 included only a small portion
of North Carolina’s emergency room facilities (under 10%).

• There is no estimate of the proportion of persons with flu that use the emergency room
as their primary form of care.

The Flu-Isolates curve in Fig. 1 is defined as influenza virus isolates identified during the last
3 weeks by the State Laboratory of Public Health. Fig. 1 also shows ILI curves reported by the
General Communicable Disease Control Branch of the North Carolina State Laboratory of
Public Health, which is part of the U.S. Influenza Sentinel Physicians Surveillance Network.
One of the network’s functions is to monitor the status of statewide influenza activity. Sentinel
physicians, university health centers, and public health agencies report ILI to the Centers for
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Disease Control and Prevention (CDC) each week and collect representative samples for virus
strain identification. Note that the data are tabulated by week. The ILI case definition criteria
are any combination of fever (100°F or higher, oral or equivalent) and cough or sore throat.
While information provides important epidemiologic information to the State Health
Department for monitoring influenza activity in North Carolina, and supports CDC influenza
surveillance activities throughout the United States, it does not provide a measure of the size
of the epidemic in question.

Two ILI measures are shown in Fig. 1. The first represents all cases reported in North Carolina,
and the second identifies all cases reported for patients living in the RTP region.

Fig. 1 suggests that the epidemic began in mid-October, peaked in mid-December, and
extended into early February. The model we developed for the RTP region generated a flu
epidemic with these characteristics.

2.1 Emergency Room Information
Table 2 summarizes the daily emergency room ILI visit data in the six-county RTP region.
Fig. 1 shows these data as RTP Cases. In Table 2, the column Weekly Raw Counts identifies
the actual visit data observed for all RTP residents as recorded by participating hospitals. The
data in Table 2 represent ILI cases that are true influenza cases plus ILIs that are not part of
the influenza epidemic (e.g., colds). We estimated non-flu cases by computing the average
daily number of ILI cases observed prior to the rapid growth of cases, which began in mid
October 2003. We assumed that cases are the non-flu component of the ILI data. The Adjusted
column represents an estimate of the actual epidemic with the non-flu illness cases removed
from all reported cases.

The adjusted data suggest that the epidemic started the week of October 12 and ran through
January 31st for a total of 105 days. Also, if we assume that the shapes of the ILI epidemic and
flu epidemic are the same, we can determine a key feature of the epidemic, which is represented
by the measures of skewness and kurtosis of the ILI distribution in Table 2 [10]. Assuming
that the emergency room visit curve and the influenza epidemic curve for the RTP region have
the same shape, we constructed an epidemic curve for the RTP region with skewness and
kurtosis measures close to 1.284 and 3.661, respectively. This is a key assumption behind our
method.

We assert that just as the ILI epidemic of 2003–04 began appearing in the RTP emergency
rooms around October 12th (and was therefore circulating in the population up to two weeks
earlier), the 2003–04 flu epidemic began to circulate at the same time. We also assert that the
shape of the ILI epidemic and the flu epidemic are the same, and both can be represented by
a curve with a skewness measure of 1.284 and a kurtosis measure of 3.661. However, a major
problem was how to determine the scale of the influenza epidemic from the ILI data because
while we could estimate them, we do not know what percentage of ILI cases are actually
influenza cases.

3. MODEL DESCRIPTION
3.1 General Structure

The Susceptible-Infected-Recovered (SIR) model is frequently used to simulate the natural
spread and course of an epidemic, like influenza, in a small community. The SIR model
considers people born into a disease state labeled susceptible. On contact with people who are
infectious, susceptible people (S) move into the infectious state (I) category. After a number
of days, the people then recover and move to the recovered state (R). Because they are now
immune to the pathogen, they remain in state R for the rest of the time period of interest.

Cooley et al. Page 4

Math Comput Model. Author manuscript; available in PMC 2009 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



We developed an agent-based version of the SIR model with 1,037,533 individuals (the 2000
population estimate for the six RTP counties) as circulating agents. Previous studies suggest
that in modeling complex phenomena, the extra complexity captured in agent-based models
(ABMs) sometimes leads to different conclusions from those reached by a differential equation
model built to the same specifications, although in many cases the two models have very similar
behavior. In our model, we used an ABM approach to describe the dynamics of disease spread
because the period of performance overlaps with both school holidays and weekends. In both
cases, attendance at school is interrupted, and because school closure is considered by many
to be a major factor in disease spread [2], and [4] this interruption was explicitly factored into
the reconstruction of the epidemic. Because of the simulation nature of the ABM, school closure
processes are easily incorporated into the ABM approach.

Further analysis suggests that, in the context of diffusion, disaggregating a population into
agents adds additional insights in dealing with a locally structured network. In the case of
locally dense networks, the main mode of behavior is usually well captured by a calibrated
differential equation model [11].

The specific design of our model also incorporates features similar to those defined by Ferguson
et al. [2] and Germann et al. [4]. Agent characteristics that the model tracks are age, sex,
occupation, household location, household membership, school assignment (if student or
teacher), work location assignment (if employed adult), work status, and disease status. Agents
dwell in households that are distributed in a manner consistent with the U.S. 2000 Census data
at the block group level similar to those defined in [4]. School-aged children are assigned to a
school according to a modified gravity model that also accounts for school enrollment
information in ways similar to those defined in Ferguson et al. [2]. Working adults are assigned
to workplace locations according to their occupational status. During the working day, these
adults mix with other people assigned to that workplace. Specific data on the health care
component of the population were purchased from an occupational survey and used to assign
health care workers to known health care places of employment (hospital, clinic, office, etc.).

3.2 Social Network Structure
Complex social network patterns are described in Eubank et al. [5]. Our approach divided the
complete set of contacts involved in disease transmission into six categories. Each agent
interacts in some or all of five of six social network categories. We defined the categories as
follows:

• Schools: We used a modified gravity model to assign school-aged children to school
locations, with the location of each school, its enrollment, and the household location
of each child known. Children interact at school only with children who attend the
same school. Children interact with other children in their classroom more closely
than their non-classroom peers.

• Workplaces: Using the modified gravity model, we assigned adults with appropriate
occupation codes to work locations. The location of some places of work (e.g.,
hospitals and clinics), the number of persons employed at the site, and the household
location of each adult are known. Adults with certain occupations interact at a
workplace only with other adults who work at the same site. In general, most workers
interact with persons employed at the same location; workers were assigned to a
subgroup of peers that they interact with more closely. There are certain occupations
(clerks, etc.) that interact with persons outside of their occupation code while at work.
This is also represented in the model.

• Public transportation: A portion of the working population, the school population,
and the nonworking population use public transportation to travel to workplaces, to
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schools, and to shopping centers. Persons using public transportation interact only
with other persons using public transportation. Currently, only school bus passengers
were represented in the model.

• Family or households: We generated a synthetic population of RTP residents who
occupy RTP households for each simulation experiment. This population represents
families and/or roommates that occupy houses and apartment complexes. Families
and roommates interact only with other family members or persons that are part of
the same household.

• Neighborhoods: Interactions with neighbors occur based on relative household
locations.

• Communities: Interactions with the community were also based on relative locations.
For example, persons will tend to frequent the nearest mall and interact with other
persons visiting that mall. This element was intended to represent shopping behaviors
of adults and students and the “hanging out” behaviors of students.

3.3 Disease Natural History Data
We drew model parameters from the most recent and best available published literature sources.
Model parameters used to describe the strain of flu were based on recent data that characterize
the H3N2 strain of flu as defined in Longini et al. [8]. These parameters are the basis of the
parameters used by Longini et al. [3], and Germann et al. [4].

4. THE MODEL EXPERIMENTS
As we discussed earlier, we used our model to reconstruct a prior epidemic. The reconstruction
process consisted of the following steps:

• Develop a stochastic ABM that limns a SIR epidemic transmission process.

• Obtain the data that describes the RTP scenario from the disease transmission scenario
point of view and link it to the ABM. This combination of model and data provides
a mechanism for generating epidemics.

• Use the ILI data to assess “target” legacy epidemic characteristics.

• Run a power sweep of exogenous model parameters, including the number of seeds,
that alter transmission effectiveness and number of contacts. Note that by including
the number of initial infected persons seeding the epidemic, each unique combination
of exogenous model parameters determines both the shape and scale of the generated
epidemic.

• Replicate the epidemic 100 times with these parameters fixed but with different
random number sequences. Use the “average” epidemic and calculate the skewness
and kurtosis of this epidemic.

• Compare the skewness and kurtosis measures for the generated epidemics with the
target values produced from the ILI data.

• Compile a distribution of “well-fitting” epidemics.

Figure 2 represents the process graphically. We used a SIR flu model generator in conjunction
with a power sweep strategy to generate 9600 flu epidemics of the RTP region. We then applied
a 5% and 1% ILI target criteria that resulted in a small number of epidemics that limn the traits
of the 2003–2004 ILI epidemic in the RTP region. We reviewed the distribution of the resulting
infection prevalence estimates that are an attribute of the epidemics for consistency and
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stability, and the epidemic that best fit the ILI criteria was defined as the reconstructed
epidemic.

4.1 Model Exogenous Parameters
This section defines the exogenous model parameters that we varied as part of the
reconstruction process. The values of these model parameters determine the assumptions
regarding the transmissibility of the 2003–2004 flu pathogen, the number of contacts made by
infected persons, the number of infected persons at the start of the epidemic, and the seasonal
characteristics of the epidemic. Note that these parameters influence both the shape and the
scale (attack rate) of the epidemic. We defined the parameters and their feasible ranges as
follows:

• The Transmission Multiplier (TM): this is a positive number (1.0–2.0) that scales all
contact transmission probabilities. This parameter, multiplied by the transmission
probability that is risk group specific, determines the transmissibility assumption.

• Social Network Multiplier (SNM): this is a positive number (0.5–1.0) that scales the
size of each social network that an infected person makes daily contact with. This
parameter, multiplied by the default size of the social network, determines the number
of contacts. Note that this multiplier has no influence on number of household
contacts.

• Seasonal Peak Day (SP): this is the length in days (40–100) before seasonal factors
begin to reduce transmission. Seasonal characteristics are not understood. Many
disease specialists feel that seasonal features are caused by changes in people’s
behavior (e.g., greater outdoor activities during warmer weather periods).

• Seasonal Damper Multiplier (SDM): this is a damping factor (0.01–1.00) that causes
the transmission multiplier to decline after the epidemic has progressed beyond the
Seasonal Peak day.

• Model seeds (SEED): this is the number of persons (1–10) that are infected at the start
of the epidemic. Each model run was started by seeding the epidemic with a number
of infected persons (aged 15 to 60). The seeds were drawn randomly and with age
restrictions. Depending on random actions, a number of the replicates did not result
in an epidemic. These cases were excluded from the calculation of the “average”
epidemic summary for each set of model parameters.

Note that seasonal effects are problematic for a number of reasons. First, there is no obvious
biological reason that reduces pathogen infectiousness. However, many epidemics (such as the
one that is the subject of this manuscript) start and stop within a single winter season for no
apparent reason. There could be a reduction in mixing caused by a holiday or by milder weather
that encourages people to move outside, but there is no readily apparent explanation.

4.2 Important Model Endogenous Parameters
There are a number of endogenous factors affecting disease transmission incorporated into the
model that are fixed for each generated epidemic. These factors include:

• sickness—50% of children stay home from school and 50% adults stay home from
work;

• death—persons who die from flu cease to interact with the survivors;

• day of the week—children stay home from school along with most working adults,
who do not work on the weekends. This is offset by 50% more frequent community
and neighborhood contacts on weekends; and
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• vaccination rates—rates by state and by age group were obtained from
http://wonder.cdc.gov/wonder/PrevGuid/m0049614/m0049614.asp#Table_1.

These data were used to assign a vaccinated status to susceptible persons in the simulation.
Vaccinated persons were assumed to be unable to transmit disease.

5 RESULTS
Using the measures of skewness and kurtosis derived from the ILI emergency room visit
information as target values, we performed a power sweep of the key exogenous model
parameters to generate disease incidence patterns from 9,600 exogenous model parameter
combinations (note: many of these combinations produce duplicate epidemic curves or produce
epidemics that are far from satisfying the ILI conditions of 105 days, etc.). Our premise is that
the best fitting and most feasible epidemics will be consistent with the shape of the curve
defined by ILI reporting patterns, which could then be used to assemble the 2003–2004 RTP
epidemic curve.

We used the ILI data to assess the length of the flu epidemic window (105 days) and the
occurrence of the peak flu period during the window (56 days after the start of the epidemic).
Each epidemic generated by the model recorded the influence of the exogenous parameters on
the scale and shape of the epidemic curve as measured by the skewness and kurtosis. The power
sweep exercise identified the set of model parameter values that generate a flu epidemic with
the same kurtosis (and skewness) characteristics that were observed in the adjusted ILI visit
data.

In summary, the SIR-based epidemic generator generates an epidemic for each unique
combination of exogenous parameters. We performed a power sweep by varying the exogenous
parameters and recording the measures of skewness and kurtosis that we are trying match and
that represent the most feasible flu epidemics. By this process, we identified a distribution of
feasible epidemics that also exhibit the shape properties we measured in the ILI data.

Table 3 presents a summary of the power sweep process. We performed the power sweep to
determine the values of the exogenous parameters that produced an influenza epidemic with a
target kurtosis value of 3.661 and a skewness value of 1.284 within an epidemic period of 105
days. This table portrays the prevalence of infections distribution for epidemics that are
simultaneously within a 5% of the target values for skewness and kurtosis; i.e., with skewness
that ranges from 1.220 to 1.348 and with kurtosis limits between 3.480 and 3.884. There were
117 unique epidemics generated that were within the 5% goodness-of-fit range. The range of
attack rates among the 117 varied from 4.2% (42,358) to 12% (121,138).

Table 3 indicates that of the 117 (< 2% of the 9,600 total) epidemics that exhibit characteristics
that fall within the 5% criteria, more than 50% of these exhibit prevalence estimates between
50,000 and 75,000 (60 of 117) and more than 80% fall into the range 50,000 to 95,000 (94 of
117). This suggests that epidemics with the desired ILI target properties that are produced by
the SIR epidemic generation model are likely distributed as a log normal distribution (i.e., an
error distribution that is constrained from below) with a mean prevalence of around 80,000
(8%).

The 5 “best” epidemic curves that best fit the target criteria are shown in figure 3.

The average number of infections recorded by the epidemic depicted in Fig. 3 is 70,696, which
corresponds to an attack rate of 7%. The patterns of figure 3 also suggest a significant weekend
effect that reduces infection due to school closures and partial workplace closures, even though
a 50% increase in community contacts is assumed to occur when schools/workplaces are
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closed. Because the epidemic began around October 12, the school break for Christmas fell
approximately two months later, around mid December or Day 56.

The timing of the epidemic could also lead to the conjecture that the ILI visit results shown in
Figure 1 could be affected by the annual school winter holiday. In this scenario, in the midst
of the epidemic, schools close for the Christmas holidays. We attempted to represent this
scenario in a second set of runs, in which children of school age stayed home from school
starting in mid-December and remained home for 17 days. During that period, we assumed the
populace engaged in weekend social network behaviors, which are characterized by more
frequent mall and retail store visits and other community interactions but no classroom
interactions. Using these assumptions, we generated a set of simulation runs that used the same
shape criteria as above. Specifically, at day 56, the model assumes an extended weekend of 17
days occurs, which would correspond to a 17 day school closure.

This is readily accommodated by an ABM, and we modified the model to account for school
closures in mid December (day 56) for 17 days to early January (day 73). We then performed
a power-sweep of the exogenous model parameters to re-estimate the best fitting (with respect
to the target skewness and kurtosis values) modified model. Table 4 summarizes the power-
sweep results. Consistent with table 4, this table portrays the infection prevalence distribution
for epidemics that are simultaneously within a 5% goodness-of-fit for skewness and kurtosis.
There are 123 epidemics that satisfy the 5% goodness-of-fit criteria. The infection prevalence
ranges from a low of 38,416 (3.8%) to 139,166 (13.9%) which is much larger than the pattern
shown in Table 4. This is also demonstrated at the higher value for the standard deviation of
the prevalence mean.

In summary, the epidemics generated under the school closure assumption produced an
epidemic curve that was not demonstrably better than the well fitting epidemic curves that
assumed schools were open. We provide the following interpretation:

• School holidays are unlike weekends, because many within school contacts continue
throughout the holiday period,

• The model overstates the weekend effect observed in Fig. 2.

• An inaccurate epidemic period was estimated from the ILI data and biased the results.

Also, all of the epidemics that fit the criteria estimated seasonal effects of various degrees. One
explanation is that the number of persons immune to the circulating pathogen was
underestimated, either because of an vaccinations within the area were underreported, because
persons acquired partial immunity from prior exposure to similar (past) influenza strains. This
is a significant problem for reconstructing prior epidemics: and in that sense assuming no prior
exposure (as one would with a new strain of flu) is an easier problem to model. We feel that
the seasonal effects in part compensate for this underestimate of regional immunity.

Figure 4 presents both “best fitting” epidemics (with respect to the ILI criteria) with and without
school closures. The School’s Closed Epidemic assumes school closure beginning in mid
December and lasting for 17 days; the School’s Open Epidemic assumes no school closure
through out the epidemic period. As figure 4 indicates, there is little difference between the
two curves shown. The School’s Open epidemic has a slightly lower overall attack rate but
conforms to the same overall weekday and weekend patterns.

7. DISCUSSION
We used local ILI data to reconstruct the shape of the local RTP 2003–04 flu epidemic. We
used our epidemic model generator to conduct a power sweep of key model parameters. As
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part of this process we generated many epidemics and recorded the impact of the values of the
exogenous parameters on scale and shape measures of the epidemic curves. Our analysis
suggested that the attack rate bounds were between 4.1% and 12.1%, but a likely best attack
rate was approximately 8%, which is based on the mean attack rate of epidemics that closely
fit the target ILI criteria.

We also solicited the opinions of NC flu experts. They bounded the scale of the attack rate of
the epidemic between 10% and 15%, which was higher than we estimated. Finally, we used
our assessment of school closure to develop an alternative epidemic curve estimate for the flu
epidemic in the RTP region for the 2003–04 flu season. This estimate differed little from the
original epidemic generated, but the standard deviation of the attack rate derived again from
best fitting epidemics was substantially higher under the assumption of school closure.

The central issue we raise is: How can the accuracy of the developed model be assessed in the
absence of accurate data that describes the flu epidemic for the 2003–04 flu season? This is a
fundamental problem of the modeling process; there is usually sufficient data to build a model
but insufficient data to accurately assess model performance. The solution we developed was
to identify ancillary data that proxy evidence of the character of the phenomena being modeled
and use that information in a curve fitting context to reconstruct the epidemic. It is also
important to examine other influences on the phenomena that affect the interpretation of the
results.

We believe that the epidemic curve of Fig. 3 is a crude representation of the actual epidemic
that occurred in the six-county RTP region. However, while we believe that this figure is
representative of the “actual” epidemic that occurred, we also acknowledge that the model was
developed using many assumptions that are difficult, if not impossible, to corroborate with
available information. A significant assumption we used in our approach is that the trends of
ILIs, as reported to the emergency room in a single large RTP hospital, would mimic influenza
trends in the RTP region. Thus, although ILI data significantly underestimate the scale of the
true epidemic, the assumption behind the model is that the trends in those reports mirrored the
trends (shape) of the true influenza epidemic within the RTP region, and that by using the SIR
generator and treating the number of seeds needed to initiate the epidemic, we can also estimate
epidemic attack rate.

A secondary issue raised by our model is whether a weekend effect is significant. Our model
produced mixed results. On the one hand, it indicates that on the weekend, the reduction of
mixing significantly reduces influenza transmission. Other ABMs that we are aware of assume
business as usual, and the weekend dipping phenomena as recorded by our model is not present,
see [1], [2], [3], [4], [5], and [6]. The Habler et al. model is an exception [7]. On the other hand,
our reconstruction of an epidemic in the presence of a school closure suggests that weekend
effects and school closure effects may not operate in the same fundamental manner. This is an
important issue to understand because the weekend effect, if it exists, produces a flatter
epidemic curve with a lower peak and thus has important preparedness implications.

We ultimately wonder “What does happen on the weekends? Is there a weekend effect? Do
students have just as many contacts with their peers on the weekend as they do when they
attend school?” We are hoping that the 8 NPI studies currently being developed under CDC
auspices will shed some light on this important issue. Until those studies prove the contrary,
we believe the evidence suggests a weekend effect and we continue to represent it in our results.
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Fig. 1.
NC Sentinel Surveillance Data: January 15, 2004
Note: Flu-Isolates are defined as “Influenza Virus Isolates Identified during the last three weeks
by the North Carolina State Laboratory of Public Health.”
Source: NC Influenza Surveillance Report, January 15, 2004; see
http://www.charmeck.org/Departments/Health+Department/Top+News/News+Archive/
2004/Home.htm “RTP Cases” and “All Cases” are data reported by the General Communicable
Disease Control Branch of the North Carolina State Laboratory of Public Health.
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Fig. 2.
The Epidemic Curve Reconstruction Process
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Fig. 3.
Number of Infections Recorded.
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Figure 4.
Best Fitting Epidemics With and Without School Closure
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Table 1

Counties in the Research Triangle Park (RTP) Metro Region in 2000.

Name Population (2000) Households Area (mi2)

Chatham 49,329 19,741 709

Durham 223,314 89,015 298

Franklin 47,260 17,853 495

Johnston 121,965 46,595 796

Orange 118,217 45,863 401

Wake 627,846 242,040 857

Total 1,187,931 461,107 3556
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Table 2

Emergency Room Influenza-Like-Illness (ILI) Statistics

Measure Weekly Raw Counts

Daily average over period before 10/25/2003 52.5

Average cases per day 111.4

Standard Deviation 120.90.1

Skewness 1.284

Kurtosis 3.661

*
This table summarizes the RTP case curve displayed in Fig. 1.
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Table 3

Distribution of Estimated Influence Prevalence.

Range Infections Frequency Cumulative Frequency Percent

40 to 45 2 2 0.0171

45 to 50 5 7 0.0427

50 to 55 6 13 0.0513

55 to 60 10 23 0.0855

60 to 65 17 40 0.1453

65 to 70 10 50 0.0855

70 to 75 19 69 0.1624

75 to 80 6 75 0.0513

80 to 85 8 83 0.0684

85 to 90 10 93 0.0855

90 to 95 10 103 0.0855

95 to 100 4 107 0.0342

100 to 105 6 113 0.0513

110 to 115 3 116 0.0256

115 to 120 1 117 0.0085

Mean = 79,381; Standard Deviation = 181,016; Minimum = 42,358; Maximum = 121,138
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Table 4

Distribution of Estimated Influence Prevalence - Schools Closed

Range Infections Frequency Cumulative Frequency Percent

35 to 40 12 12 0.0081

40 to 45 2 3 0.0163

45 to 50 3 6 0.0244

50 to 55 6 12 0.0488

55 to 60 12 24 0.0976

60 to 65 9 33 0.0732

65 to 70 15 48 0.1220

70 to 75 7 55 0.0569

75 to 80 13 68 0.1057

80 to 85 8 76 0.0650

85 to 90 10 86 0.0813

90 to 95 7 93 0.0569

95 to 100 5 98 0.0407

100 to 105 7 105 0.0569

105 to 110 6 111 0.0488

110 to 115 6 119 0.0650

115 to 120 1 120 0.0081

120 to 125 1 121 0.0081

125 to 130 1 122 0.0081

130 to 135 1 123 0.0081

Mean = 84,302; Standard Deviation = 228,859; Minimum = 38,416; Maximum = 139,166
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