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Abstract

The qualitative dimension of gene expression data and its heterogeneous nature in cancerous specimens can
be accounted for by phylogenetic modeling that incorporates the directionality of altered gene expressions,
complex patterns of expressions among a group of specimens, and data-based rather than specimen-based gene
linkage. Our phylogenetic modeling approach is a double algorithmic technique that includes polarity assess-
ment that brings out the qualitative value of the data, followed by maximum parsimony analysis that is most
suitable for the data heterogeneity of cancer gene expression. We demonstrate that polarity assessment of ex-
pression values into derived and ancestral states, via outgroup comparison, reduces experimental noise; reveals
dichotomously expressed asynchronous genes; and allows data pooling as well as comparability of intra- and
interplatforms. Parsimony phylogenetic analysis of the polarized values produces a multidimensional classifi-
cation of specimens into clades that reveal shared derived gene expressions (the synapomorphies); provides
better assessment of ontogenic pathways and phyletic relatedness of specimens; efficiently utilizes dichoto-
mously expressed genes; produces highly predictive class recognition; illustrates gene linkage and multiple de-
velopmental pathways; provides higher concordance between gene lists; and projects the direction of change
among specimens. Further implication of this phylogenetic approach is that it may transform microarray into
diagnostic, prognostic, and predictive tool.
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Introduction

GENE MICROARRAY HAS BEEN EMPLOYED in studying com-
parative gene expression in cancer, genetic disorders,

infections, drug response and interactions, as well as other
biological processes (Quackenbush, 2006), and its data used
to generate cancer taxonomy (Bittner et al., 2000; Golub, et
al., 1999; Lossos and Morgensztern, 2006), diagnosis, prog-
nosis (Beer, et al., 2002), subtyping/class discovery (Al-
izadeh, et al., 2000; Beer et al., 2002), and biomarker detec-
tion (Lossos and Morgensztern, 2006). However, after more
than a decade since its introduction and subsequent wide us-
age, microarray gene expression is still facing a number of
problems that are limiting its usefulness and potential (Har-
rison et al., 2007; Millenaar et al., 2006; Wang, et al., 2005).
There are the problems of reproducibility of measurements
between runs, instruments, or laboratories; the inability to
perform intra- and interplatform comparability, pooling, and
insufficient concordance of gene lists. Furthermore, there is
the lack of an optimal bioinformatic tool to model the het-

erogeneity of gene expression of cancerous specimens, and
due to the multiphasic nature of cancer, statistically signifi-
cant gene expressions are not necessarily biologically mean-
ingful during all phases of cancer. Current analytical para-
digms such as phenetic clustering and maximum likelihood
(including Bayesian) have not resolved these issues (Abu-
Asab et al., 2008), and there is a total lack of an analytical
paradigm that can transform microarray data into a multi-
dimensional bioinformatic tool useful for a clinical setting.

Cancer incipience, progression, and maintenance are all
evolutionary processes at the cellular and tissue levels; they
mirror similar evolutionary processes at the population lev-
els in that they all involve genetic modifications within an
individual, selective pressure, and clonal propagation. Tu-
mors derived from the same primary tumor become diverse
and contain heterogeneous patterns of gene expression after
a brief time of divergence. Data heterogeneity points out the
existence of several phenomena: high genomic diversity in
diseased specimens, high mutation rate, and possibly mul-
tiple pathways of disease development. To efficiently and
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accurately model these phenomena, biologically compatible
methods of analysis should be used.

In an attempt to resolve some of the above listed problems
through biologically compatible methodology and broaden
the bioinformatic potential of the microarray technology, we
introduce a parsimony phylogenetic approach for microar-
ray data analysis that is based on outgroup comparison
(a.k.a. polarity assessment) and maximum parsimony. This
approach is a double-algorithmic procedure where the data
values are first polarized into derived or ancestral depend-
ing on whether they fall within the range of the outgroup,
which is usually composed of normal healthy specimens,
then the polarized data is processed with a maximum par-
simony algorithm. Maximum parsimony produces a phylo-
genetic classification of the specimens that recognizes mono-
phyletic classes (clades) that are delimited by shared derived
gene expressions (the synapomorphies); it achieves that by
finding the phylogenetic tree with the minimum steps to
construct.

Biologically meaningful modeling and interpretation of
the data, and better correlation with clinical characteristics,
diagnosis, and outcomes are highly desired criteria in an an-
alytical tool (Allison et al., 2006; Beer, et al., 2002; Bittner, et
al., 2000; Golub, et al., 1999). Clustering specimens into uni-
dimensional classification of discernable entities on the ba-
sis of overall quantitative gene expression similarities has
some serious drawbacks (Allison et al., 2006; Lyons-Weiler
et al., 2004), and appears to be incongruent with the nature
of disease development (Abu-Asab, et al., 2006; 2008). In this
report, we are demonstrating that the use of parsimony phy-
logenetic analysis of microarray data resolves the issues of
gene-ranking discrepancies, improves interplatform concor-
dance, makes possible intra- and interplatform comparabil-
ity, eliminates biases in the gene linkage criteria, and casts
gene expression profiles into a biologically relevant and pre-
dictive model of class discovery.

A superior classification is one that summarizes maxi-
mum knowledge about its specimens, reflects their true on-
togenic relationships to one another, and offers predictiv-
ity (Farris, 1979; Golub, et al., 1999). The latter would
especially be significant when the classification is applied
in a clinical setting for diagnosis, prognosis, or posttreat-
ment evaluation. We are utilizing parsimony phylogenet-
ics because of its inherent ability to produce a robust clas-
sification of relationships—class discovery; and its
forecasting power to reveal the characters of a specimen
when its place in the classification is established—class
prediction (Albert, 2005b). Parsimony models the hetero-
geneity of cancerous microarray data without any a priori
assumptions (Goloboff and Pol, 2005; Siddall, 1998; Ste-
fankovic and Vigoda, 2007). Additionally, a phylogenetic
approach elucidates the direction of change among speci-
mens that leads to their molecular and cellular diversity:
the presence of one or more developmental pathway (Abu-
Asab et al., 2008), and novel expressions that are involved
in the progression and maintenance of the disease.

A strict parsimony phylogenetic analysis uses only shared
derived values, synapomorphies, to delimit a natural group
of specimens within a clade (Wiley and Siegel-Causey, 1991).
Shared derived values of a gene among several specimens
constitute a synapomorphy; therefore, only a synapomorphy
is indicative of their relatedness. Because synapomorphies

define clades at various grouping levels, a parsimonious
phylogenetic classification reflects hierarchical shared de-
velopmental pathways among a group of specimens and
may reveal the presence of subclasses with each having its
own uniquely derived gene expression synapomorphies. In
biological and clinical senses, class discovery and prediction
should be based on shared derived gene expressions (i.e.,
synapomorphies). For example, a cancer class (a clade in
phylogenetic terminology) is delimited by one or more
synapomorphies, and a cancerous specimen will be placed
in a class only if it shares the same synapomorphies with the
members of the clade.

In this study, we are describing a double-algorithmic an-
alytical method of microarray gene-expression data based on
polarity assessment algorithm, UNIPAL (Abu-Asab, et al.,
2006) where the polarized values can be used by a parsimony
algorithm, MIX (Felsenstein, 1989) to produce a phylogenetic
classification of specimens. This approach brings in a sys-
tematic solution to class discovery through phylogenetic
classification whereby every class is delimited by shared
derived gene expressions—i.e., synapomorphies-delimited
clades. Because such a classification reflects the shared aber-
rations of gene expressions of the specimens, we expect it to
have a biological and clinical relevance, and to advance tar-
geted treatments of disease.

Materials and Methods

Gene expression datasets

In order to demonstrate the applicability of parsimony
phylogenetics to microarray gene expression data, and test
the results of interplatform concordance and comparability,
we downloaded three publicly available datasets of gene ex-
pression comparative studies, GDS484 (Hoffman et al., 2004),
GDS533 (Quade et al., 2004), and GDS1210 (Hippo et al.,
2002), from NCBI’s Gene Expression Omnibus (http://www.
ncbi.nlm.nih.gov/geo/). The GDS484 was conducted on
GPL96 (Affymetrix GeneChip Human Genome U133 Array
Set HG-U133A), and the other two studies on GPL80 (Affy-
metrix GeneChip Human Full Length Array HuGeneFL).
The GDS484 was comprised of normal myometrium (n � 5)
and uterine leiomyomas (n � 5) obtained from fibroid af-
flicted patients. The GDS533 study encompassed normal
myometrium (n � 4), benign uterine leiomyoma (n � 7), as
well as malignant uterine (n � 9) and extrauterine (n � 4)
leiomyosarcoma specimens. The GDS1210 study included
expression profiling of 22 primary advanced gastric cancer
tissues and 8 normal specimens.

Polarity assessment and parsimony analysis

Polarity assessment through outgroup comparison does
not use comparison of means and folds but rather it converts
the continuous values into discontinuous ones through the
assessment of each gene’s values against that of the normals’
range and produces a matrix of polarized values (0s and 1s).
Our polarity assessment program, UNIPAL, compares inde-
pendently each gene’s value of experimental specimens
against its corresponding range within the outgroup, and
scores each as either derived (1) or ancestral (0), so the ma-
trix of gene expression values is transformed into a matrix
of polarized scores (0s and 1s).
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We used all the expression data points of all specimens in
the analysis without any a priori selection of only a specific
cluster of data. For polarity assessment (apomorphic [or de-
rived] versus plesiomorphic [or ancestral]), data was polar-
ized with our customized algorithm (UNIPAL) that recog-
nized derived values of each gene when compared with the
outgroups (Abu-Asab et al., 2006). Outgroups here were
composed of normal healthy specimens only. Ideally, the
outgroup should be large enough to encompass the maxi-
mum variation within normal healthy population. UNIPAL
is freely available for noncommercial use from the authors.

The phylogenetic analysis was carried out with MIX, the
maximum parsimony program of PHYLIP ver. 3.57c (Felsen-
stein, 1989), to produce separate parsimony phylogenetic
analyses for each dataset, and the inclusive matrix of the two
sets (GDS533 and GDS1210), which included all their speci-
mens. MIX was run in randomized and nonrandomized in-
puts, and no significant differences were observed between
the two options.

Phylogenetic trees were drawn using TreeView (Page,
1996).

Interplatform concordance and comparability

To test interplatform concordance when analyzed parsi-
moniously, we compared the synapomorphies of the two
uterine leiomyoma datasets, GDS484 and GDS533, and
recorded the percentage of concordance.

To test interplatform comparability (i.e., whether datasets
can be pooled together for a parsimony analysis), we com-
bined the polarized matrices of the two identical platform
datasets, GDS533 and GDS1210, processed the combined ma-
trix by MIX, and compared the result to their separate clado-
grams.

Results

The implications of a parsimonious analysis of the gene
expression data are realized at several aspects: the recogni-
tion and utilization of partially asynchronous genes and di-
chotomously expressed asynchronous genes; the implica-
tions of outgroup selection and its effect on significant gene
listing, better interplatform concordance and comparability,
as well as the practical usefulness of the multidimensional
cladograms.

Dichotomously expressed asynchronous (DEA) genes

Our analysis identified a specific punctuated pattern of
gene expression that seemed to occur only in a set of speci-
mens where a gene’s expression values were around the nor-
mals’ distribution (over and underexpressed), but did not
overlap with it (Tables 1–7). This pattern has been only rec-
ognized once in the literature but was not named (Lyons-
Weiler et al., 2004); we termed this phenomenon dichoto-
mous asynchronicity to reflect its two-tailed distribution and
deviation from the normal expression range.

Although t-statistic and fold-change may dismiss these
asynchronous genes from the list of differentially expressed
genes, or misrepresent their significance (Lyons-Weiler et al.,
2004), an outgroup polarity assessment will assess each value
as derived and let the parsimony algorithm reveal its sig-
nificance in relation to the rest of the genes. A parsimony

phylogenetic algorithm uses the polarized values of all genes
to produce the most parsimonious classification, the one with
the lowest number of reversals and parallelisms (i.e., mini-
mizes multiple origins of expression states in hypothesizing
the relationships among the specimens) (Albert, 2005a;
Felsenstein, 2004).

Through polarity assessment a large number of DEA genes
were recognized. All these genes had their expression val-
ues above and below that of the normal specimens’ range,
that is, derived in relation to outgroups thus pointing out
the heterogeneity that exists among specimens. DEA genes
were found in all the three datasets studied here (Tables 1–7),
and were included within all the analyses.

Most parsimonious cladograms

Parsimony analysis produced one most parsimonious
cladogram (having the least number of steps in constructing
a classification of specimens) for the uterine GDS533 dataset
(Fig. 1). The topology of the tree showed one large inclusive
clade that encompassed all of the leiomyomas and leio-
myosarcomas delimited by 32 synapomorphies (Table 1), a
terminal clade with nine sarcoma specimens, middle sar-
coma clade with four specimens, five small basal leiomyoma
clades in tandem arrangement, followed by four basal nor-
mal clades.

The cladogram in Figure 1 showed that the leiomyoma spec-
imens did not form a natural group by themselves—they did
not form their own clade separating them from the leiomyosar-
comas, and there were no synapomorphies circumscribing
them as a clade when the ingroup was composed of leiomy-
oma and leiomyosarcoma and the outgroup composed of the
normals. However, the leiomyomas shared 146 synapomor-
phies distinguishing them from the normals (Table 2).

The 13 leiomyosarcoma specimens separated into a large
terminal clade that was delimited by 20 synapomorphies in
comparison with an outgroup composed of leiomyoma and
normal specimens (Table 3), and 29 synapomorphies derived
in relation to leiomyomas only as an outgroup (Table 4). Ex-
trauterine sarcoma specimens did not assemble together, but
rather were scattered within the sarcoma clades (denoted by
* on the cladogram in Fig. 1). When the leiomyomas were
removed from the comparison, there were 156 synapomor-
phies delimiting the sarcomas (Table 5).

The various combinations of comparisons (several out-
group and ingroup compositions) illustrate the effect of out-
group and ingroup selections on the results (Tables 1–5).
These comparisons also show the similarities and differences
between two diseases that arise within the same tissue, as
well as the relationship between the leiomyoma and leio-
myosarcoma; and the possibility of the latter arising within
leiomyoma.

For the gastric dataset, GDS1210, parsimony analysis pro-
duced one most parsimonious cladogram (Fig. 2). The clado-
gram topology showed two terminal clades with six and five
specimens, respectively, and a tandem arrangement of six
small clades with the largest having three specimens. The in-
clusive gastric cancer clade was circumscribed by 34 synapo-
morphies (Table 6). In a list by list comparison, our 34 iden-
tified synapomorphies for the gastric cancer overlapped only
with one common gene (CST4) from the gene list of the au-
thors of the study (Hippo et al., 2002).

PHYLOGENETIC MODELING 185



Interplatform concordance

Testing of interplatform concordance was carried out by
comparing the two lists of synapomorphies obtained from
two leiomyoma studies, GDS484 and GDS533 (comparison
results are summarized in Tables 7 and 8). Out of the
�22,000 genes in the GDS484 dataset, our analysis pro-
duced a total of 1485 synapomorphic genes circumscribing
the leiomyoma specimens. Although the leiomyomas of the
GDS533 were delimited by 146 synapomorphies out of
�7,000 gene probes, a comparison between the two sets of
leiomyomas’ synapomorphies produced 45 shared ones be-
tween the two (Tables 7 and 8 ), a 31% concordance in
synapomorphies despite the sizable difference in the num-

ber of probes between the two datasets, which is still bet-
ter than the 12% concordance between the statistically pro-
duced gene lists of the two published studies (Hoffman et
al., 2004; Quade et al., 2004).

Furthermore, 48% concordance resulted when comparing
the 32 synapomorphies of the leiomyomas and leiomyosar-
comas clade (GDS533; Table 1) with the 1485 synapomor-
phies of the leiomyomas of GDS484 (Table 7); the clades’
synapomorphies overlapped as follows: 1/1 OE, 7/8 UE (ex-
cept FOSB), and 8/23 DE, an 89% concordance within the
OE and UE and 35% within the DE. Additionally, there was
45% concordance between the 32 synapomorphies of the
leiomyomas and leiomyosarcomas clade and the gene list of
Quad et al. (2004) (Table 8).
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TABLE 1. SYNAPOMORPHIES DEFINING A CLADE OF LEIOMYOMA AND LEIOMYOSARCOMA

SPECIMENS IN COMPARISON TO NORMAL SPECIMENS (GDS533)

A. Overexpressed synapomorphic genes:
D00596 TYMS thymidylate synthetase OE[1, 2]

B. Underexpressed synapomorphic genes:
L19871 ATF3 activating transcription factor 3 UE[1, 2]
U62015 CYR61 cysteine-rich, angiogenic inducer, 61 UE[1, 2]
X68277 DUSP1 dual specificity phosphatase 1 UE[1, 2]
V01512 FOS v-fos FBJ murine osteosarcoma viral oncogene homolog UE[1], NS [2]
L49169 FOSB FBJ murine osteosarcoma viral oncogene homolog B NS[1], UE[2]
J04111 JUN v-jun sarcoma virus 17 oncogene homolog (avian) UE[1, 2]
Y00503 KRT19 keratin 19 UE[1], NS[2]
U24488 TNXB tenascin XB UE[1], UE,OE[2]

C. Dichotomously-expressed synapomorphic genes:
M31994 ALDH1A1 aldehyde dehydrogenase 1 family, member A1 UE[1], NS[2]
X05409 ALDH2 aldehyde dehydrogenase 2 family (mitochondrial) NS[1, 2]
D25304 ARHGEF6 Rac/Cdc42 guanine nucleotide exchange factor NS[1, 2]

(GEF) 6
K03430 C1QB complement component 1, q subcomponent, B chain NS[1], OE[2]
U60521 CASP9 caspase 9, apoptosis-related cysteine peptidase NS[1, 2]
M73720 CPA3 carboxypeptidase A3 (mast cell) NS[1, 2]
HG2663- Cpg-Enriched DNA, Clone S19 (HG3995-HT4265) NS[1, 2]

HT2759_at
M14676 FYN oncogene related to SRC, FGR, YES NS[1, 2]
M34677 F8A1 coagulation factor VIII-associated (intronic transcript) 1 OE,UE[2]
U60061 FEZ2 fasciculation and elongation protein zeta 2 (zygin II) NS[1, 2]
U86529 GSTZ1 glutathione transferase zeta 1 (maleylacetoacetate NS[1, 2]

isomerase)
HG358- Homeotic Protein 7, Notch Group (HG358-HT358) NS[2]
HT358_at
AB002365 KIAA0367 BCH motif-containing molecule at the carboxyl NS[1], OE,UE[2]

terminal region 1
U37283 MFAP5 microfibrillar associated protein 5 NS[1, 2]
HG406- MFI2 antigen p97 (melanoma associated) identified by NS[1, 2]

HT406_at monoclonal antibodies 133.2 and 96.5
M55593 MMP2 matrix metallopeptidase 2 (gelatinase A, 72kDa NS[1], OE,UE[2]

gelatinase, 72kDa type IV collagenase)
M76732 MSX1 msh homeobox homolog 1 NS[1, 2]
L48513 PON2 paraoxonase 2 NS[1, 2]
U77594 RARRES2 retinoic acid receptor responder (tazarotene NS[1, 2]

induced) 2
M11433 RBP1 retinol binding protein 1 NS[1, 2]
L03411 RDBP RD RNA binding protein NS[1], OE[2]
Z29083 TPBG trophoblast glycoprotein NS[1, 2]
S73591 TXNIP thioredoxin interacting protein NS[1, 2]

Synapomorphies include: OE gene, 8 UE genes, and 23 DE genes. Last column reports the status of the synapomorphies as described by [1]
Hoffman et al. (2004) and [2] Quade et al. (2004) in their significant genes’ lists. DE � dichotomously-expressed; NS � not significant; OE �
overexpressed; UN � underexpressed.



However, a lower concordance was obtained when com-
paring the phylogenetic synapomorphies against statistically
generated gene lists. The synapomorphies of leiomyomas
(GDS533; Table 2) showed 18% concordance (4/25 OE, 8/42
UE) with the 78 significant genes of Hoffman et al. (2004;
GDS484, gene list produced by fold change), and 16.5% (5/25
OE, 6/42 UE) with the 146 genes of Quad et al. (2004;
GDS533, gene list produced by an F statistic). This was higher
than the concordance between the two gene lists of the pub-
lished uterine studies, 12% (3/25 OE, 5/42 UE). The two
studies had no mention of DE genes.

Data pooling and interplatform comparability

Data pooling and interplatform comparability was carried
out on the combined polarized matrices of the gastric
(GDS1210) and uterine (GDS533) datasets. Their inclusive
parsimony analysis produced one most parsimonious clado-
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FIG. 1. A cladogram of a parsimony phylogenetic analysis
of microarray gene-expression data representing normal my-
ometrium (n � 4), leiomyoma (n � 7), leiomyosarcoma (n �
9), and extrauterine leiomyosarcoma (n � 4) specimens. The
leiomyomas and leiomyosarcomas form a clade defined by
32 synapomorphies (Table 1). The leiomyosarcoma speci-
mens form a terminal clade that is circumscribed by 20
synapomorphies (Table 3). Asterisk (*) denotes extrauterine
leiomyosarcomas.

FIG. 2. A cladogram of a parsimony phylogenetic analysis
of gastric cancer and noncancerous specimens. It shows a
clade delineated by 34 synapomorphies (Table 6) encom-
passing all cancer specimens.

FIG. 3. A cladogram representing a comparability analysis
of the gastric (GDS1210) and uterine (GDS533) datasets. The
polarized matrices of the two datasets were pooled together
and processed by the parsimony phylogenetic algorithm,
MIX. Each of the cancers (gastric and leiomyosarcoma) forms
its own clade, and the inclusive clade encompassing the two
cancers and leiomyomas is delimited by a set of synapo-
morphies (Table 9).
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TABLE 2. SYNAPOMORPHIES OF LEIOMYOMA SPECIMENS IN COMPARISON TO NORMAL SPECIMENS (GDS533)

A. Overexpressed synapomorphic genes:
D16469 ATP6AP1 ATPase, H� transporting, lysosomal accessory NS[1, 2]

protein 1
U07139 CACNB3 calcium channel, voltage-dependent, beta 3 subunit NS[1], OE[2]
M11718 COL5A2 collagen, type V, alpha 2 NS[1, 2]
U18300 DDB2 damage-specific DNA binding protein 2, 48 kDa NS[1, 2]
D38550 E2F3 E2F transcription factor 3 NS[1, 2]
M34677 F8A1 coagulation factor VIII-associated (intronic transcript) 1 NS[1, 2]
D89289 FUT8 fucosyltransferase 8 (alpha (1,6) fucosyltransferase) NS[1, 2]
D86962 GRB10 growth factor receptor-bound protein 10 NS[1, 2]
M32053 H19, imprinted maternally expressed untranslated mRNA NS[1, 2]
U07664 HLXB9 homeobox HB9 OE[1, 2]
D87452 IHPK1 inositol hexaphosphate kinase 1 NS[1, 2]
U51336 ITPK1 inositol 1,3,4-triphosphate 5/6 kinase NS[1, 2]
ABA002365 KIAA0367 NS[1], OE[2]
D78611 MEST mesoderm specific transcript homolog (mouse) OE[1], NS[2]
U19718 MFAP2 microfibrillar-associated protein 2 NS[1, 2]
M55593 MMP2 matrix metallopeptidase 2 (gelatinase A, 72 kDa OE[1, 2]

gelatinase, 72kDa type IV collagenase)
U79247 PCDH11X protocadherin 11 X-linked NS[1, 2]
L24559 POLA2 polymerase (DNA directed), alpha 2 (70 kDa subunit) NS[1, 2]
M65066 PRKAR1B protein kinase, cAMP-dependent, regulatory, type I, NS[1, 2]

beta
D14694 PTDSS1 phosphatidylserine synthase 1 NS[1, 2]
U24186 RPA4 replication protein A4, 34 kDa NS[1, 2]
U85658 TFAP2C transcription factor AP-2 gamma (activating NS[1, 2]

enhancer binding protein 2 gamma)
D82345 TMSL8 thymosin-like 8 NS[1, 2]
D85376 TRHR thyrotropin-releasing hormone receptor NS[1, 2]
D00596 TYMS* thymidylate synthetase OE[1, 2]

B. Underexpressed synapomorphic genes:
X0330 ADH1B alcohol dehydrogenase IB (class I), beta polypeptide NS[1, 2]
M31994 ALDH1A1* aldehyde dehydrogenaes 1 family, member A1 UE[1], NS[2]
X05409 ALDH2* aldehyde dehydrogenase 2 family (mitochondrial) NS[1, 2]
L19871 ATF3* activating transcription factor 3 UE[1, 2]
U60521 CASP9 caspase 9, apoptosis-related cysteine peptidase NS[1, 2]
D49372 CCL11 chemokine (C—C motif) ligand 11 NS[1, 2]
X05323 CD200 molecule NS[1, 2]
M83667 CEBPD CCAAT/enhancer binding protein (C/EBP), delta NS[1, 2]
U90716 CXADR coxsackie virus and adenovirus receptor NS[1, 2]
M21186 CYBA cytochrome b-245, alpha polypeptide NS[1, 2]
U62015 CYR61* cysteine-rich, angiogenic inducer, 61 UE[1, 2]
Z22865 DPT dermatopontin NS[1, 2]
X56807 DSC2 desmocollin 2 NS[1, 2]
X68277 DUSP1* dual specificity phosphatase 1 UE[1, 2]
V01512 FOS* v-fos FBJ murine osteosarcoma viral oncogene UE[1], NS[2]

homolog
L49169 FOSB FBJ murine osteosarcoma viral oncogene homolog B NS[1], UE[2]
L11238 GP5 glycoprotein V (platelet) NS[1, 2]
M36284 GYPC glycophorin C (Gerbich blood group) NS[1, 2]
M60750 HIST1H2BG histone cluster 1, H2bg NS[1, 2]
X79200 Homo spaiens mRNA for SYT-SSX protein NS[1, 2]
X92814 HRASLS3 HRAS-like suppressor 3 NS[1, 2]
M62831 IER2 immediate early response 2 NS[1, 2]
J04111 JUN* v-jun sarcoma virus 17 oncogene homolog (avian) UE[1, 2]
Y00503 KRT19* keratin 19 NS[1, 2]
X89430 MECP2 methyl CpG binding protein 2 (Rett syndrome) NS[1, 2]
U46499 MGST1 microsomal glutathione S-transferase 1 NS[1, 2]
M93221 MRC1 mannose receptor, C type 1 NS[1, 2]
M76732 MSX1* msh homeobox homolog 1 (Drosophila) NS[1, 2]
S71824 NCAM1 neural cell adhesion molecule 1 OE[1], NS[2]
X70218 PPP4C protein phosphatase 4 NS[1, 2]
U02680 PTK9 protein tyrosine kinase 9 NS[1, 2]
U79291 PTPN11 protein tyrosine phosphatase, non-receptor type 11 NS[1, 2]

(Noonan syndrome 1)
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TABLE 2. SYNAPOMORPHIES OF LEIOMYOMA SPECIMENS IN COMPARISON TO NORMAL SPECIMENS (GDS533) (CONT’D)

U77594 RARRES2* retinoic acid receptor responder (tazarotene NS[1, 2]
induced) 2

M11433, RBP1* retinol binding protein 1, cellular NS[1, 2]
X07438

L20859 SLC20A1 solute carrier family 20 (phosphate transporter), NS[1, 2]
member 1

M97935 STAT1 signal transducer and activator of transcription 1, NS[1, 2]
91kDa

J04152 TACSTD2 tumor-associated calcium signal transducer 2 NS[1, 2]
X14787 THBS1 thrombospondin 1 NS[1, 2]
U24488 TNXB* tenascin XB UE[1, 2]
Z29083 TPBG* trophoblast glycoprotein NS[1, 2]
X51521 VIL2 villin 2 (ezrin) UE[1], NS[2]
D87716 WDR43 WD repeat domain 43 NS[1, 2]

C. Dichotomously-expressed synapomorphic genes:
ABCB1; ADRM1; AIM1; ALDH1A3; AMDD; ARHGEF6; ARL4D; ATP5B; Atp8a2; C1QB; CA9; CALM2; CTSB;

CCRL2; CD52; CD99; CPA3; DPYD; DSG2; Emx2; FEZ2; FLNA; FOXO1A; FYN; GAPDH; GNB3; GSTZ1; H1F0; H2-
ALPHA; HBG2; Ubx, Notch1; Hox5.4; HTR2C; ICA1; IGF2; INSR; ITGA6; ITGA9; KCNK1; KIAA0152; MAP1D;
MATK; MBP; MDM4; MFAP5; MFI2 antigen p97; MLH1; MPZ; NDUFS1; NELL2; NNAT; NOS3; NR4A1; OASL;
ODC1; OLFM1; PKN2; PON2; PRMT2; PSMC3; PTR2; RANBP2; RBMX; RDBP; RHOG; SAFB2; SCRIB; SELFP;
SERPINF1; SMS; SPOCK2; ST3GAL1; THRA; TNXB; TTLL4; TXNIP; UPK2; XA; ZNF43

These comprise: 25 OE genes, 42 UE genes, and 79 DE genes. Asterisk (*) indicates a synapomorphy for leiomyosarcoma as well. Last
column reports the status of the synapomorphies as described by [1] Hoffman et al. (2004) and [2] Quade et al. (2004) in their significant
genes lists.

TABLE 3. A CLADE OF ALL LEIOMYOSARCOMA SPECIMENS DEFINED BY 20 SYNAPOMORPHIES

IN COMPARISON TO NORMAL AND LEIOMYOMA SPECIMENS

A. Overexpressed synapomorphic genes:
X54942 CKS2 CDC28 proteininase regulatory subunit 2 NS
U68566 HAX1 HCLS1 associated protein X-1 NS
L03411 RDBP RD RNA binding protein OE
X59543 RRM1 ribonucleotide reductase M1 polypeptide NS

B. Underexpressed synapomorphic genes:
D13639 CCND2, cyclin D2 UE
D21337 COL4A6 collagen, type IV, alpha 6 UE
HG2810-HT2921_at Csh2 chorionic somatomammotropin hormone 2 NS

[Rattus norvegicus]
L36033 CXCL12 chemokine (C-X-C motif) ligand 12 (stromal NS

cell-derived factor 1)
HG2663-HT2759_at EMX2 empty spiracles homolog 2 (Drosophila). NS

Homeotic Protein Emx2
HG2663-HT2759_at Homeotic Protein Emx2 NS
HG2810-HT2921_at HOXA10 homeobox A10 Expressed in the adult UE

human endometrium
AB002382 LOC284394 hypothetical gene supported by NS

NM_001331
U69263 MATN2 matrilin 2 UE
U85707 Meis1, myeloid ecotropic viral integration site 1 UE

homolog (mouse)
Z29678 MITF microphthalmia-associated transcription factor UE
L35240 PDLIM7 PDZ and LIM domain 7 (enigma) NS
D87735 RL14 ribosomal protein L14 NS
L14076 SFRS4 splicing factor, arginine/serine-rich 4 UE
J05243 SPTAN1 spectrin, alpha, nonerythrocytic 1 (alpha- NS

fodrin)
C. Dichotomously-expressed synapomorphic genes:

M33197 GAPDH glyceraldehyde-3-phosphate dehydrogenase NS

Last column reports the status of the synapomorphies as described by Quade et al. (2004) in their significant genes list.



gram (Fig. 3). Its topology showed a total separation of the
gastric cancer from the uterine leiomyoma and sarcoma spec-
imens into two large clades. However, the two types of can-
cers shared 16 synapomorphies that delimited a clade com-
posed of all the gastric and uterine specimens (Table 9).

The resulting inclusive cladogram (Fig. 3) showed an al-
most total agreement with the single type cladograms (Figs.
1 and 2), indicating a successful pooling of datasets. How-
ever, there was a slight variation in the topology of minor
branches between the cladogram of Figure 2 and the inclu-
sive one of Figure 3. These slight differences are most likely
due to the increased number of normal specimens that were
used in outgroup of the inclusive cladogram. Outgroup size
used here was by no means ideal; the larger the membership
of the outgroup the more stable the topology of the gener-
ated cladogram (Graybeal, 1998).

Discussion

Microarray data analysis aims to identify differentially ex-
pressed genes, and subsequently characterize genetic pat-

terns, classify specimens accordingly, and point out poten-
tial biomarkers. However, most of the problems that are cur-
rently associated with microarray analysis arise from using
only the quantitative aspect of the data (the absolute con-
tinuous data values of gene expression) to carry out para-
metric statistical analysis. Such a statistical analysis forecasts
gene linkage on the basis of quantitative correlation and not
expression pattern, and lacks the power to recognize and uti-
lize specific gene expression patterns such as dichotomous-
expression and partial asynchronicities (Abu-Asab et al.,
2008; Allison et al., 2006). This results in discrepancies that
affect which genes are considered differentially expressed by
the two main ranking criteria for generating gene lists, the
t-test and fold change (Guo 2006). Our phylogenetic analy-
sis supports a qualitative approach where the directionality
of expression is the first step to designate the expression
value as significant, followed by parsimony search to plot a
classification of specimens with the smallest number of steps
that explains the data’s distribution pattern.

This parsimonious analysis produced higher interplat-
form concordance than the gene lists generated with t-test
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TABLE 4. A CLADE OF ALL LEIOMYOSARCOMA SPECIMENS DEFINED BY 29 SYNAPOMORPHIES

IN COMPARISON TO LEIOMYOMA SPECIMENS ONLY (GDS533)

A. Overexpressed synapomorphic genes:
X54941 CKS1B CD28 protein kinase regulatory subunit 1B OE
X54942 CKS2 CD28 protein kinase regulatory subunit 2 NS
J03060 GBAP glucosidase, beta; acid, pseudogene NS
U78027 GLA galactosidase, alpha (associated w/Fabry’s) RPL36A NS

ribosomal protein L36a
Y00433 GPX1 glutathione peroxidase 1 NS
U68566 HAX1 HCLS1 associated protein X-1 NS
X59543 RRM1 ribonucleotide reductase M1 polypeptide NS
U12465 RPL35 ribosomal protein L35 OE
U67674 SLC10A2 solute carrier family 10 (sodium/bile acid cotransporter NS

family), member 2
B. Underexpressed synapomorphic genes:

U87223 CNTNAP1 contactin associated protein 1 UE
D30655 EIF4A2 eukaryotic translation initiation factor 4A, isoform 2 UE

L20814 GRIA2 glutamate receptor, ionotropic, AMPA 2 UE
M10051 INSR insulin receptor NS
D79999 LOC221181 hypothetical gene supported by NM_006437 NS
D14812 MORF4L2 mortality factor 4 like 2 UE
L36151 PIK4CA phosphatidylinositol 4-kinase, catalytic, alpha NS
D42108 PLCL1 phospholipase C-like 1 NS
L13434 RpL41 Ribosomal protein L41 NS
HG921- Serine/Threonine Kinase, Receptor 2-2, Alt. Splice 3 NS

HT3995_at
D31891 SETDB1 SET domain, bifurcated 1 UE
AB002318 Talin2 NS
U53209 TRA2A transformer-2 alpha NS
D87292 TST thiosulfate sulfurtransferase (rhodanese) NS
M15990 YES1 v-yes-1 Yamaguchi sarcoma viral oncogene homolog 1 NS

C. Dichotomously expressed synapomorphic genes:
U56417 AGPAT1 1-acylglycerol-3-phosphate O-acyltransferase 1 NS

(lysophosphatidic acid acyltransferase, alpha)
M63167 AKT1 v-akt murine thymoma viral oncogene homolog 1 NS
L27560 IGFBP5 insulin-like growth factor binding protein 5 NS
U40223 P2RY4 pyrimidinergic receptor P2Y, G-protein coupled, 4 NS
D76444 RNF103 ring finger protein 103 NS

Last column reports the status of the synapomorphies as described by Quade et al. (2004) in their significant genes list
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TABLE 5. A CLADE COMPOSED OF ALL LEIOMYOSARCOMA SPECIMENS

IS DEFINED IN RELATION TO NORMAL SPECIMENS (GDS533)

A. Overexpressed synapomorphic genes:
S78187 CDC25B cell division cycle 25B NS
U40343 CDKN2D cyclin-dependent kinase inhibitor 2D (p19, NS

inhibits CDK4)
X54942 CKS2 CDC28 protein kinase regulatory subunit 2 NS
X79353 CDI1 GDP dissociation inhibitor 1 NS
X14850 H2AFX H2A histone family, member X NS
U51127 IRF5 interferon regulatory factor 5 NS
U04209 MFAP1 microfibrillar-associated protein 1 NS
U43177 MpV17 mitochondrial inner membrane protein NS
U19796 MRPL28 mitochondrial ribosomal protein L28 OE
U37690 POLR2L polymerase (RNA) II (DNA directed) NS

polypeptide L, 7.6 kDa
M22960 PPGB protective protein for beta-galactosidase NS

(galactosialidosis)
U09210 SLC18A3 solute carrier family 18 (vesicular NS

acetylcholine), member 3
M86752 STIP1 stress-induced-phosphoprotein 1 (Hsp70/Hsp90- OE

organizing protein)
M26880 UBC ubiquitin C OE
U43177 UCN urocortin NS

B. Underexpressed synapomorphic genes:
M12963 ADH1A alcohol dehydrogenase 1A (class I), alpha UE

polypeptide
HG3638- Amyloid Beta (A4) Precursor Protein, Alt. Splice 2, NS

HT3849_s_at A4(751)
L28997 ARL1 ADP-ribosylation factor-like 1 NS
Z49269 CCL14 chemokine (C—C motif) ligand 14 UE
M92934 CTGF connective tissue growth factor UE
M74099 CUTL1 cut-like 1, CCAAT displacement protein NS

(Drosophila)
M96859 DPP6 dipeptidyl-peptidase 6 UE
U94855 EIF3S5 eukaryotic translation initiation factor 3, subunit 5 NS

epsilon, 47kDa
L25878 EPHX1 epoxide hydrolase 1, microsomal (xenobiotic) NS
U60061- FEZ2 fasciculation and elongation protein zeta 2 (zygin II) NS

U69140
X67491 GLUDP5 glutamate dehydrogenase pseudogene 5 NS
HG4334- Glycogenin NS

HT4604_s_at
X53296 IL1RN interleukin 1 receptor antagonist NS
X55740 NT53 5′-nucleotidase, ecto (CD73) UE
X78136 PCBP2 poly(rC) binding protein 2 UE
Z50194 PHLDA1 pleckstrin homology-like domain, family A, NS

member 1
J02902 PPP2R1A protein phosphatase 2 (formerly 2A), regulatory NS

subunit A (PR 65), alpha isoform
J03805 PPP2CB protein phosphatase 2, catalytic subunit, beta NS

isoform
U25988 PSG11 pregnancy specific beta-1-glycoprotein 11 NS
M98539 PTGDS prostaglandin D2 synthase 21kDa (brain) UE
X54131 PTPRB protein tyrosine phosphatase, receptor type, B NS
M12174 RHOB ras homolog gene family, member B NS
HG1879- RHOQ ras homolog gene family, member Q NS

HT3521_at
X98534 VASP vasodilator-stimulated phosphoprotein NS
X51630 WT1 Wilms tumor 1 UE
HG3426- Zinc Finger Protein Hzf-16, Kruppel-Like, Alt. Splice 1 NS

HT3610_s_at
M92843 ZFP36 zinc finger protein 36, C3H type, homolog (mouse) UE

C. Dichotomously expressed synapomorphic genes:
U80226 ABAT 4-aminobutyrate aminotransferase NS
M14758 ABCB1 ATP-binding cassette, sub-family B (MDR/TAP), NS

member 1
M95178 ACTN1 actinin, alpha 1 NS

(continued)
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TABLE 5. A CLADE COMPOSED OF ALL LEIOMYOSARCOMA SPECIMENS

IS DEFINED IN RELATION TO NORMAL SPECIMENS (GDS533) (CONT’D)

U76421 ADARB12 adenosine deaminase, RNA-specific, B1 (RED1 NS
homolog rat)

U46689 ALDH3A2 aldehyde dehydrogenase 3 family, member A2 NS
L34820 ALDH5A1 aldehyde dehydrogenase 5 family, member A1 NS

(succinate-semialdehyde dehydrogenase)
M84332 ARF1 ADP-ribosylation factor 1 NS
D14710 ATP5A1 ATP synthase, H� transporting, mitochondrial F1 NS

complex, alpha subunit 1, cardiac muscle
X84213 BAK1 BCL2-antagonist/killer 1 NS
U23070 BAMBI BMP and activin membrane-bound inhibitor NS

homolog (Xenopus laevis)
M33518 BAT2 HLA-B associated transcript 2 NS
X61123 BTG1 B-cell translocation gene 1, anti-proliferative NS
S60415 CACNB2 calcium channel, voltage-dependent, beta 2 subunit NS
M19878 CALB1 calbindin 1, 28 kDa NS
L76380 CALCRL calcitonin receptor-like NS
M21121 CCL5 chemokine (C—C motif) ligand 5 NS
D14664 CD302 CD302 molecule NS
X72964 CETN2 centrin, EF-hand protein, 2 NS
U66468 CGREF1 cell growth regulator with EF-hand domain 1 NS
M63379 CLU clusterin NS
X52022 COL6A3 collagen, type VI, alpha 3 UE
L25286 COL15A1 collagen, type XV, alpha 1 NS
S45630 CRYAB crystallin, alpha B NS
X95325 CSDA cold shock domain protein A NS
U03100 CTNNA1 catenin (cadherin-associated protein), alpha 1, NS

102kDa
X52142 CTPS CTP synthase NS

D38549 CYFIP1 cytoplasmic FMR1 interacting protein 1 NS
X64229 DEK DEK oncogene (DNA binding) NS
M63391 DES desmin UE
Z34918 EIF4G3 eukaryotic translation initiation factor 4 gamma, 3 NS
U97018 EML1 echinoderm microtubule associated protein like 1 NS
U12255 FCGRT Fc fragment of IgG, receptor, transporter, alpha NS
U36922 FOXO1A forkhead box O1A (rhabdomyosarcoma) NS
U91903 FRZB frizzled-related protein NS
M33197 GAPDH glyceraldehyde-3-phosphate dehydrogenase NS
U09587 GARS glycyl-tRNA synthetase NS
U66075 GATA6 GATA binding protein 6 NS
D13988 GDI2 GDP dissociation inhibitor 2 NS
U31176 GFER growth factor, augmenter of liver regeneration NS

(ERV1 homolog, S. cerevisiae)
U28811 GLG1 golgi apparatus protein 1 NS
U66578 GPR23 G protein-coupled receptor 23 NS
L40027 GSK3A glycogen synthase kinase 3 alpha NS
U77948 GTF2I general transcription factor II, i UE
Z29481 HAAO 3-hydroxyanthranilate 3,4-dioxygenase NS
D16480 HADHA hydroxyacyl-Coenzyme A dehydrogenase/3- NS

ketoacyl-Coenzyme A thiolase/enoyl-Coenzyme A
hydratase (trifunctional protein), alpha subunit

U50079 HDAC1 histone deacetylase 1 NS
U50078 HERC1 hect (homologous to the E6-AP (UBE3A) carboxyl NS

terminus) domain and RCC1 (CHC1)-like domain (RLD) 1
M95623 HMBS hydroxymethylbilane synthase NS
X79536 HNRPA1 heterogeneous  nuclear ribonucleoprotein A1 NS
L15189 HSPA9B heat shock 70 kDa protein 9B (mortalin-2) NS
U05875 IFNGR2 interferon gamma receptor 2 (interferon gamma NS

transducer 1)
X57025 IGF1 insulin-like growth factor 1 (somatomedin C) UE
HG3543- IGF2 insulin-like growth factor 2 (somatomedin A) NS
U40282 ILK integrin-linked kinase NS
X74295 ITGA7 integrin, alpha 7 NS
X57206 ITPKB inositol 1,4,5-trisphosphate 3-kinase B NS
AB002365 KIAA0367 UE
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TABLE 5. A CLADE COMPOSED OF ALL LEIOMYOSARCOMA SPECIMENS

IS DEFINED IN RELATION TO NORMAL SPECIMENS (GDS533) (CONT’D)

J00124 KRT14 keratin 14 (epidermolysis bullosa simplex, NS
Dowling-Meara, Koebner)

X05153 LALBA lactalbumin, alpha- NS
X02152 LDHA lactate dehydrogenase A NS
HG3527- LHB luteinizing hormone beta polypeptide NS

HT3721_f_at
X86018 LRRC41 leucine rich repeat containing 41 NS
L38486 MFAP4 microfibrillar-associated protein 4 NS
D87742 MIA3 melanoma inhibitory activity family, member 3 NS
M69066 MSN moesin NS
AB003177 mRNA for proteasome subunit p27 NS
U47742 MYST3 MYST histone acetyltransferase (monocytic NS

leukemia) 3
M30269 NID1 nidogen 1 NS
U80669 NKX3-1 NK3 transcription factor related, locus 1 (Drosophila) NS
M10901 NR3C1 nuclear receptor subfamily 3, group C, member 1 NS

(glucocorticoid receptor)
M16801 NR3C2 nuclear receptor subfamily 3, group C, member 2 NS

U52969 PCP4 Purkinje cell protein 4 UE
J03278 PDGFRB platelet-derived growth factor receptor, beta NS

polypeptide
D37965 PDGFRL platelet-derived growth factor receptor-like NS
Z49835 PDIA3 protein disulfide isomerase family A, member 3 NS
U78524 PIAS1 protein inhibitor of activated STAT, 1 NS
U60644 PLD3 phospholipase D family, member 3 NS
D11428 PMP22 peripheral myelin protein 22 NS
U79294 PPAP2B phosphatidic acid phosphatase type 2B NS
S71018 PPIC peptidylprolyl isomerase C (cyclophilin C) NS
X07767 PRKACA protein kinase, cAMP-dependent, catalytic, alpha NS
X83416 PRNP prion protein (p27–30) NS
M555671 PROZ protein Z, vitamin K-dependent plasma glycoprotein NS
U72066 RBBP8 retinoblstoma binding protein 8 NS
L25081 RHOC ras homolog gene family, member C NS
U40369 SAT1 spermidine/spermine N1-acetyltransferase 1 NS
M97287 SATB1 special AT-rich sequence binding protein 1 (binds NS

to nuclear matrix/scaffold-associating DNAs)
U83463 SDCBP syndecan binding protein (syntenin) NS
U28369 SEMA3B sema domain, immunoglobulin domain (Ig), NS

short basic domain, secreted, (semaphorin) 3B
HG3925- SFTPA2 surfactant, pulmonary-associated protein A2 NS

ht4195_at
L31801 SLC16A1 solute carrier family 16, member 1 NS

(monocarboxylic acid transporter 1)
M91463 SLC2A4 solute carrier family 2 (facilitated glucose NS

transporter), member 4
U66617 SMARCD1 SWI/SNF related, matrix associated, actin NS

dependent regulator of chromatin, subfamily d, member 1
U50383 SMYD5 SMYD family member 5 NS
D43636 SNRK SNF related kinase NS
D87465 SPOCK2 sparc/osteonectin, cwcv and kazal-like domains NS

proteoglycan (testican) 2
M61199 SSFA2 sperm specific antigen 2 NS
U15131 ST5 suppression of tumorigenicity 5 NS
U95006 STRA13 stimulated by retinoic acid 13 homolog (mouse) NS
M74719 TCF4 transcription factor 4 NS
X14253 TDGF1 teratocarcinoma-derived growth factor 1 NS
U52830 TERT telomerase reverse transcriptase NS
U12471 THBS1 thrombospondin 1 NS
U16296 TIAM1 T-cell lymphoma invasion and metastasis 1 NS
L01042 TMF1 TATA element modulatory factor 1 NS
U03397 TNFRSF9 tumor necrosis factor receptor subfamily, NS

member 9
(continued)



and fold change (Tables 7 and 8), and allowed the pooling
and comparability of two independent experiments. Such re-
sults confer reliability to a qualitative parsimonious ap-
proach to analyzing gene expression data. Table 10 summa-
rizes the major characteristics of a parsimony phylogenetic
approach.

In addition to its evident scientific applications, a phylo-
genetic analysis as outlined here has clinical implications as
well. Indeed, the results of the three microarray gene ex-
pression datasets show the clinical potential for such parsi-
monious analysis; they produced a total distinction of the
sarcoma from the fibroid tissues (the leiomyomas), and these
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TABLE 6. A LIST OF 34 SYNAPOMORPHIES DEFINING A CLADE COMPOSED OF ALL GASTRIC CANCER SPECIMENS (GDS1210)

A. Overexpressed synapomorphic genes:
X81817 BAP31 mRNA No
D50914 BOP1 block of proliferation 1 No
X54667 CST4: cystatin S MGC71923 Yes
L17131 HMGA1 high mobility group AT-hook 1 No
D63874 HMGB1 high-mobility group box 1 No
D26600 PSMB4 proteasome (prosome, macropain) subunit, beta type, 4 No
U36759 PTCRA pre-T-cell antigen receptor alpha PT-ALPHA, PTA No
X89750 TGIF TGFB-induced factor (TALE family homeobox) No

B. Underexpressed synapomorphic genes:
X76342 ADH7 alcohol dehydrogenase 7 (class IV), mu or sigma polypeptide ADH-4 No
M63962 ATP4A ATPase, H�/K� exchanging, alpha polypeptide ATP6A No
M75110 ATP4B ATPase, H�/K� exchanging, beta polypeptide ATP6B No
J05401 CKMT2 creatine kinase, mitochondrial 2 (sarcomeric) No
L38025 DNTFR ciliary neurotrophic factor receptor No
M61855 CYP2C9: cytochrome P450, family 2, subfamily C, polypeptide 9 CPC9 No
D63479 DGKD: diacylglycerol kinase, delta 130kDa DGKdelta, KIAA0145, dgkd-2 No
X99101 ESR2 estrogen receptor 2 (ER beta) No
U21931 FBP1 fructose-1, 6-bisphosphatase 1 No
HG3432- Fibroblast Growth Factor Receptor K-Sam, Alt. Splice 1 No

HT3618_at
M31328 GNB3 guanine nucleotide binding protein (G protein), beta polypeptide 3 No
D42047 GPD1L glycerol-3-phosphate dehydrogenase 1-like No
M62628 Human alpha-1 Ig germline C-region membrane-coding region, 3′end No
D29675 Human inducible nitric oxide synthase gene, promoter and exon 1 No
M63154 Human intrinsic factor mRNA No
Z29074 KRT9 keratin 9 (epidermolytic palmoplantar keratoderma) EPPK, K9 No
X05997 LIPF lipase, gastric No
U50136 LTC4S leukotriene C4 synthase MGC33147 No
X76223 MAL: mal, T-cell differentiation protein No
U19948 PDIA2 protein disulfide isomerase family A, member 2 No
L07592 PPARD peroxisome proliferative activated receptor, delta No
U57094 RAB27A, member RAS oncogene family No
AC002077 SLC38A3 solute carrier family 38, member 3 No
Z29574 TNFRSF17 tumor necrosis factor recepter superfamily, member 17 No

C. Dichotomously expressed synapomorphic genes:
D00408 CYP3A7 cytochrome P450, family 3, subfamily A, polypeptide 7 CP37, No

P450-HFLA
U29092 SELENBP1 selenium binding protein 1 No

Synapomorphies include: 8 OE genes, 24 UE genes, and 2 DE genes in comparison with the normal specimens. Last column reports the 
status of the synapomorphies as described by Hippo et al. (2002). Yes � listed; No � not listed.

X05276 TMP4 tropomyosin 4 UE
HG4683- TRAF2 TNF receptor-associated factor 2 NS

HT5108_s_at
U64444 UFD1L ubiquitin fusion degradation 1 like (yeast) NS
U39318 UBE2D3 ubiquitin-conjugating enzyme E2D 3 (UBC4/5 NS

homolog, yeast)
X59739 ZFX zinc-finger protein, X-linked NS

Last column reports the status of the synapomorphies as described by Quade et al. (2004) in their significant genes list

TABLE 5. A CLADE COMPOSED OF ALL LEIOMYOSARCOMA SPECIMENS

IS DEFINED IN RELATION TO NORMAL SPECIMENS (GDS533) (CONT’D)



two classes from gastric cancer. It also identified a number
of synapomorphies for gastric and uterine cancers, thus
defining each as a separate disease entity with its unique
shared derived expressions (see also Meza-Zepeda et al.

2006, for further support of this point). Furthermore, the
combined analysis revealed the shared alterations of gene
expression that are shared between the uterine and gastric
cancers (Table 9). This conclusion is supported by the pres-
ence of these synapomorphic gene expressions as significant
ones in other types of cancers as well: bladder, breast, col-
orectal, ovarian, pancreatic, prostate, and renal (Guzińska-
Ustymowicz et al., 2008; Dong et al., 2007; Huang et al., 2006;
Pilarsky et al., 2004).

Advantages of polarity assessment

There are several reasons for our preference of a combi-
nation of polarity assessment via outgroup comparison and
parsimony over other methods for the analysis of gene ex-
pression microarray data, an approach that is also supported
by other authors (Allison et al., 2006; Kolaczkowski and
Thornton, 2004). Parsimony phylogenetic analysis requires
polarity assessment for each data value to determine its nov-
elty—whether it represents a change from the normal state
(Abu-Asab et al., 2008). We advocate that qualitative, and
not only quantitative, similarity is a better measure of com-
mon ontogenetic steps among specimens, and that a corre-
lation of genes based on similar quantitative expression is
not necessarily indicative of ontogenic relationships among
genes.

Polarity assessment does not set an arbitrary stringency
on gene selection, especially where the distribution pattern
is gene specific within a set of specimens (e.g., DE and par-
tially asynchronous genes), while other methods are not op-
timal for its assessment (Huang and Qu, 2006; Lyons-Weiler
et al., 2004). Fold change and F and t-statistics may dismiss
from the gene list those genes with dichotomous expressions,
although they are indicative of a unique expression type and
may account for some phenomena such as transitional clades
located between diseased and normal clades, and multiple
developmental pathways in some disease types (Abu et al.,
2006; Lyons-Weiler et al., 2004). The gene lists of Tables
1C–7C show a large number of DE asynchronous genes that
were mostly not considered significant by other methods
(Hippo et al., 2002; Hoffman et al., 2004; Quade et al., 2004),
or their dichotomous mode was not noticed by the authors.

Because polarity assessment transforms the quantitative
data into a qualitative matrix, it reduces the data noise. The
absolute quantitative nature of the microarray data restricts
their use and interpretation due to their range of inconsis-
tencies between runs, platforms, and laboratories. By polar-
izing each data set with its own set of outgroup specimens,
the inconsistencies of the experiment are eliminated since the
polarization process is a comparison between equals—data
values generated at the same time. The benefit here trans-
lates into the ability to pool a large number of experiments,
carry out intra- and interplatform comparabilities, and a bet-
ter gene list concordance between experiments. However, as
discussed below, polarity assessment is sensitive to the
choice and size of the outgroup specimens.

Selection and size of the outgroup

When conducting a polarity assessment, outgroup’s se-
lection and its effective size are very significant factors in
correctly identifying synapomorphies, and therefore, opti-
mally delimiting the classes of diseased specimens. The
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TABLE 7. INTERPLATFORM CONCORDANCE

GDS533 GDS484

A. Overexpressed synapomorphic genes:
a. Identical Synapomorphies
DDB2 DDB2
FUT8 FUT8
MEST MEST
TMSL8 TMSL8
TYMS TYMS
b. Homologous synapomorphies
CACNB3 CACNA1C
COL5A2 COL4A5
KIAA0367 KIAA0101
PRKAR1B PRKACB

B. Underexpressed synapomorphic genes:
a. Identical synapomorphies
ALDH1A1 ALDH1A1
ALDH2 ALDH2
ATF3 ATF3
CEBPD CEBPD
CXADR CXADR
CYR61 CYR61
DUSP1 DUSP1
FOS FOS
HRASLS3 HRASLS3
IER2 IER2
JUN JUN
KRT19 KRT19
RARRES2 RARRES2
TACSTD2 TACSTD2
TNXB TNXB
VIL2 VIL2
b. Homologous synapomorphies
CASP9 CASP4
CYBA CYB5R1
FOSB FOS
JUNB JUN
PPP4C PPP1R10
SLC20A1 SLC18A2
THBS1 THBD
WDR43 WDR37

C. Dichotomously expressed synapomorphic genes:
a. Identical synapomorphies
CTSB CTSB
b. Homologous synapomorphies
ARL4D ARL4C
FOXO1A FOXJ3
GNB3 GNB1L
ITGA6 ITGA2B
ITGA9 ITGA2B
KCNK1 KCNJ5
MFAP5 MFAP4
PSMC3 PSMC2
SELP SELL
TXNIP TXNDC13
ZNF43 ZNF259P

A list of overlapping identical (22) and homologous (23) synapo-
morphic genes in leiomyoma specimens of GDS484 and GDS533.
These include: 9 OE, 24 UE, and 12 DE.



composition of the outgroup specimens affects the outcome of
the analysis as demonstrated by the different combinations of
outgroups that we used to conduct polarity assessment for the
leiomyosarcomas and leiomyomas (Tables 1–5). We selected
these various arrangements of outgroups to demonstrate that
their compositions produced slightly different but still biolog-
ically meaningful results. It is important to note that the out-
group should be composed of only healthy specimens when
the goal is to find out the genes involved in disease inception,
progression, and maintenance. As Tables 1–5 show, variations
of out/ingroup composition lead to variations in identifying
synapomorphies. Also, Figure 3 shows that the different types
of cancers will separate into their respective clades when the
outgroup is composed of normal specimens; a process that can
be utilized for diagnosis.

In our combined analysis (Fig. 3), the increase in outgroup
size did not affect the major topology of the cladogram, but

rather the internal branching of some clades (normal and
gastric cancer) when compared with their single analysis
(Figs. 1–2). Because increasing the number of genes in the
study does not have the same effect as enlarging outgroup
size (Graybeal, 1998), it is our conclusion that a successful
analysis requires a good number of normal specimens to be
used as the outgroup. For microarray experiments to be
meaningful and provide high predictivity, the smallest num-
ber of normal specimens that encompasses the maximum
variation per population should be established and used in
the analysis.

Inferring gene linkage through parsimony 
phylogenetic analysis

Whereas gene linkage of a clustering dendrogram is based
on quantitative correlations between differentially expressed
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TABLE 8. SUMMARY OF CONCORDANCE RESULTS BETWEEN GDS484 AND GDS533

GDS533 (Fibroids and Leiomyosarcomas)

Abu-Asab et al.
Synapomorphies for

Abu-Asab et al. Fibroids and
Quad et al. Synapomorphies Leiomyosarcoma
Gene List for Fibroids (146) (32)

GDS484 Hoffman et al. 12% 18% 19.3%
(Fibroids) Gene List

Abu-Asab et al. 20% 31% 48%
Synapomorphies
for Fibroids
(1485)

GDS533 Quad et al. Gene List N/A 16.5% 45%

The comparisons were carried out in various combinations: statistical versus statistical, phylogenetic versus statistical, and phylogenetic
versus phylogenetic. N/A: not applicable (number of synapomorphies).

TABLE 9. INTERPLATFORM COMPARABILITY

ID Gene

U52522 ARFIP2 ADP-ribosylation factor interacting protein 2 (arfaptin 2)
U51478 ATP1B3 ATPase, NaK transporting, beta 3 polypeptide
X66839 CA9 carbonic anhydrase IX
M60974 GADD45A growth arrest and DNA-damage-inducible, alpha
X01677- GAPDH glyceraldehyde-3-phosphate dehydrogenase [two

M33197 readings]
X14850 H2AFX H2A histone family, member X
U52830 Homo sapiens Cri-du-chat region mRNA, clone CSC8
U25138 KCNMB1 potassium large conductance calcium-activated

channel, subfamily M, beta member 1
D21063 MCM2 minichromosome maintenance deficient 2
L38486 MFAP4 microfibrillar-associated protein 4
D87463 PHYHIP phytanoyl-CoA 2-hydroxylase interacting protein
X02419 PLAU plasminogen activator, urokinase
L48513 PON2 paraoxonase 2
U29091 SELENBP1 selenium binding protein 1
Z19083 TPBG trophoblast glycoprotein
M25077 TROVE2 TROVE domain family, member 2

A list of 16 synapomorphies defining a clade composed of all gastric cancer (GDS1210) as well
as uterine sarcoma and leiomyom specimens (GDS533).



genes, in a parsimony cladogram it is based on the distri-
bution of derived and ancestral gene expression states of all
genes of all the specimens; that is, it is a map of expression
states—both ancestral and derived. It reflects the classifica-
tion that has the lowest number of steps as well as parallels
and reversals to explain the distribution of expression states
among specimens.

Gene linkage here is based on the location of genes on the
cladogram. The synapomorphies below a node on the clado-
gram are the linked genes that are shared among the speci-
mens above that node. Because a parsimonious cladogram
is hierarchical, every one of its nodes has its synapomor-
phy(ies). This characteristic of a cladogram presents it as a
map of linked genetic alterations that produce the diver-
sity/relatedness of its specimens and may also permit the
tracing of shared ontogenic pathways that are responsible
for disease initiation and progression.

Improved interplatform concordance and comparability

Improved interplatform concordance is a criterion that
will confer robustness and significance on microarray as a
valid experimental and clinical platform. Our tests of con-
cordance by comparing the lists of synapomorphies gener-
ated by polarity assessment of two experiments produced
better results than those of fold change and F-statistic, and
better than between the latter two (Table 8). When compar-
ing the synapomorphies of a clade composed of leiomyomas
and leiomyosarcomas (GDS533) with the synapomorphies of
leiomyomas (GDS484), we obtained a high concordance of
89% within over- and underexpressed and 35% within di-
chotomously expressed genes. The concordance between the
two studies could have been higher if the number of probes
of the GDS533 was closer to GDS484–7,000 versus 22,000

(Hoffman et al., 2004; Quade et al., 2004). Furthermore, even
a comparison of the synapomorphies of two leiomyoma
groups [GDS484 (1485 synapomorphies) and GDS533 (146
synapomorphies; Table 2)] produced 31% concordance be-
tween the two groups of leiomyoma (45/146; Table 7). Nev-
ertheless, this was a higher percentage than was produced
by statistical methods (12%).

Interplatform comparability has been difficult to carry out
on microarray data because of data inconsistencies between
runs, experiments, and laboratories; however, with polarity
assessment, which converts the quantitative values of gene
expression of every experiment into a qualitative matrix, it
is possible to combine several matrices and carry out intra-
and interplatform comparisons in a parsimonious phyloge-
netic sense. A phylogenetic interplatform comparability of
microarray data can be carried out if each dataset can be po-
larized separately with its own outgroup to produce its po-
larized matrix. Furthermore, when their probes are identi-
cal, two or more polarized sets can be pooled together and
analyzed as Figure 3 shows. We have successfully pooled
and analyzed two separately polarized datasets (GDS533
and 1210) of gastric cancer as well as uterine leiomyoma and
leiomyosarcoma, where the two datasets were prepared sep-
arately but on an identical gene chip platform, GPL80.

Implications on disease definition, profiling, diagnosis, 
and prognosis

Although it is assumed that each disease has its own
unique developmental pathway(s) (Adsay et al., 2002;
Chung, 2000; Hayashi et al., 2004), thus far, the omics data
has not been used to prove this premise. Our analysis of two
independently generated datasets that represent uterine
(GDS533) and gastric (GDS1210) cancers confirms that each
of these two types of cancer is a natural class of specimens
(a clade) that is circumscribed by its own set of synapomor-
phies. If this can be extended to other types of cancer, then
each cancer can be considered a natural clade with its unique
gene expression identifiers—the synapomorphies.

There are several implications to this conclusion; the most
obvious is its effect on the definition of biomarkers. If the
specimens of a type of cancer form a clade, then any sug-
gested biomarker has to be selected from the clades’ synapo-
morphies; otherwise, it will not be a universal diagnostic test
for all the specimens of this cancer. Some of the currently ap-
plied immunohistomarkers are not universal synapomor-
phies. For example, the memberships of all four clades of the
gastric cancers (Fig. 2) did not correlate well with the spec-
imens’ immunoreactivity to antibodies against p53, E-cad-
herin, and �-catenin, and a published two-way clustering did
not correlate any better (Hippo et al., 2002). The discordance
between omics biomarkers and most of the currently used
immunohistological markers is a problem that can be better
addressed in a phylogenetic sense. The discordance between
microarray and immunohistochemical (IHC) biomarkers is
due to the differing natures of these two types of markers.
Although gene-expression biomarkers are based on the av-
eraging of the expression values of the number of the cells
used in the study (i.e., the cell homogenate), the IHC is based
on the pathologist reading of the percentage of positive cells
in the stained section. The IHC result is given as a percent-
age figure that could start at 10%, and is used to associate
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TABLE 10. SUMMARY OF THE CHARACTERISTICS OF A

PARSIMONIOUS PHYLOGENETIC ANALYSIS THROUGH

POLARITY ASSESSMENT OF GENE-EXPRESSION VALUES

FOLLOWED BY A MAXIMUM PARSIMONY ANALYSIS

• Offers a qualitative assessment of microarray gene
expression data by sorting expression values into
derived or ancestral.

• Identifies synapomorphies (shared derived expression
states) and uses them to delineate clades (class
discovery). Synapomorphies are also the potential
biomarkers.

• Searches for the most parsimonious classification of
specimens; the one with minimum number of steps,
reversals, and parallels.

• Efficiently models the heterogeneous expression profiles
of the diseased specimens. Those with fast mutation
rate such as cancer.

• Incorporates gene expressions that violate normal
distribution in a set of specimens—e.g., dichotomously
expressed genes.

• Reduces the sensitivity to experimental noise.
• Permits pooling of multiple experiments.
• Allows intra and intercomparability of data.
• Produces higher concordance between gene lists than

statistical methods (F & t-statistics and fold change).
• Offers a nonparametric data-based, not specimen-based,

gene listing and gene linkage.



the neoplasm with the normal tissue of origin. For an accu-
rate and meaningful interpretation of the gene expression
analyses, a comparison between the two types of biomark-
ers should be avoided, and the phylogenetic concept that is
suggested here should be adopted.

A second implication is that a phylogenetic classification
can be a clinical tool to carry out early detection, diagnosis,
grading, prognosis, and posttreatment evaluation; these
tasks can be realized through a parsimony analysis where
the place of a specimen within the cladogram (i.e., the clas-
sification) will indicate its pathologic status. Alternatively,
the health status of a specimen can be probed by using the
synapomorphies as the biomarkers of the disease, that is,
through class prediction by assigning the specimen to a
clade. Because the cladogram also indicates the direction of
change in gene expression among the specimens, it places
those specimens with the advanced number of derived gene
expression patterns at the terminal end of the cladogram,
and places the specimens with the least number of gene ex-
pression changes at the lower end of the cladogram, and it
may be developed for use in grading, prognosis, targeted
treatment, and posttreatment assessment.

Additionally, the phylogenetic classification is a dynamic
and seamless tool that will incorporate a novel specimen by
placing it in the proximity of its sister groups, depending on
the number of synapomorphies it shares with other mem-
bers of a clade, without any radical alteration to the topol-
ogy of the cladogram.

Resolving standing questions through parsimony
phylogenetics: an example

Our analysis of uterine fibroids and sarcomas illustrates
how a parsimony phylogenetic analysis may confront some
of the unresolved issues in bioinformatics and medicine. 
For example, one of the persistent questions in pathology is
the relationship between leiomyoma and leiomyosarcoma
(Quade et al., 2004). It has been reported that approximately
1% of leiomyosarcoma may have arisen in preexisting leio-
myoma (Lee et al., 2005). By analyzing data of normal uterus,
leiomyoma, and leiomyosarcoma, we demonstrated that the
latter two share a number of synapomorphies and form to-
gether an inclusive clade (Table 1 and Figs. 1 and 3), and that
leiomyosarcoma has an additional number of synapomor-
phies distinguishing them from leiomyoma (Table 3). Al-
though the leiomyoma specimens, when analyzed alone,
without the leiomyosarcoma, appear to have a large number
of synapomorphies (Table 2), these synapomorphies are not
unique to leiomyoma. Leiomyoma as a group does not form
a clade within a comprehensive ingroup that includes the
leiomyosarcoma; there is not even one gene expression that
is unique to the group itself in this context. Because it shares
with the leiomyosarcoma its synapomorphies, leiomyoma
may be considered an incipient form of leiomyosarcoma.

Conclusion

The application of phylogenetic analysis through polarity
assessment and parsimony to several gene expression mi-
croarray datasets provides the basis for a new paradigm to
analyzing and interpreting microarray data (Table 10). It of-
fers an alternative to F and t-statistics and fold change meth-
ods of generating differentially expressed gene listing and

statistical gene linkage, brings out a higher interplatform
concordance, resolves interplatform comparability prob-
lems, defines biomarkers as synapomorphies, circumscribes
disease types as clades defined by synapomorphies, and pos-
sibly transforms microarray into diagnostic, prognostic, and
posttreatment evaluation tool.
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