
BioMed CentralMolecular Pain

ss
Open AcceResearch
Cutaneous tactile allodynia associated with microvascular 
dysfunction in muscle
Andre Laferrière†1,2, Magali Millecamps†2,4, Dimitris N Xanthos†2,3, 
Wen Hua Xiao1,2, Chiang Siau1, Marissa de Mos5, Christelle Sachot6, J 
Vaigunda Ragavendran1, Frank JPM Huygen7, Gary J Bennett1,2,4 and 
Terence J Coderre*1,2,3,8

Address: 1Department of Anesthesia, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, H3G 1Y6, Canada, 2Alan Edwards 
Centre for Research on Pain, McGill University, 740 Dr. Penfield Ave, Montreal, Quebec, H3A 1A4, Canada, 3Department of Psychology, McGill 
University, 1205 Dr. Penfield Ave, Montreal, Quebec, H3A 1B1, Canada, 4Faculty of Dentistry, McGill University, 3640 University St, Montreal, 
Quebec, H3A 2B2, Canada, 5Department of Medical Informatics, Erasmus University Medical Centre, dr. Molewaterplein 50, 3015 GE Rotterdam, 
the Netherlands, 6Department of Neuroscience, Douglas Mental Health University Institute, 6875 LaSalle Boulevard, Verdun, Quebec, H4H 1R3, 
Canada, 7Department of Anesthesiology, Pain Treatment Centre, Erasmus University Medical Centre, S. Gravendijkwal 230, 3015 CE Rotterdam, 
the Netherlands and 8McGill University Hospital Centre Research Institute, 2155 Guy St, Montreal, Quebec, H3H 2R9, Canada

Email: Andre Laferrière - andre.laferriere@mcgill.ca; Magali Millecamps - magali.millecamps@mcgill.ca; 
Dimitris N Xanthos - dimitris.xanthos@meduniwien.ac.at; Wen Hua Xiao - wenhua.xiao@mcgill.ca; Chiang Siau - Chiang_SIAU@nuh.com.sg; 
Marissa de Mos - m.vrolijk-demos@erasmusmc.nl; Christelle Sachot - christelle.sachot@inserm.fr; J 
Vaigunda Ragavendran - rags_jeg@yahoo.co.in; Frank JPM Huygen - f.huygen@erasmusmc.nl; Gary J Bennett - gary.bennett@mcgill.ca; 
Terence J Coderre* - terence.coderre@mcgill.ca

* Corresponding author    †Equal contributors

Abstract
Background: Cutaneous tactile allodynia, or painful hypersensitivity to mechanical stimulation of
the skin, is typically associated with neuropathic pain, although also present in chronic pain patients
who do not have evidence of nerve injury. We examine whether deep tissue microvascular
dysfunction, a feature common in chronic non-neuropathic pain, contributes to allodynia.

Results: Persistent cutaneous allodynia is produced in rats following a hind paw ischemia-
reperfusion injury that induces microvascular dysfunction, including arterial vasospasms and
capillary slow flow/no-reflow, in muscle. Microvascular dysfunction leads to persistent muscle
ischemia, a reduction of intraepidermal nerve fibers, and allodynia correlated with muscle ischemia,
but not with skin nerve loss. The affected hind paw muscle shows lipid peroxidation, an
upregulation of nuclear factor kappa B, and enhanced pro-inflammatory cytokines, while allodynia
is relieved by agents that inhibit these alterations. Allodynia is increased, along with hind paw
muscle lactate, when these rats exercise, and is reduced by an acid sensing ion channel antagonist.

Conclusion: Our results demonstrate how microvascular dysfunction and ischemia in muscle can
play a critical role in the development of cutaneous allodynia, and encourage the study of how these
mechanisms contribute to chronic pain. We anticipate that focus on the pain mechanisms
associated with microvascular dysfunction in muscle will provide new effective treatments for
chronic pain patients with cutaneous tactile allodynia.
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Background
Cutaneous tactile allodynia (referred to henceforth as
allodynia) is often found in patients with neuropathic
pain, and is generally assumed to depend on the sensitiza-
tion of the central nervous system in response to aberrant
activity in damaged peripheral nerves [1]. However, allo-
dynia is also caused by other injuries, such as that pro-
duced by ultraviolet radiation, and occurs in association
with migraine headache [2] and fibromyalgia [3]. Allody-
nia is also prominent in complex regional pain syndrome
(CRPS) [4], which can be initiated by either soft tissue
(CRPS type-I) or nerve (CRPS type-II) injuries. Impor-
tantly, what both CRPS subtypes share with UV injury,
migraine and fibromyalgia, besides allodynia, are signifi-
cant vascular abnormalities caused by microvascular dys-
function [5-9]. Also since CNS sensitization, which is
critical for allodynia, is more pronounced following deep
tissue injury than after cutaneous injury [10], it is possible
that microvascular dysfunction in muscle may induce sig-
nificant allodynia. However, few investigators have
assessed vascular abnormalities in the etiology of chronic
pain, and none have studied whether microvascular dys-
function in muscle contributes to allodynia. To address
these questions, we investigated whether an ischemia-
reperfusion (IR) injury produces allodynia in rats, and
whether the allodynia is associated with microvascular
dysfunction in muscle, and key mechanisms that underlie
it. We show that microvascular dysfunction leads to per-
sistent muscle ischemia, a reduction of intraepidermal
nerve fibers, and allodynia correlated with muscle
ischemia, but not with skin nerve loss. The affected hind
paw muscle shows lipid peroxidation, an upregulation of
nuclear factor kappa B, and enhanced pro-inflammatory
cytokines, while allodynia is relieved by agents that
inhibit oxidative stress, nuclear factor kappa B and
cytokine activity. Allodynia is increased, along with hind
paw muscle lactate, when these rats exercise, and is
reduced by an acid sensing ion channel antagonist. Allo-
dynia is also significantly correlated with muscle lactate
before and after exercise.

Results and discussion
We first tested whether allodynia is exhibited in rats with
IR injury of the hind paw. A persistent significant reduc-
tion in mechanical paw-withdrawal threshold was
observed following a 3 h IR injury induced using a tourni-
quet at the ankle (P = 0.0001) (Fig. 1a). This procedure
produces a complete occlusion of blood flow to the hind
paw, followed by prolonged reactive hyperemia (Fig. 2)
and edema [11] on reperfusion. In addition to tactile allo-
dynia, rats with what we have called chronic post-
ischemia pain (CPIP) exhibit cold allodynia and mechan-
ical hyperalgesia [11], as well as vascular abnormalities
[12] that resemble symptoms in CRPS patients (Fig. 3).

To exclude the possibility that CPIP depends on a crush
injury of afferent nerves, we examined whether allodynia
was also induced after prolonged occlusion of the arteries
supplying the hind paw. Mechanical paw-withdrawal
thresholds were also persistently significantly reduced in
rats whose hind paw blood vessels were occluded for 3 h
(P = 0.011) (Fig. 1b), suggesting that allodynia was not
caused by tourniquet-induced damage to underlying
nerves.

If not nerve crush, it is likely that allodynia depends on IR
injury and resultant microvascular dysfunction, which
may include arterial vasospasms and capillary slow flow/
no-reflow. Arterial vasospasms occur due to a reduction in
nitric oxide-induced vasodilatation [13] and hyper-
responsiveness of arterial smooth muscle cells to nore-
pinephrine [14]. To determine whether CPIP rats exhibit
arterial hyper-responsiveness, we used laser Doppler flow-
metry to examine norepinephrine-induced reductions in
blood flow in the hind paws of CPIP rats. We found that
at 2 days post-perfusion, norepinephrine-induced reduc-
tions in CPIP hind paw blood flow were significantly
enhanced (P = 0.0062) (Fig. 1c).

Slow flow/no-reflow is a condition where damage to the
capillary endothelial cells causes them to swell, and to
become clogged with platelets and white blood cells, thus
obstructing the passage of red blood cells [15]. We used
electron microscopy to assess the morphology of capillar-
ies and endothelial cell thickness in CPIP hind paw mus-
cles. Fig. 1d shows a normal capillary in the hind paw
muscle of a sham-operated rat. In contrast, Fig. 1e shows
a representative damaged capillary in CPIP hind paw mus-
cle, with swollen endothelial cells and an occluded
lumen. As shown in Fig. 1f, the endothelial cells in the
hind paw muscle capillaries had significantly thicker
(31.5%) cell walls in CPIP rats (P < 0.03971). These find-
ings indicate that CPIP rats exhibit endothelial damage
within hind paw muscle capillary beds.

To further characterize slow flow/no-reflow in CPIP rats,
we used intra-arterial perfusion of India ink to stain patent
blood vessels in the hind paw digital muscle of CPIP rats
[16]. As shown in Fig. 1g, most vessels in the muscle cap-
illary bed of the contralateral CPIP hind paw are stained
with India ink, indicating that they are patent. In contrast,
many vessels in the ipsilateral CPIP hind paw are poorly
stained (Fig. 1h). Quantifying this, we found that the ipsi-
lateral CPIP hind paw had significantly fewer patent
blood vessels than the contralateral hind paw up to 7 days
post-reperfusion (P = 0.0002) (Fig. 1i). This indicates that
CPIP rats have persistent capillary slow flow/no-reflow in
their hind paw muscles.
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Muscle is particularly vulnerable to ischemia associated
with microvascular dysfunction following IR injury [17].
To assess muscle ischemia, we examined the reduction of
triphenyltetrazolium chloride (TTC) to triphenylforma-
zan (formazan red) in CPIP hind paw digital muscle. TTC
reduction is indicative of mitochondrial respiration and
serves as an indicator of cellular oxygenation [17,18].
Contralateral CPIP hind paw muscle exhibits normal TTC
staining, indicated by uniform dark red colour due to
effective reduction of TTC to formazan red (Fig. 4a). How-
ever, TTC staining is decreased in ipsilateral CPIP hind
paw muscle, indicated by the patchy pink-white staining

(Fig. 4b). A spectrophotometric assay was used to quantify
formazan red in supernatant from homogenized CPIP
hind paw muscle tissue. There was significantly less for-
mazan red derived from the ipsilateral, as compared to the
contralateral, CPIP hind paw muscle up to 7 days post-
reperfusion (P = 0.0314) (Fig. 4c). This indicates that
CPIP rats exhibit persistent muscle ischemia associated
with reduced mitochondrial respiration.

It is possible that microvascular dysfunction in CPIP rats
could induce secondary injury of the distal nerve endings,
as previously reported in CRPS-I patients [19]. Thus, we

Allodynia, endothelial cell injury and microvascular dysfunction in muscle induced by hind paw IR injuryFigure 1
Allodynia, endothelial cell injury and microvascular dysfunction in muscle induced by hind paw IR injury. a, 3 h 
tourniquet IR (CPIP) (n = 12), but not sham (n = 8) treatment, induces a significant reduction in paw-withdrawal threshold 
(PWT, g) for 4 weeks post-reperfusion (*P < 0.05 compared to baseline (Bas) or sham). b, 3 h clamping of the blood vessels 
supplying the hind paw (clamp), but not for 5 min (sham), also induces a significant reduction in PWT (g) 2 and 7 days post-
reperfusion compared to rats that were only anesthetized (controls) (all groups n = 8) (*P < 0.05, compared to control). c, 
There are significantly greater dose-dependent norepinephrine (NE)-induced reductions from baseline in blood flow (peak % 
decrease in flux) in CPIP (n = 8), as compared to sham (n = 13) rats at 2 days post-reperfusion (*P < 0.05) (data from [12]). d, 
e, Electron micrographs of hind paw digital muscle (HPDM) capillaries from a sham-treated (d) and 7 day CPIP (e) rat (muscle 
fiber (F), endothelial cell nucleus (N), pericyte (P), lumen (*)). f, Capillary walls are thicker (μm) in CPIP (n = 370 from 4 rats), 
as compared to sham-treated (n = 206 from 4 rats) rats (*P < 0.05). g, h, Low and higher power (inset) photomicrographs of 
the India Ink-stained blood vessels in HPDM of the contralateral (g) and ipsilateral (h) CPIP hind paw. i, Number of patent ves-
sels stained with India Ink are significantly reduced in the ipsilateral (ipsi) (n = 6–7), compared to contralateral (contra) CPIP (n 
= 6–7) and sham (n = 6) HPDM between 2 h and 7 days post-reperfusion (*P < 0.05). All data expressed as mean ± s.e.m.
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examined intraepidermal nerve fiber (IENF) density in the
CPIP hind paw skin using immunocytochemical staining
with antibodies to protein gene product 9.5 (PGP9.5), a
pan-neuronal marker [20]. Sham rats exhibits normal
PGP9.5 skin staining with many IENFs observed in the
epidermis (Fig. 4d). However, epidermal PGP9.5 staining
is decreased in ipsilateral CPIP hind paw skin, indicating
there is a reduction in IENFs (Fig. 4e). Quantifying
PGP9.5 staining over the first week after IR injury, we
found a significant reduction in IENF density in the epi-
dermis of CPIP hind paw skin (P = 0.0133) (Fig. 4f). How-
ever, when we plotted IENF density against mechanical
paw-withdrawal thresholds, we found no significant cor-
relation between IENF density and allodynia in CPIP rats
at either 2 or 7 days post-reperfusion (P > 0.05) (Fig. 4g).
Also, CPIP rats did not exhibit any significant alteration of
conduction velocity in the sural nerve (P > 0.05) (Fig. 4h).
This is consistent with the absence of a tourniquet-evoked
injury to peripheral nerve at the ankle, and similar to find-
ings in CRPS-I patients, who by definition do not have
detectable injury at the level of the peripheral nerve.

Microvascular dysfunction after IR injury is initiated by
oxygen free radicals generated when oxidases that accu-
mulate in ischemic tissue reduce molecular oxygen arriv-
ing on reperfusion [21]. We assessed free radical-induced
lipid peroxidation in hind paw muscle of CPIP rats, and

whether CPIP allodynia is attenuated by the antioxidant
N-acetyl-L-cysteine (NAC) or the free radical scavenger 4-
hydroxy-2,2,6,6-tetramethylpiperydine-1-oxyl (TEMPOL)
given 2 days post-reperfusion when allodynia peaks.
Malondialdehyde (MDA), a product of lipid peroxida-
tion, was significantly elevated in ipsilateral, compared to
contralateral CPIP hind paws (P = 0.0296) (Fig. 5a), and
CPIP allodynia was significantly attenuated by NAC (Fig.
5b) (P = 0.0002) and TEMPOL (P < 0.00001) (Fig. 5c),
suggesting a key role of free radicals.

After IR injury, free radicals stimulate the production of
pro-inflammatory cytokines [22], following upregulation
of nuclear factor kappa B (NFκB) [23]. We used ELISAs to

Bilateral laser Doppler traces during ischemia and reper-fusionFigure 2
Bilateral laser Doppler traces during ischemia and 
reperfusion. Simultaneous ipsilateral and contralateral rep-
resentative blood flow measures (arbitrary flux units) in a rat 
with an O-ring tourniquet placed on the ipsilateral ankle for 
3 h between 10 and 190 min. The tourniquet resulted in a 
complete block of blood flow in the ipsilateral hind paw dur-
ing the ischemic period, while no change in blood flow was 
observed in the contralateral hind paw. Reperfusion 
occurred at 190 min, when the tourniquet was removed, 
causing an intense and prolonged hyperemia in the ipsilateral 
hind paw, with only a minor transient change in blood flow in 
the contralateral hind paw.

Photographs of CPIP rat hind paw and CRPS patients' feetFigure 3
Photographs of CPIP rat hind paw and CRPS 
patients' feet. Comparative photographs of a normal (a), 5 
min post-IR hyperemic (c), 24 h post-IR (e), contralateral 
skinned (g), and 48 hrs post-IR ipsilateral skinned (h) rat hind 
paw; and normal (b), hot-phase CRPS-I (d), cold-phase CRPS-
I (f) foot. Rats are anesthetized in a, c, g and h. Note the sim-
ilarity between the hyperemic, edematous hot-phase CRPS-I 
foot and the 5 min post-IR hyperemic hind paw which is also 
edematous. The 24 h post-IR hind paw appears dry and 
shinny like the cold-phase CRPS-I foot. The 48 h post-IR ipsi-
lateral skinned hind paw clearly is less well perfused than the 
contralateral skinned hind paw, comparable to the cyanotic 
appearance of the cold-phase CRPS-I foot. Human CRPS-I 
foot photos reprinted with permission from the website of 
the Reflex Sympathetic Dystrophy Syndrome Association of 
America. Rat hind paw photos in a, c & e reprinted from 
Coderre et al., Pain 112, 94–105 (2004) with permission 
from IASP.
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determine the levels of pro-inflammatory cytokines and
NFκB in CPIP hind paw muscle, as well as examining the
effects of interleukin-1 receptor antagonist (IL-1RA), and
an inhibitor of NFκB (pyrrolidine ditiocarbamate, PDTC),
on CPIP allodynia 2 days post-reperfusion. The cytokines
tumor necrosis factor-α (P = 0.0085) (Fig. 5d), IL-6 (P =
0.0014) (Fig. 5e) and IL-1β (P = 0.0021) (Fig. 5f), and the
transcription factor NFκB (P = 0.0073) (Fig. 5g), were all
significantly elevated in the CPIP hind paws early after
reperfusion, and both IL-1RA (P = 0.0302) (Fig. 5h) and
PDTC (P = 0.0009) (Fig. 5i) significantly elevated paw-
withdrawal thresholds of CPIP rats, suggesting that NFκB
and pro-inflammatory cytokines play a role in CPIP allo-
dynia.

Both ischemia [24] and exercise [25] produce lactate aci-
dosis and muscle pain. We measured lactate levels in the
CPIP hind paw muscle for 2 weeks post-reperfusion, and
compared lactate levels with paw-withdrawal thresholds.
We also assessed whether muscle lactate levels increased,
and paw-withdrawal thresholds decreased, in CPIP rats
that exercised (running on a circular treadmill). Basal lac-
tate levels were significantly elevated in CPIP rats, particu-

larly early after reperfusion (P = 0.00036) (Fig. 6a). Early
post-reperfusion, when lactate levels peaked, CPIP rats
showed a strong reluctance to exercise, indicated by signif-
icantly increased running stoppages (P = 0.0083) (Fig.
6b). Later post-reperfusion, when basal lactate levels were
lower, running resulted in significantly higher lactate lev-
els in the hind paw muscle (P = 0.0215) (Fig. 6c), and sig-
nificantly lower paw-withdrawal thresholds (P = 0.00135)
(Fig. 6d). There was also a significant inverse correlation
between lactate level and paw-withdrawal threshold in
unexercised and exercised CPIP rats (Fig. 6e). Finally, allo-
dynia in CPIP rats is significantly reduced in rats treated
with low doses of the acid sensing ion channel (ASIC)
antagonist amiloride (P = 0.02472) (Fig. 6f). These results
suggest that muscle ischemia results in the generation of
lactate in CPIP rats contributing to pain and allodynia at
rest, as well as to exercise-induced pain and increases in
allodynia. Importantly, while allodynia was not corre-
lated with cutaneous nerve abnormalities, it was corre-
lated with a measure of muscle ischemia (i.e, lactate), and
attenuated by blocking the actions of lactate at ASICs. Par-
allel to these observations in rats, human CRPS is also
marked by increased pain and allodynia after exercise

Muscle and cutaneous nerve alterations induced by hind paw IR injuryFigure 4
Muscle and cutaneous nerve alterations induced by hind paw IR injury. a, b, Photomicrographs of the formazan-
stained HPDM of the contralateral (a) and ipsilateral (b) CPIP hind paw, c, Colorimetric assay shows there is significantly less 
formazan (absorbance (AU) at 585 nm/μg protein) in the ipsilateral (n = 5–7), compared to contralateral (n = 5–7) CPIP HPDM 
between 2 h and 7 days post-reperfusion (*P < 0.05). d, e, Photo-micrographs of anti-PGP9.5 stained intraepidermal nerve fib-
ers (IENFs, arrows) of sham (d) and 2 day CPIP (e) rat hind paw skin. f, IENF density (number/10 mm) is significantly reduced in 
day 2 (n = 10) and day 7 (n = 9) CPIP, as compared to sham (n = 11) rats (*P < 0.05). g, Scatter plot of PWT (g) versus the 
number of IENFs in the ipsilateral CPIP hind paw shows no significant relationship at either 2 or 7 days post-reperfusion. h, 
Representative voltage traces and analysis summary show there are no significant alterations in sural nerve conduction velocity 
(CV) between sham (n = 8) and 2 day (n = 6) and 7 day (n = 6) CPIP rats (p > 0.05). All data expressed as mean ± s.e.m.
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[26]. Although the anti-allodynic effects of amiloride
argue for a role of ASICs in CPIP, it is important to note
that the effects of amiloride are non-selective as it also
affects both epithelial sodium channels and Na+/H+

exchangers [27]. Thus, additional experiments with more
selective ASIC antagonists are warranted.

We describe here that allodynia after hind paw IR injury
coincides with arterial hypersensitivity to norepinephrine,

Lipid peroxidation, cytokines and NFêB induced by IR injury, and effects of inhibitiors on allodyniaFigure 5
Lipid peroxidation, cytokines and NFêB induced by IR injury, and effects of inhibitiors on allodynia. a, Colorimet-
ric assay shows there is significantly greater MDA, mmol/μg) in the ipsilateral (ipsi, n = 7), compared to contralateral (contra, n 
= 7) CPIP or sham (n = 6) HPDM muscle at 2 hrs post-reperfusion (*P < 0.05). b, c, Reduced pre-drug CPIP PWTs (g) (com-
pared to baseline (Bas)) are significantly and dose-dependently elevated by systemic treatment with NAC (n = 7,6,6,6 for vehi-
cle (Veh), 10,50,200 mg/kg) (b) or TEMPOL (n = 7,6,6,6 for vehicle, 40,100,250 mg/kg) (c) in day 2 CPIP rats (*P < 0.05 
compared to pre-drug). d, e, f, ELISA shows there is significantly greater TNFα (pg/ml, n = 9,9,8 for 5 min, 2 h, 48 h) (*P < 
0.05)(d), IL-6 (pg/ml, n = 9,9,9 for 5 min, 2 h, 48 h) (*P < 0.05) (e), and IL-1β (pg/ml, n = 9,9,9 for 5 min, 2 h, 48 h) (*P < 0.05) 
(f) in the HPDM of CPIP, as opposed to sham-treated rats (n = 9,9,8 (d), n = 9,9,9 (e), n = 9,9,9 (f) for 5 min, 2 h, 48 h) at var-
ious times post-reperfusion. g, ELISA shows there is significantly greater NFκB p50 (ng/ml protein) in CPIP compared to sham 
HPDM at 2 hrs (n = 18,15 for CPIP, sham) and 2 days post-reperfusion (n = 18,15 for CPIP, sham) (*P < 0.05), but not 7 days 
(n = 6,14 for CPIP, sham). h,i, Reduced pre-drug CPIP PWTs (g) (compared to baseline (Bas)) are significantly elevated by intra-
plantar treatment with IL-1RA (n = 9,4,9,9 for vehicle, 25,50,100 μg) (*P < 0.05 compared to pre-drug) (h) or systemic PDTC 
(n = 7,9,9,7 for vehicle, 10,30,100 mg/kg) (*P < 0.05 compared to pre-drug) (i) on day 2 post-reperfusion. All data expressed as 
mean ± s.e.m.
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Relationship between allodynia, muscle ischemia and exerciseFigure 6 (see previous page)
Relationship between allodynia, muscle ischemia and exercise. a, compared to sham treatment HPDM lactate (mmol/
μg) is increased at 2 hrs (n = 6,6,6 for sham, ipsilateral (ipsi), contralateral (contra)) and 2 days (n = 7,7,5 for sham, ipsi, contra) 
after hind paw IR injury, and returns to normal at 7 days (n = 7,7,5 for sham, ipsi, contra) and 14 days (n = 6,6,5 for sham, ipsi, 
contra) post-reperfusion (*P < 0.05). b, 2 days after hind paw IR injury, rats refusal to run results in increased running stop-
pages in CPIP (n = 7) compared to sham (n = 6) animals (*P < 0.05). c, 7 days after IR injury, HPDM lactate (mmol/μg) levels 
are significantly increased in unexercised (no run) and exercised (run) CPIP (n = 10), compared to unexercised and exercised 
sham rats (n = 7), respectively (*P < 0.05). While 20 min of treadmill running does not increase HPDM lactate in sham/run (n = 
6) rats (p > 0.05, compared to sham/no run), exercise leads to a further increase in lactate for CPIP/run rats (†P < 0.05 com-
pared to CPIP/no run). d, Although PWTs (g) were lower for all CPIP rats (n = 12,15 for unexercised (no run) and exercised 
(run)) compared to sham rats (n = 9,9 for unexercised and exercised), there is a significantly greater reduction in PWTs (g) in 
exercised CPIP rats compared to unexercised CPIP rats (*P < 0.05, Pre vs Post for CPIP run). No significant decrease was 
observed for unexercised CPIP rats tested twice (p > 0.05, Pre vs Post for CPIP no run). e, scatterplot of PWT (g) vs HPDM 
lactate (mmol/μg) levels in both exercised and non-exercised sham and 7 day CPIP rats shows a significant inverse linear corre-
lation, indicating that allodynia is directly related to HPDM lactate. f, Reduced pre-drug CPIP PWTs (g) (compared to baseline 
(Bas)) are significantly elevated by systemic treatment with amiloride on day 2 post-reperfusion (*P < 0.05 compared to pre-
drug) (n = 7 for all groups). All data expressed as mean ± s.e.m.
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capillary slow flow/no-reflow and ischemia, and follows
increased lipid peroxidation, NFκB, and pro-inflamma-
tory cytokines in muscle tissue. Allodynia is also alleviated
by agents that reduce these consequences of microvascular
dysfunction, and is directly related to muscle tissue lac-
tate. All these findings indicate that microvascular dys-
function and ischemia in muscle underlies persistent
allodynia after IR injury. Our results are consistent with
the demonstration that activity in muscle nociceptors is
more potent than activity in cutaneous nociceptors in
evoking central sensitization [10]. Also, while injecting
capsaicin or carrageenan into skin produces allodynia that

lasts at most hours, the same injections into muscle
induce prolonged central sensitization and cutaneous
allodynia lasting up to several weeks [28,29]. Here, IR
injury induced alterations in skin nerves, however, unlike
the persistent muscle ischemia, these changes were not
correlated with allodynia. The finding that allodynia is
correlated with muscle lactate (but not skin IENF loss)
argues for a more critical role of muscle changes in allody-
nia. However, we can not dismiss the possibility that the
skin IENF loss has some role in the production of allody-
nia.

The relationship between microvascular dysfunction in
muscle and pathological pain is strengthened by our evi-
dence that allodynia is attenuated by reducing oxygen free
radicals, NFκB and pro-inflammatory cytokines, all medi-
ators of IR injury. This is also the first evidence that
increased lactate associated with muscle ischemia induces
allodynia, at rest or after exercise, in the rat hind paw, and
that allodynia after IR injury is reduced with an ASIC
antagonist. Importantly, ASIC channels on afferent nerves
are tuned to respond to increased lactate [30], and ASIC-3
knock-out mice do not develop the prolonged allodynia
or CNS sensitization seen in wild-type mice after muscle
injections of acidic saline [31]. Microvascular dysfunction
and ischemia in muscle may be critical, but largely
ignored, mechanisms of chronic pathological pain, play-
ing a significant role in the etiology of allodynia. See Fig.
7 for a summary schematic of the interpretations of our
findings.

Conclusion
Muscle ischemia and painful symptoms after ischemia-
reperfusion injury highlight the importance of microvas-
cular dysfunction in muscle to cutaneous tactile allodynia,
or painful hypersensitivity to touch, in chronic pain. Arte-
rial vasospasms, endothelial cell injury and capillary slow

Figure 7

Microvascular IR injury
free radicals, NF B & cytokines

Slow flow/
no-reflow

Muscle ischemia

Muscle afferent
activation/sensitization

Vasospasm

Prolonged CNS sensitization

Cutaneous tactile allodynia

Tissue damage

Lactate &
inflammatory mediators

Schematic diagram indicating proposed mechanisms for initia-tion/maintenance of cutaneous tactile allodynia after IR injuryFigure 7
Schematic diagram indicating proposed mechanisms 
for initiation/maintenance of cutaneous tactile allo-
dynia after IR injury. IR injury is generated by oxygen free 
radicals, NFκB and pro-inflammatory cytokines (TNFα, IL-6, 
IL-1β) that produce injury to vascular endothelial cells, trig-
gering microvascular dysfunction, including arterial vasos-
pasms and capillary slow flow/no reflow in muscle. Resulting 
muscle ischemia leads to the generation of lactate and inflam-
matory mediators which activate ASIC and other receptors 
on muscle primary afferent fibers. Increased muscle lactate 
during exercise enhances muscle afferent activation and sen-
sitizes these afferents. Activity in muscle afferents produces 
prolonged CNS sensitization that results in cutaneous tactile 
allodynia.
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flow/no-reflow after ischemia-reperfusion injury induce
persistent allodynia dependent on oxygen free-radicals,
nuclear factor kappa B, pro-inflammatory cytokines and
lactate in muscle. Microvascular dysfunction leads to
abnormalities in cutaneous nerves, as well as persistent
ischemia in muscle, and that allodynia is significantly cor-
related with the muscle ischemia, but not with skin nerve
changes. Besides nerve cells, pathology in muscle microv-
asculature may be an important new target for develop-
ment of therapies for chronic pain.

Methods
All methods were approved by the McGill Animal Care
and Ethics committees.

IR injury
IR injury was induced in anesthetized rats by placing an
O-ring around the ankle (shams only anesthetized) for 3
h as described [11], or by clamping the all blood vessels
supplying the hind paw for 3 h (sham rats-5 min) with
vascular micro-forceps, followed by reperfusion. Thus, the
saphenous artery and the superficial sural artery at the dis-
tal margin of gastrocnemius were clamped for 3 h (sham
rats-5 min) with microvascular clamps, followed by reper-
fusion. The adjacent veins were not separated in order to
minimize irritation-evoked spasm in the arteries, or stim-
ulation or damage of the sural and saphenous nerves.

Behavioural studies
Animals were habituated to the testing apparatus 1 day
prior to testing and re-acclimatized approximately 30 min
prior to any testing. Paw-withdrawal threshold (PWTs)
measures were performed as described previously [11].
For drug trials, PWTs were examined at baseline, pre-drug,
20–30 min after administration of NAC, IL-1RA, PDTC,
amiloride (Sigma, Oakville, ON), TEMPOL (Tocris, Ellis-
ville, MO), or their saline vehicles, 2 days post-reper-
fusion. Rats with pre-drug von Frey thresholds below 6 g
were randomly assigned into treatment groups. NAC (10,
50, and 200 mg/kg), TEMPOL (25, 100, and 250 mg/kg),
PDTC (10, 30, and 100 mg/kg) and amiloride (0.5, 1.5, 5
mg/kg) were injected intraperitoneally, and IL-RA (25, 50
and 100 μg) intraplantarly. The highest doses used for sys-
temic treatments did not result in any significant abnor-
malities in the rotorod test. All treatment and testing
procedures were performed in a blinded manner.

For exercise, rats were placed on a 32.5 cm diameter circu-
lar platform bounded on the outside by a 25 cm high Plex-
iglas cylinder. A second, concentric Plexiglas cylinder
delimited the interior side of a 7.5 cm-wide circular alley.
The platform was coupled to a variable speed motor and
was rotated at 16 rpm (16.3 m/min). Rats were placed on
the platform for 20 min, and most ran 326 m in 20 min.
A stationary partition hung down above the circular alley

producing a barrier when animals ceased to run. A sus-
tained contact with the barrier was counted as a stop. A
rapid push on the partition against the pausing rat usually
succeeded in re-establishing a sustained running pattern.
At 2 days post-reperfusion, CPIP rats exhibited many run-
ning stoppages (which were recorded as a measure of exer-
cise-induced pain); post-exercise PWTs were only
recorded in 7 day CPIP rats that did not exhibit excessive
running stoppages. To assess the effects of exercise on allo-
dynia, we measured baseline PWTs in CPIP and sham-
treated rats, then after 30 min rest, rats were exercised for
20 min. Immediately after exercise, each rat was returned
to the von Frey test chamber for 15 min habituation, after
which PWTs were again recorded. For assays of lactate, the
rats were killed by pentobarbital overdose at the end of
the second, post-exercise mechanical allodynia test (20
min post-exercise).

Electron microscopy (EM) & PGP9.5 
immunocytochemistry (ICC)
Muscle (EM) or skin (ICC) tissue collected from day 2–7
CPIP or sham-treated rats was processed for EM and for
PGP9.5 ICC as described [32].

Conduction velocity & Laser Doppler flowmetry
Nerve conduction velocity and laser Doppler flux meas-
urements studies were performed in sham-treated and day
2–7 CPIP rats as described [12,33].

No-reflow
No-reflow was assessed in muscle tissue of day 2–21 CPIP
or sham-treated rats by determining the number of ink-
filled vessels after hind paw perfusion with India ink as
described [16]. Thus, animals were deeply anesthetized
with sodium pentobarbital, the ascending vena cava was
cut, and 50 ml of 0.1 M, 37°C PBS at pH 7.4, with 1000
U heparin sodium/ml was infused through a cannula
placed in the descending aorta, followed by 10.0 ml of
25% (vol/vol) India ink (Pelikan No.17) and 6% gelatin
in 0.1 M PBS. The flow rate, catheter gauge and syringe
volume were set to produce a mean arterial pressure of
100–110 mm Hg. Plantar muscle samples were collected,
fixed in 10% formalin in PBS for 48 h and cryoprotected
in 25% sucrose in PBS. 100 μm-thick frozen sections were
slide-mounted and digitally photographed under a dis-
secting microscope. The number of ink-filled vessels
which crossed a length-calibrated straight line overlaid on
the muscle image at right angle to the orientation of mus-
cle fibers was counted at 2–3 locations on each muscle
sample.

Colorimetric Assays
Mitochrondrial respiration in muscle from 2–21 day CPIP
and sham-treated rats was estimated from the reduction of
triphenyltetrazolium chloride in muscle slices and
Page 9 of 11
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homogenized samples as previously described [17,18].
Muscle samples were quickly frozen upon collection and
kept at -80 C until processing. Thawed 300 μm-thick sec-
tions were incubated in 2% triphenyltetrazolium chloride
(TTC; Sigma, St Louis, MO) in 0.05 M PBS for 20 min at
37°C. The sections were then cleared, slide-mounted and
examined microscopically. Other samples were homoge-
nized in 0.05 M PBS/0.25 M sucrose. Homogenates were
incubated in 0.2% TTC in PBS for 60 min at 37°C in the
dark. The formazan was then extracted by incubation in
acetone (60 min, 37°C) and centrifugation (10 min at
1000 g). Formazan was estimated by sample absorbance
(485 nm) of 200 μl of supernatant, divided by the amount
of sample protein (determined by Bradford method).
Malondialdehyde and lactate were assayed in muscle sam-
ples using colorimetric kits from OxisResearch F(oster
City, CA) and BioAssay Systems (Hayward, CA), respec-
tively.

ELISAs
Animals were sacrificed by decapitation. For the NFκB
ELISA, muscle samples were thawed at 4°C and homoge-
nized mechanically in 12.0 μl/mg tissue of RIPA buffer
containing 50 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA,
1% Igepal (Sigma, St. Louis, MO), 1% Sodium deoxycho-
late and 0.1% SDS (Ph 7.4), to which was added a 1% pro-
tease inhibitor cocktail (Sigma, St. Louis, MO).
Homogenates were centrifuged at 3,000 g for 10 min and
the supernatant was collected and processed for nuclear
fraction extraction following the recommended proce-
dure of a commercially produced extraction kit (Chemi-
con Nuclear Extraction Kit, Millipore Corp., Billerica,
MA). Nuclear fractions were concentrated by centrifugal
filtration using cellulose filters with a 30 kDa cut-off
(Microcon YM-30, Millipore Corp., Billerica, MA). The
nuclear fraction volume remaining after filtration was col-
lected and diluted in buffer to a final volume of 100 μl.
Total sample protein content was determined by the Brad-
ford method (Sigma, St. Louis, MO). NFκB transcription
factor measurements were then performed in duplicates
using a commercially supplied binding assay (Cayman
Chemical, Ann Arbor, MI) and a rabbit polyclonal anti-
body to the p50 subunit of NFκB (sc-7178, Santa Cruz
Biotechnology, Santa Cruz, CA), according to the manu-
facturer's suggested protocol. NFκB-p50 quantities per
well were normalized by dividing the p50 estimate by the
total amount of protein measured in the sample.

For the cytokine ELISAs, approximately 200 mg of foot tis-
sue was removed from the plantar surface and dissolved in
750 μl of protease inhibitor cocktail (Sigma, Oakville,
ON), 100 μM Amino-n-caproic Acid, 10 μM disodium
EDTA, 5 μM benzamidine HCl, and 0.2 μM AEBSF (pH
7.2). Samples were mechanically homogenized, soni-
cated, and centrifuged at 15,000 RPM at 4°C. The super-

natant was used to measure concentrations of the
proinflammatory cytokines TNFα, IL-6, and IL-1β using a
two-site, rat-specific ELISA as described previously [34].
All samples and standards were assayed in duplicate.
Intra- and interassay coefficients of variability were < 7%
for all assays and the detection limit for TNFα, IL-1β and
IL-6 was ≤ 31.25 pg/ml.

Statistical Analyses
Statistical significance was determined using one-way or
mixed analysis of variance with Fisher's post hoc tests, or
Pearson correlations.
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