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Idd9/11 Genetic Locus Regulates Diabetogenic Activity of
CD4 T-Cells in Nonobese Diabetic (NOD) Mice

Yi-Guang Chen, Felix Scheuplein, Melissa A. Osborne, Shirng-Wern Tsaih, Harold D. Chapman, and

David V. Serreze

OBJECTIVE—Although the H2?7 major histocompatibility com-
plex (MHC) provides the primary pathogenic component, the
development of T-cell-mediated autoimmune type 1 diabetes in
NOD mice also requires contributions from other susceptibility
(Idd) genes. Despite sharing the H2° MHC, the closely NOD-
related NOR strain remains type 1 diabetes resistant because of
contributions of protective Idd5.2, Idd9/11, and IddI3 region
alleles. To aid their eventual identification, we evaluated cell
types in which non-MHC Idd resistance genes in NOR mice exert
disease-protective effects.

RESEARCH DESIGN AND METHODS—Adoptive transfer
and bone marrow chimerism approaches tested the diabetogenic
activity of CD4 and CD8 T-cells from NOR mice and NOD stocks
congenic for NOR-derived Idd resistance loci. Tetramer staining
and mimotope stimulation tested the frequency and proliferative
capacity of CD4 BDC2.5-like cells. Regulatory T-cells (Tregs)
were identified by Foxp3 staining and functionally assessed by in
vitro suppression assays.

RESULTS—NOR CD4 T-cells were less diabetogenic than those
from NOD mice. The failure of NOR CD4 T-cells to induce type 1
diabetes was not due to decreased proliferative capacity of
BDC2.5 clonotypic-like cells. The frequency and function of
Tregs in NOD and NOR mice were also equivalent. However,
bone marrow chimerism experiments demonstrated that intrin-
sic factors inhibited the pathogenic activity of NOR CD4 T-cells.
The NOR Idd9/11 resistance region on chromosome 4 was found
to diminish the diabetogenic activity of CD4 but not CD8 T-cells.

CONCLUSIONS—In conclusion, we demonstrated that a
gene(s) within the Idd9/11 region regulates the diabetogenic
activity of CD4 T-cells. Diabetes 57:3273-3280, 2008

n both humans and NOD mice, type 1 diabetes
results from T-cell-mediated autoimmune destruc-
tion of insulin-producing pancreatic B-cells (1,2).
Both CD4 and CD8 T-cells are essential for type 1
diabetes development in NOD mice (1,3). Similar to the
case in humans, multiple genetic susceptibility (Idd) loci
contribute to type 1 diabetes in NOD mice (1). The H297
major histocompatibility complex (MHC) provides the
primary component of type 1 diabetes susceptibility in
NOD mice, but alone, it is insufficient for disease develop-
ment (1). In conjunction with the H2” MHC, other Idd
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genes are also required to interactively contribute to the
development of diabetogenic T-cell responses in NOD
mice (1). Although the identities of some non-MHC Idd
genes have been revealed (4-6), most of them remain
unknown.

A resource allowing inquiry to the function of non-MHC
Idd genes is the NOR mouse (7). NOR mice share ~88% of
their genome with the NOD strain, including the H29
MHC (7). However, major disease resistance genetic loci
on chromosomes (Chr) 1 (Idd5.2), 2 (Idd13), and 4
(Idd9/11) completely protect NOR mice from type 1
diabetes (8-10). Ctla-4 most likely represents the Iddb. !
subregion gene, but the susceptibility allele is shared by
NOD and NOR mice (8,10). Conversely, the NOR strain
appears to differ from NOD mice by the presence of a type
1 diabetes—protective Idd5.2 sublocus. Allelic variants of
B2-microglobulin (B2m) represent one of at least two
polymorphic Idd13 region genes respectively contributing
to type 1 diabetes susceptibility or resistance in NOD or
NOR mice (4). Polymorphic 32m variants induce confor-
mational differences in MHC class I molecules, which
influences their ability to positively select autoreactive
CD8 T-cells (11). In addition, the pathogenic activity of
NOR B-cells is significantly lower than those of NOD origin
because of contributions from Idd9/11 region genes on
Chr4 (12). Type 1 diabetes—protective genetic polymor-
phisms in NOR mice also suppress the pathogenic activity
of T-cells transgenically expressing T-cell receptors
(TCRs) from the diabetogenic CD4 (NY4.1) and CDS8
(NY8.3) clones (13). However, further congenic mapping
of NOR genetic variants responsible for the greatly dimin-
ished pathogenic activity of these diabetogenic CD4 and
CDS8 T-cell clones has not been reported.

Multiple phenotypic or functional differences in several
immunological components, including T-cells, dendritic
cells, and macrophages, have also been reported between
NOD and NOR mice (14-18). Eventual identification of
unknown NOR Idd resistance genes can be aided by
determining the cell types in which they individually or in
combination exert disease protection effects. Thus, in the
current study, we defined the role that specific NOR-
derived Idd resistance loci may play in limiting the devel-
opment of diabetogenic CD4 and CD8 T-cells.

RESEARCH DESIGN AND METHODS

NOD/ShiLtDvs and closely related NOR/Lt mice (7) are maintained by
brother-sister mating at The Jackson Laboratory (Bar Harbor, ME). Stocks
of NOD background mice carrying NOR-derived congenic intervals on Chrl
NOD.NOR-(DIMit532-D1Mit8)/DvsJ (here designated NOD.ChrIV%) or Chr4
NOD.NOR-(D4Mit31-D4Mit310)/DvsJ (here designated NOD.Chr4N°F) have
been described previously (10). In the latter of these two stocks, the
NOR-derived Chr4 congenic interval was found to extend more distally than
previously reported (10) to also encompass the marker D4Mit310. The
NOD.NOR-(D2Mit63-D2Mit48)/Lt]  congenic stock (here designated
NOD.Chr2V°F) was termed NOD.D2Mit490-Mit144V°F in a previous study
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(11). Designation of this NOR-derived Chr2 congenic interval has been
modified from that originally reported because of updated knowledge of
marker positions. Previously described NOD congenic stocks respectively
deficient in CD4 and CD8 T-cells (designated NOD.CD4"“" and NOD.CD8"*"")
were also used (19,20). A NOD stock lacking B-cells (21) is now maintained at
the N10 backcross generation (termed NOD.IgH"*"). A NOD.IgH""" substock
with B-cells that only express transgene-encoded HEL-specific Ig molecules
(designated NOD.IgHEL.IgH"*") has been previously reported (21). NOD
mice transgenically expressing the TCR from the diabetogenic CD8 T-cell
clone Al4 (Va8/VB2) and congenic for a functionally inactivated Ragl gene
(NOD.RagI™".AI%) have also been described previously (22). Female mice
were used for all experiments.

Adoptive transfer of AI4 T-cells. Mice (6—8 weeks old) were sublethally
irradiated (600R from a *Cs source) and injected intravenously with 5-10 X
10° NOD.RagI™" Al4 splenocytes (equivalent to 1-2 X 10° AI4 T-cells).
Similar results were obtained over this dose range of NOD.Ragl™“".AI4
splenocytes. In some experiments, Al4 T-cells were preactivated in vitro.
Briefly, NOD.Rag1"“".AI4 splenocytes were cultured at 5 X 10° cells/ml with
0.1 pmol/l of the previously described antigenic mimotope peptide (YFIE-
NYLEL) (23) and 25 units/ml recombinant human interleukin (IL)-2 for 2 days.
After activation, 1 X 10° viable Al4 T-cells were injected into the recipients.
The comparative activation state of freshly ex vivo-isolated and in vitro
antigen—stimulated AI4 T-cells were compared by flow cytometry using
antibodies specific for the CD25 (PC61), CD69 (H1.2F3), and CD44 (IM7.8.1)
markers. In each transfer experiment, standard NOD mice and other various
test recipient stocks were compared side by side. Recipient mice were
monitored for type 1 diabetes development over a 2-week period by daily
monitoring of glycosuria onset with Ames Diastrix (Bayer, Diagnostics
Division, Elkhart, NJ).

Generation of mixed bone marrow/T-cell chimeras. NOD.CD4""" mice at
4-7 weeks of age were lethally irradiated (1300R from a *’Cs source) and
reconstituted as previously described (24) with 5 X 10° of the indicated
T-cell-depleted bone marrow cells isolated from 6- to 10-week-old donors. In
some experiments, 5 X 10° T-cell-depleted NOD.CD4"“! bone marrow cells
were admixed with 5 X 10° purified CD4 T-cells as indicated. Splenic CD4
T-cells were purified from 6- to 9-week-old mice by depleting B220*, CD8™,
and CD11b" cells with the previously described magnetic bead system (25).
Biotinylated antibodies specific for B220 (RA3-6B2), CD8 (53-6.7), and
CD11b (M1/70) were obtained from BD Bioscience. The purity of CD4 T-cells
was routinely >92%, as determined by flow cytometry. A similar approach was
used to study the diabetogenic activity of CD8 T-cells using lethally irradiated
NOD.CD8"*" mice as recipients. CD8 T-cells were purified with the same
magnetic bead system by depleting B220*, CD4" (clone GK1.5, BD Bio-
science), and CD11b™ cells. Type 1 diabetes was again monitored by onset of
glycosuria.

Treg and BDC2.5 effector enumeration. The frequency of CD4 diabeto-
genic BDC2.5-like cells was determined by tetramer staining as previously
described (26) with the exception that the tetramer reagent was used at a
concentration of 4.0 pg/ml, and the staining was carried out at 37°C.
Propidium iodide was used to gate out dead cells. Regulatory T-cells (Treg)
were identified by surface staining with anti-CD4 (clone GK1.5) and intracel-
lular staining with anti-Foxp3 (clone FJK-16s) using an intracellular staining
kit from eBioscience. Stained cells were washed and analyzed on a FACSCali-
bur flow cytometer (Becton Dickinson).

In vitro Treg assay. CD4 T-cells were purified as described above. The
CD25™ fraction was further isolated by staining with biotinylated anti-CD25
(clone 7D4; BD Bioscience) followed by streptavidin-conjugated microbeads
(Miltenyi Biotec). CD4"CD25" cells were then enriched by positive selection
using an LS column (Miltenyi Biotec). The CD4*CD25~ fraction was used as
the effector population. Effector cells were labeled with carboxyfluorescein
succinimidyl ester (CFSE) as previously described (27). Labeled effector cells
(5 X 10% were cocultured in triplicate with indicated numbers of putative
CD4"CD25" Tregs in the presence of 2 X 10° NOD.scid splenocytes and 5
pg/ml anti-CD3 (clone 145-2C11, BD Bioscience) in round-bottomed 96-well
tissue culture plates in a final volume of 200 pl culture medium as previously
described (28). Proliferation of effector cells was determined after 3 days of
culture by CFSE dilution.

BDC2.5 mimotope priming and recall assay. NOD, NOR, and
NOD.Chr4"°% females (8 weeks old) were immunized in a rear footpad with
20 pg BDC2.5 mimotope (AHHPIWARMDA) or a control IA#” binding peptide
(LSIALHVGFDH) emulsified in incomplete Freund’s adjuvant (IFA). Ten days
later, 1 X 10° cells from dispersed draining lymph nodes were seeded in
triplicate into flat-bottomed 96-well tissue culture plates in a final volume of
200 pl culture medium as previously described (28) containing varying
concentrations of BDC2.5 mimotope. Cells were cultured for 3 days and
labeled with 1 pCi/well [°H]thymidine during the last 20 h. Interferon-y
(IFN-vy), IL4, and IL-10 were analyzed by ELISA kits (BD Bioscience).
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RESULTS

Idd9/11-regulated events in CD4 T-cells and B-cells
modulate the diabetogenic activity of AI4 CDS8
T-cells. Autoreactive CD8 T-cells are essential to the
initiation of type 1 diabetes development in NOD mice
(29,30), but their efficient activation requires contributions
from other immunological components. Thus, it seemed
possible that some gene(s) contributing to type 1 diabetes
resistance in the closely NOD-related NOR strain could do
so by limiting the ability of other immunological compo-
nent(s) to provide functions necessary for the efficient
activation of pathogenic CD8 T-cells. CD8 T-cells trans-
genically expressing the Al4 TCR rapidly induce type 1
diabetes when adoptively transferred into sublethally irra-
diated standard NOD recipients (27). Therefore, we asked
whether the Al4 adoptive transfer method could also
induce type 1 diabetes in NOR mice or NOD stocks
congenic for NOR-derived chromosomal regions carrying
protective alleles. Although >75% of standard NOD mice
receiving NOD.Rag1"*".AI4 splenocytes developed type 1
diabetes within 2 weeks, all of the NOR recipients
remained disease free over the same period of time
(Table 1). Both NOD.Chr1™V°F and NOD.Chr2"°F con-
genic strains were susceptible to Al4 T-cell-induced
type 1 diabetes (Table 1). In contrast, no NOD.Chr4"°F
recipients developed type 1 diabetes under the same
transfer conditions (Table 1).

We next asked what particular host lymphocyte popu-
lations modulate the diabetogenic activity of adoptively
transferred AlI4 T-cells. To do this, we transferred
NOD.Rag1™" AI4 splenocytes into sublethally irradiated
NOD mice lacking B cells (NOD.IgH"*"), CD8 T-cells
(NOD.CDS8"™") or CD4 T-cells (NOD.CD4"“""). Both host
B-cells and CD4 T-cells, but not CD8 T-cells, were impor-
tant for adoptively transferred Al4 T-cells to mediate type
1 diabetes development (Table 1). One important role of
autoreactive B-cells for type 1 diabetes development in
NOD mice is to function as a preferential antigen-present-
ing cell (APC) subset because of a unique ability to
efficiently uptake autoantigens through cell surface Ig
molecules (21). This allows these B-cells to subsequently
preferentially present MHC class I[I-bound self-peptides to
autoreactive CD4 T-cells. However, B-cells may also con-
tribute to autoimmunity by mechanisms independent of
membrane-bound or secreted Ig molecules (31). Further-
more, B-cells also reportedly exert functions facilitating
the ability of dendritic cells to cross-present MHC class
I-bound antigens to CD8 T-cells (32). To test these possi-
bilities, we transferred NOD.Rag1"“* AI4 splenocytes into
sublethally irradiated NOD.IgHEL.IgH"*" mice in which
all B-cells express Ig molecules specific for the disease-
irrelevant HEL protein. Similar to standard NOD recipi-
ents, NOD.IgHEL.IgH""" mice were highly susceptible to
Al4 T-cell-mediated type 1 diabetes (Table 1). Therefore,
antigen specificity of B-cells was not essential for their
ability to facilitate the pathogenic function of Al4 T-cells.
The majority of directly ex vivo-isolated splenic Al4
T-cells in the transfer inoculums displayed a naive pheno-
type (>99% CD69 /CD25 /CD44'°%). Therefore, host CD4
T-cells and B-cells appear to facilitate the subsequent
activation of adoptively transferred Al4 T-cells. Al4 T-cells
can independently induce type 1 diabetes in T-cell- and
B-cell-deficient NOD-scid recipients (33) but with signifi-
cantly slower kinetics than observed in the present system
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TABLE 1
Genetic control of susceptibility to Al4 T-cell-induced type 1 diabetes*
Experiment
group Transferred cells Recipients Diabetic P valuet
1 NOD.Rag"“". A4 splenocytes NOD 76.9 (13)

NOR 0(11) <0.001
2 NOD.Rag"“". A4 splenocytes NOD 60 (10)

NOD.Chir1NOF 30 (10) >0.05
3 NOD.Rag™“". AI4 splenocytes NOD 57.1(7)

NOD.Chr2NOE 42.8 (7) >(0.05
4 NOD.Rag"“". A4 splenocytes NOD 70 (10)

NOD.Chy4NOE 0(10) <0.005
5 NOD.Rag"“". A4 splenocytes NOD 75 (12)

NOD.CD4™" 0(10) <0.005
6 NOD.Rag™“". AI4 splenocytes NOD 75 (8)

NOD.CD8"! 33.3 (9) ~0.05
7 NOD.Rag"“". A4 splenocytes NOD 61.5 (13)

NOD.IgH"™" 0(13) <0.001
8 NOD.Rag"“". A4 splenocytes NOD 60 (10)

NOD.IgHEL.IgH""" 70 (10) >0.05
9 Activated Al4 T-cells NOD 100 (3)

NOR 100 (3) —
10 Activated Al4 T-cells NOD 100 (4)

NOD.Chr4NOR 100 (5) —

NOD.CD4" 100 (5) —
11 Activated Al4 T-cells NOD 100 (5)

NOD.IgH"" 100 (5) —

Data are percent (n). *NOD.Rag"“". AI4 splenocytes or in vitro-activated Al4 T-cells were transferred into 600R irradiated female recipients.
Type 1 diabetes was monitored for a period of 2 weeks. Mice within each experimental group received the same preparation of Al4 T-cells.
1Statistical analysis by xZ test (vs. NOD recipients in the same experimental group).

when residual CD4 T-cells and B-cells remain in suble-
thally irradiated standard NOD recipients.

We next asked whether Al4 T-cells preactivated in vitro
by mimotope peptide stimulation could induce type 1
diabetes in the absence of host CD4 T-cells or B-cells.
Preactivated AI4 T-cells (>66% CD25*CD69"CD44") in-
duced type 1 diabetes development in CD4 T-cell- or
B-cell-deficient NOD recipients (Table 1). In addition,
NOR and NOD.Ch4"°F mice rapidly developed type 1
diabetes when receiving preactivated Al4 T-cells (Table 1).
Together, these results indicate that in this adoptive
transfer system, CD4 T-cells and B-cells in NOD mice, but
not NOR or NOD.Chr4"° mice, facilitate the pathogenic
activation of Al4 CDS8 T-cells. In the current study, we
continued to analyze the mechanism by which Idd9/11
genes regulate the activity of diabetogenic CD4 T-cells.
The role of B-cells in regulating autoreactive CD8 T-cells
will be the subject of future studies.

Reduced pathogenic activity of NOR CD4 T-cells. We
next tested whether mature NOR CD4 T-cells remained
unable to facilitate the initiation of type 1 diabetes devel-
opment when all other components of the immune re-
sponse were of NOD origin. The system used was to
reconstitute lethally irradiated normally type 1 diabetes—
resistant NOD.CD4™" mice (19) with syngeneic bone
marrow mixed with purified CD4 T-cells from either NOD
or NOR donors. NOD.CD4"" mice receiving syngeneic
bone marrow alone did not develop type 1 diabetes (data
not shown). Of the NOD.CD4"“" recipients, >90% devel-
oped type 1 diabetes when reconstituted with syngeneic
bone marrow and NOD CD4 T-cells (Fig. 14). In contrast,
NOD.CD4"™“ mice injected with syngeneic bone marrow,
and NOR CD4 T-cells were highly resistant to type 1
diabetes development. NOR B-cells exert significantly less
diabetogenic APC activity than those from NOD mice (12).
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Therefore, the variable capacity of transferred CD4 T-cells
from NOD and NOR mice to facilitate type 1 diabetes
development could solely result from differences in previ-
ous engagements with antigen-presenting B-cells capable
of expanding pathogenic effectors. If this were the case,
then compared with those of NOD or NOR origin, CD4
T-cells isolated from NOD.IgH"*" mice should exhibit
poor diabetogenic activity. Therefore, we reconstituted
NOD.CD4™! mice with syngeneic bone marrow and
CD4 T-cells from NOD.IgH™" mice. CD4 T-cells from
NOD.IgH"™" donors were as diabetogenic as those of NOD
origin (Fig. 1A4).

MHC class I A9 tetramers were used to determine the
frequency of BDC2.5-like diabetogenic CD4 T-cells in the
spleens of NOR mice. Consistent with a previous report
(26), comparable levels of BDC2.5-like CD4 T-cells devel-
oped in NOD and NOR mice (Fig. 1B). However, compared
with both the NOD and NOR strains, BDC2.5-like T-cell
levels are lower in the NOD.JgH"*" stock, indicating that
expansion and/or survival of these diabetogenic effectors
is dependent on the presence of B-cells. The proliferation
potential of BDC2.5-like cells in NOR mice was tested
using a priming-recall assay. BDC2.5-like cells from NOD
and NOR mice proliferated similarly in response to peptide
stimulation (Fig. 1C). These collective results indicate that
the inability of NOR CD4 T-cells to support type 1 diabetes
development was not due to diminished numbers of
potential B-cell autoreactive effectors.

Intrinsic factors inhibit the development of diabeto-
genic NOR CD4 T-cells. Although NOR CD4 T-cells have
very limited diabetogenic activity, it was not known
whether this is controlled intrinsically or modulated by
functional differences in other cell types. One possible
mechanism downregulating the diabetogenic activity of
CD4 T-cells in NOR mice relative to the NOD strain is they
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FIG. 1. Reduced diabetogenic activity of NOR CD4 T-cells. A: Incidence
of type 1 diabetes in CD4 T-cell-reconstituted NOD.CD4"*" mice.
Lethally irradiated 4- to 7-week-old NOD.CD4"*" mice were injected
with equal numbers (5 x 10%) of syngeneic bone marrow and purified
CD4 T-cells from NOD, NOR, or NOD.IgH™" donors. Type 1 diabetes
development was then followed for 20 weeks. *P < 0.001, significantly
different from NOD CD4 T-cell recipients (Kaplan-Meier log-rank
analysis). B: The frequency of BDC2.5-like diabetogenic CD4 T-cells in
NOD, NOR, or NOD.IgH"*" mice. Splenocytes from 6- to 9-week-old
females were stained with CD4 antibodies and BDC2.5 MHC class 11
tetramers to identify BDC2.5-like cells. Each symbol represents an
individual mouse. Horizontal bars indicate the means. The percentages
of BDC2.5-like cells did not differ in NOD and NOR mice but were both
significantly greater than in the NOD.IgH"*" strain (Wilcoxon’s rank-
sum test). C: Functional analysis of BDC2.5-like cells in NOD and NOR
mice. Groups of three mice were primed with 20 pg BDC2.5 mimotope
or IA*?-binding control peptide in IFA. After 10 days, cells from the
draining lymph nodes of the same group were pooled, and all were
restimulated in triplicate with indicated concentration of the BDC2.5
mimotope. The cultures were pulsed with [*H]thymidine over the final
20 h of a 72-h incubation period. Results indicate the mean counts per
minute (CPM) = SE of the triplicates.

may have an increased proportion or enhanced function of
Tregs. In the experiments described above, the splenic
NOR-derived CD4 T-cells transferred to NOD.CD4"“" re-
cipients may have also included Tregs. Therefore, we
compared the frequency of splenic Tregs in NOD and NOR
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FIG. 2. Comparison of Treg frequencies in NOD and NOR mice.
Splenocytes from 6- to 9-week-old mice were stained with antibodies
against CD4, Foxp3, and CD25 to identify Tregs. A: Representative
plots show the proportion of Foxp3-expressing CD4 T-cells. B: The
percentages of CD4 T-cells expressing Foxp3. C: The percentages of
CD25* cells among Foxp3™ CD4 T-cells. Each symbol represents an
individual mouse. Horizontal bars indicate the means. There is no
statistically significant difference in the percentages shown in B and C
between NOD and NOR mice (Wilcoxon’s rank-sum test).

mice based on coexpression of CD4 and Foxp3. NOD and
NOR mice did not differ in percentages of CD4 T-cells that
coexpressed Foxp3 (Fig. 24 and B). In addition, the
percentages of Foxp3™* CD4 T-cells that coexpressed CD25
were similar in these two strains (Fig. 2C). Although
numerically similar, it was possible that Tregs in NOD and
NOR mice functionally differed. However, when tested in
vitro, NOD and NOR CD4"CD25" Tregs (both ~80%
Foxp3™) exhibited similar levels of suppressive activity
(Fig. 3).

We next asked whether NOR CD4 T-cells support type 1
diabetes development when they differentiate from stem
cells in an environment where most cells are NOD derived.
Lethally irradiated NOD.CD4"** mice were reconstituted
with a 4:1 mixture of syngeneic and NOR bone marrow
cells. In this case, all CD4 T-cells were NOR derived with
most other hematopoietic cells and all nonhematopoietic
cells of NOD origin. Control chimeras consisted of
NOD.CD4"" recipients repopulated with a 4:1 mixture of
syngeneic and standard NOD bone marrow cells. These
control chimeras developed a high incidence of type 1
diabetes (Fig. 4). In contrast, recipients of NOD.CD4"“"
and NOR bone marrow were completely type 1 diabetes
resistant. NOR-derived leukocytes other than CD4 T-cells
might have actively suppressed type 1 diabetes develop-
ment in these bone marrow chimeras. To test this possi-
bility, another set of control chimeras was reconstituted
with a 4:1 mixture of NOD and NOR bone marrow. Similar
to the recipients of NOD.CD4"“" and NOD bone marrow,
the second control group was type 1 diabetes susceptible
(Fig. 4). These collective results indicate that an intrinsic
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FIG. 3. Comparison of in vitro suppressive activities of NOD and NOR
Tregs. Effector T-cells (CD4*CD25~) were labeled with CFSE and
cocultured at indicated ratios with Tregs (CD4*CD25%) in triplicate in
a 96-well plate in the presence of NOD.scid splenocytes (2 X 10°) and
5 pg/ml anti-CD3 for 3 days. Proliferation of effector T-cells was
determined by CFSE dilution. The percentage of suppression is defined
by the percent reduction in the proportion of divided effector T-cells
relative to that of the control without Tregs. Results indicate the
means = SE of the triplicates. Similar results were observed in another
two experiments.

factor(s) limits the ability of NOR CD4 T-cells to mediate
diabetogenic responses.

1dd9/11 diabetes resistance loci control the patho-
genic activity of CD4 T-cells. To dissect the genetic
basis of diabetogenic CD4 T-cell development, we recon-
stituted lethally irradiated NOD.CD4"*" mice with synge-
neic bone marrow and CD4 T-cells isolated from
NOD.Chr1V°E, NOD.Chr2V°E, or NOD.Chr4“°F mice.
Compared with those of NOD origin, CD4 T-cells isolated
from NOD.Chr4~°% mice, but not NOD.ChrIV°F mice,
demonstrated a reduced ability to support type 1 diabetes
development (Fig. 5). There was a possible trend for CD4
T-cells from NOD.Chr2V°E mice to exert less diabetogenic
activity than those of NOD origin, but this difference did
not achieve statistical significance in the number of recip-
ients analyzed (16-18 per group). Using the same bone
marrow chimerism approach described in Fig. 4, we found
that an intrinsic factor(s) limits the pathogenic potential of
NOD.Chr4V°E CD4 T-cells (data not shown).

1007 o nOD.CD4w+NOD (n=12)

@ NOD.CD4%'+NOR (n=15)
[0 NOD+NOR (n=10)

75+

504

% Diabetic

25+

weeks post-transfer

FIG. 4. Intrinsic factors control the diabetogenic activity of NOR CD4
T-cells. Lethally irradiated NOD.CD4"*" mice were reconstituted with
a mixture of syngeneic bone marrow with NOD or NOR bone marrow at
a 4:1 ratio. A control group was reconstituted with a 4:1 mixture of
NOD and NOR bone marrow. Type 1 diabetes development was then
analyzed weekly.
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FIG. 5. The diabetogenic activity of CD4 T-cells is regulated by a
gene(s) within the Idd9/Idd11 region. CD4 T-cells (5 X 10%) purified
from NOD.Chri¥°F, NOD.Chr2°%, or NOD.Chr}¥°F mice and
NOD.CD#4"*" bone marrow cells (5 x 10%) were mixed and injected into
lethally irradiated 4- to 7-week-old NOD.CD4"“" recipients. Type 1
diabetes development was then followed weekly for 20 weeks. The
same accumulated incidence of NOD CD4 T-cell recipients shown in
Fig. 1A was also plotted here for comparative purposes. All CD4 T-cell
transfer experiments, including those shown in Fig. 14, were done in an
overlapping fashion. *P < 0.001, significantly different from NOD CD4
T-cell recipients (Kaplan-Meier log-rank analysis).

We analyzed the function of BDC2.5-like CD4 T-cells in
NOD.Chr4V°F mice using the same priming-recall assay
described in Fig. 1C. BDC2.5-like CD4 T-cells from NOD
and NOD.Chr4~°F mice proliferated equivalently (data not
shown). Production of IFN-y, IL-4, and IL-10 by primed
BDC2.5-like cells after antigenic peptide (10 pmol/l) re-
stimulation was also assessed. NOD.Chr4V°F BDC2.5-like
cells produced less IFN-y than those of NOD origin (58.0 =
7.1 and 109.3 = 3.7 pg/ml, respectively). Therefore, the
lower diabetogenic activity of NOD.Chr4V°EF than NOD
CD4 T-cells could result from reduced production of the
inflammatory cytokine IFN-y. However, on antigenic stim-
ulation, lower levels of the immunosuppressive cytokine
IL-10 were secreted by BDC2.5-like CD4 T-cells from
NOD.Chr4V°E than NOD mice (755.9 * 22.9 and 1,061.3 +
38.1 pg/ml, respectively). Hence, Idd9/11 region genes do
not contribute to type 1 diabetes resistance in NOR mice
through enhancing IL-10 production by CD4 T-cells. Both
strains produced undetectable amounts of IL-4. These
results indicated that BDC2.5-like CD4 T-cells in NOD and
NOD.Chr4V°E mice have the same proliferative capacity
but qualitatively differ in their effector responses.

Common pathways may contribute to the development
of both autoreactive CD4 and CDS8 T-cells. Hence, we
assessed whether NOD.Chr4V°F CD8 T-cells are also less
diabetogenic than those from NOD mice. Interestingly, the
NOR-derived Chr4 congenic interval that inhibited diabe-
togenic CD4 T-cell responses did not diminish the patho-
genic activity of CD8 effectors (Fig. 6). These results
indicate an Idd9/1 I region gene(s) distinguishing NOD and
NOR mice selectively controls the pathogenic activity of
CD4 T-cells.

DISCUSSION

Studies using the 4.1 TCR transgenic system found thymic
or peripheral deletion as well as anergy and ignorance do
not contribute to CD4 T-cell tolerance induction in NOR
mice (13). Similarly, we found the frequency and prolifer-
ative capacity of BDC2.5-like CD4 T-cells was comparable
in NOD and NOR mice. The fact that NOR CD4 T-cells
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FIG. 6. The diabetogenic activity of NOD and NOD.CD4"*" CDS8 T-cells

is comparable. Lethally irradiated NOD.CD8™" mice were injected

with 5 X 10° syngeneic bone marrow cells and 5 X 10° CD8 T-cells

purified from NOD mice or the NOD.Chr4V°% congenic strain. Type 1

diabetes development was then analyzed weekly. The type 1 diabetes

incidence between NOD and NOD.Chr4V°% CDS8 T-cell recipient groups
is not significantly different (Kaplan-Meier log-rank analysis).

induced type 1 diabetes in some NOD.CD4"“* recipients
revealed the retention of at least minimal pathogenic
activity. On the other hand, NOR T-cells are more suscep-
tible than those from NOD mice to activation-induced cell
death (AICD) (34). Therefore, abortive activation followed
by AICD may limit the effector function of NOR diabeto-
genic CD4 T-cells. Another nonmutually exclusive possi-
bility is that diabetogenic CD4 T-cells are more efficiently
suppressed in NOR than NOD mice. However, we found no
difference in the frequency or in vitro suppressive function
between NOD and NOR Tregs. These results suggested
that Treg function and the sensitivity of effector T-cells to
suppression are similar in NOD and NOR mice at the age
we tested. Our in vitro suppression assay did not consider
Treg antigenic specificity. 3-Cell antigen-specific Tregs are
superior than those with a diverse repertoire in blocking
type 1 diabetes development (35,36). Therefore, it is
possible that there is higher frequency of B-cell-specific
Tregs in NOR than NOD mice, which in turn more effec-
tively suppress diabetogenic effectors in the former strain.

We previously demonstrated the NOR-derived Idd9/11
region conferred type 1 diabetes resistance at the B-cell
level (12). The current study found the same region also
controls the pathogenic activation of diabetogenic CD4
but not CD8 T-cells. B-cells are important APCs for
activating and expanding B-cell-autoreactive CD4 T-cells in
NOD mice (37,38). However, it is unlikely that the diminished
diabetogenic activity of NOR and NOD.Chr4V°F CD4 T-cells
is due to lower levels of disease-promoting B-cells than in
NOD mice. This argument is supported by the fact that CD4
T-cells from B-cell-deficient NOD.IgH"“" mice were as dia-
betogenic as those of NOD origin. Bone marrow chimerism
studies also indicated that intrinsic mechanisms were re-
sponsible for inducing tolerance in NOR and NOD.Chr4"“%
CD4 T-cells. This indicates a NOR 1dd9/11 region gene(s)
expressed in CD4 T-cells directly suppresses their diabeto-
genic potential.

A comparison of data depicted in Figs. 1A and 5
suggested that while not quite achieving statistical signif-
icance (P = 0.06), CD4 T-cells from NOR mice may be
somewhat less diabetogenic than those from the
NOD.Chr4N°F strain. Thus, although representing a pri-
mary contributor, the Idd9/11 locus may not be the sole
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genetic element suppressing diabetogenic CD4 T-cell re-
sponses in NOR mice. In particular, although not suppres-
sive of diabetogenic CD4 T-cells by themselves, genes
within the Chrl (Idd5.2, D1Mit532-D1Mit8) and/or Chr2
(Idd13, D2Mit63-D2Mit48) congenic intervals analyzed
here may interactively work with Idd9/11 region genes to
further inhibit the development or function of such patho-
genic effectors. Alternatively, other genetic regions distin-
guishing NOR from NOD mice that were not analyzed in
the current study may act independently or interactively
with a Idd9/11 region gene(s) to regulate the diabetogenic
activity of CD4 T-cells.

The type 1 diabetes—protective congenic interval in
NOD.Chr4V°E mice does not contain the previously re-
ported Idd9.3 region (10,39). Therefore, the Idd9.3 candi-
date gene Cd137 cannot be a type 1 diabetes—protective
factor in NOR mice. Another difference between the type 1
diabetes protective Idd9 congenic interval originally re-
ported by Wicker and colleagues (40) and that present in
the NOD.Chr4™°F stock is the donor strain. The type 1
diabetes—protective Idd9 congenic interval described by
Wicker and colleagues is derived from C57BL/10 (B10)
rather than NOR mice. In NOR mice, ~12% of the genome
is derived from C57BLKS/J, which itself is composed of
genetic material mostly of B6 origin, but also from the
DBA/2J and possibly the B10 and 129 strains (41). The
Chr4 type 1 diabetes resistance region in NOR mice is
complex and contains both B6 and DBA/2J genetic mate-
rial (10). Therefore, it is possible that a DBA/2J-derived
genetic component(s) is responsible for NOD.Chr4VOE
CD4 T-cells being less diabetogenic than those of NOD
origin. Although the B6 and B10 genomes are quite similar,
the distal region on Chr4 represents one region where they
differ (42). As a result, different allelic variants may
contribute to type 1 diabetes resistance in the B10-derived
Idd9 NOD congenic stock and the NOD.Chr4V°F strain.

BDC2.5 T-cells represent a well-studied pancreatic
B-cell autoreactive CD4 T-cell clone. However, BDC2.5
TCR transgenic NOD mice seldom develop type 1 diabetes
when other endogenous TCR molecules are also ex-
pressed (43). Type 1 diabetes resistance in NOD BDC2.5
transgenic mice is attributed to the presence of Tregs (44).
On the other hand, NY4.1 TCR transgenic CD4 T-cells
induce accelerated type 1 diabetes in NOD mice also
capable of expressing endogenously derived TCR mole-
cules (45). These collective findings indicate different
autoreactive CD4 T-cell clonotypes could be regulated by
distinct mechanisms, perhaps because of variations in
antigen specificity and TCR affinity. Thus, it is significant
that under conditions where they can express a full array
of TCR specificities, the development and/or function of
the diverse diabetogenic CD4 T-cell repertoire normally
generated in NOD mice is inhibited by the presence of a
NOR-derived Idd9/11 region gene(s). This NOR-derived
1dd9/11 gene(s) does not elicit increases in Treg numbers
or activity that keeps B-cell autoreactive CD4 T-cells in
check, but rather, it functions intrinsically to suppress the
development or function of a broad range of such diabe-
togenic effectors. For this reason, the ultimate identifica-
tion of the NOR-derived Idd9/11 region gene(s) capable of
directly suppressing development of a diverse repertoire
of B-cell autoreactive CD4 T-cells could provide a target
for future type 1 diabetes prevention and/or reversal
therapies.
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