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Abstract Fresh osteochondral allograft transplantation

has been an effective treatment option with promising

long-term clinical outcomes for focal posttraumatic defects

in the knee for young, active individuals. We examined

histologic features of 35 fresh osteochondral allograft

specimens retrieved at the time of subsequent graft revi-

sion, osteotomy, or TKA. Graft survival time ranged from

1 to 25 years based on their time to reoperation. Histologic

features of early graft failures were lack of chondrocyte

viability and loss of matrix cationic staining. Histologic

features of late graft failures were fracture through the

graft, active and incomplete remodeling of the graft bone

by the host bone, and resorption of the graft tissue by

synovial inflammatory activity at graft edges. Histologic

features associated with long-term allograft survival

included viable chondrocytes, functional preservation of

matrix, and complete replacement of the graft bone with

the host bone. Given chondrocyte viability, long-term

allograft survival depends on graft stability by rigid fixa-

tion of host bone to graft bone. With the stable osseous

graft base, the hyaline cartilage portion of the allograft can

survive and function for 25 years or more.

Introduction

Focal osteochondral defects of the knee in young, active

patients can be a debilitating condition posing a complex

treatment challenge. Due to their young age and high

demands in their activity level, arthroplasty or arthrodesis

surgery are not generally regarded reasonable solutions.

For posttraumatic osteochondral defects, more biologic

options to date have included realignment osteotomy,

microfracturing, mosaicplasty, periosteal grafts, autologous

chondrocyte transplantation, and osteochondral allograft

transplantation. These procedures offer a biologic solution

rather than an artificial bearing surface replacement with its

inherent risks of early loosening and loss of bone stock for

future surgeries.

Realignment osteotomies of the distal femur or the

proximal tibia do not address the actual osteochondral

defects and may be limited by under- or overcorrection of

the mechanical axis and ligamentous pseudolaxity [28,

37]. Microfracturing procedures induce fibrocartilage tis-

sue coverage over hyaline cartilage defects [6, 11, 47,

57]. Mosaicplasty is not a viable option for large osteo-

chondral defects (greater than 3 cm in diameter and 1 cm

in depth) and results in donor site morbidity and healing

seams at the recipient site [7, 27]. Periosteal grafting and

autologous chondrocyte transplantation provide surface

coverage but do not address associated bone defects

[8, 42–44, 47, 48].

Over the last few decades, fresh cadaveric osteo-

chondral allograft (FOCA) transplantation has become an

important treatment alternative for full-thickness osteo-

chondral defects. A number of studies have supported its

clinical efficacy, particularly for osteochondral defects

greater than 3 cm in diameter and 1 cm in depth [24, 26,

34, 39, 49, 62]. Since the inception of a FOCA transplant
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program in 1972, 364 allograft transplantation procedures

have been performed for posttraumatic knee defects at

our institute as of July 2007. In our previous series [25],

we reported 95% graft survival at 5 years, 80% at

10 years, and 65% at 15 years (Fig. 1). As a histologic

correlate, we recently reported a 25-year posttransplan-

tation allograft specimen demonstrating viable chon-

drocytes [38].

Several previous studies suggest chondrocyte viability at

the time of implantation is an important factor in ensuring

long-term osteochondral allograft survival in vivo [2, 5].

Compared to frozen or cryopreserved allograft, fresh

allograft offers superior chondrocyte viability (30% to

90%) up to 4 days when harvested within 24 hours of

donor death and preserved at 4�C [14, 18, 51]. A number of

studies confirm the longevity of the donor chondrocytes in

the host environment [16, 17, 31–34, 40, 46]. This is

thought to be mainly due to the avascular matrix that

shields the donor chondrocytes from the host immune

system [31–34]. In addition, the integrity of the osseous

graft-host interface underlying the articular surface appears

to play a critical role in successful clinical outcome [11, 15,

20]. The allograft bone, albeit necrotic, provides a struc-

turally intact scaffold to support the overlying chondral

surface [18, 46]. While chondrocyte viability is associated

with successes, histologic characteristics of failures at

varying times are unknown.

We therefore asked what histopathologic features char-

acterized early and late failures of osteochondral allografts,

and which characterized prolonged graft survival.

Materials and Methods

We reviewed the 69 known patients with allograft failure at

our institution. Allografts from 41 patients were available

for histopathologic examination. Of these 12 were biopsies

and 29 consisted of allograft and host tissue retrieved at

arthroplasty. On the basis of previous histologic observa-

tions, these were stratified as early graft retrieval (\1 year;

six patients; mean age, 53 years [range, 21–75 years]),

mid-term graft retrieval (2–5 years; 11 patients; mean age,

45 years [range, 17–74 years]), and extended graft retrieval

([ 6 years; 24 patients; mean age, 44 years [range, 17–

78 years]).

Our histopathologic examination followed a standard

protocol established with retrieval of the first graft in 1973

and modified only slightly since. All grafts were examined

fresh immediately upon retrieval by the same team (AEG,

KPHP). Immediately on removal, the graft surface was

examined macroscopically to determine graft integrity,

cartilage erosion, and synovial reaction.

To assess chondrocyte viability, sections were taken for

electron microscopy. Where graft cartilage could be clearly

identified, the sample taken for electron microscopic

studies was usually near the midcoronal plane toward the

lateral edge of the graft. We presumed this area represen-

tative of graft hyaline cartilage and least disturbed by

mechanical forces. As well, the site was adjacent but did

not involve tissue selected for light microscopy. For

transmission electron microscopic studies, a selected

sample of the articular cartilage was sectioned into five

Fig. 1A–C (A) A radiograph shows traumatic loss of a medial femoral condyle in a 17-year-old girl. (B) A radiograph shows the same knee

10 years postreconstruction with FOCA. (C) A radiograph shows the same knee 20 years posttransplantation. There is now bicompartmental

osteoarthritis.
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1-mm blocks to select cartilage tissue. One-lm sections,

stained with toluidine blue, were prepared. For electron

microscopy, thin sections were then cut, stained with ura-

nyl acetate and lead nitrate, and examined in a Philips 301

(Eindhoven, the Netherlands) or in later years a Philips

CM100 electron microscope (Eindhoven, the Netherlands).

We then examined the sections for cellular features of

intact, active chondrocytes, including intact cellular

membranes and organelles. The relationships of chondro-

cytes to the surface (cell polarity) and the surrounding

matrix (staining) were also observed (Table 1).

Subsequently, a midcoronal cross-sectional block was

taken through the allograft and adjacent host tissues. These

blocks were radiographed using a Faxitron 43855B x-ray

imaging system (Chicago, IL, USA). The radiograph was

mutually compared to the tissue block and subsequently to

the stained slides by one observer (KP). Features of interest

noted included: bone density (mineralization) graft host

interface integrity in bone and cartilage and cartilage

erosion.

The block was then fixed in 10% neutral buffered for-

malin and decalcified in formic acid. Subsequently, the

blocks were processed in graded ethanol solutions and

embedded in paraffin. Five-micrometer sections of each

block were cut, stained with hematoxylin and eosin, tolu-

idine blue, and safranin O. We (KPHP, FLH) examined

these sections by light and polarized light microscopy to

assess preservation and morphologic features of graft

articular cartilage: presence of degenerative arthritis, the

morphology of graft cartilage of graft bone interface, the

cartilage and bone graft host interface, and the subjacent

host bone. One to three additional blocks of the graft were

taken as required to clarify the features of the graft-host

interface with cartilage and bone. As controls, midcoronal

blocks were also routinely taken of the articular cartilage

and bone of other compartments from the same joints. All

blocks contained articular cartilage and subchondral bone.

Results

Among the six allografts examined within 1 year of

transplantation, one showed hyaline articular cartilage in

which there was necrosis and obliteration of all chondro-

cytes (Table 1). Another had focal lymphocytic inflam-

matory infiltrate in subchondral bone marrow. In that same

patient within the synovial lining, there was focal lym-

phocyte aggregation beneath the synovial lining intermixed

with shards of hyaline cartilage matrix. Initially, this was

ascribed to an immune reaction against the graft, but sub-

sequent followup revealed the inflammation represented

chronic inflammatory arthritis in this patient since the

patient had inflammatory joint disease. This is the only

patient in our series in whom a prominent chronic

inflammatory reaction was present in the grafts. In most of

the early cases where a portion of the graft survived, the

articular cartilage graft retained its surface thickness,

architecture, and viable chondrocytes. Chondrocyte via-

bility was demonstrated by morphologic features including

intact nucleus and cytoplasm, ultrastructural features of

intact cells with well-formed organelles and cytoplasmic

processes, and retention of cartilage matrix proteoglycans

as seen by intense cationic staining. Within 6 months

posttransplantation, host appositional new bone formation

was observed on the graft trabecular bone. The graft tra-

becular bone retained its structural integrity, but the bone

was necrotic as indicated by absence of osteocytes in the

bone lacunae. In the subchondral bone marrow, extensive

fibrovascular tissue between the graft and host was

observed, indicative of nonunion. Above the bone trabec-

ulae nonunion areas, articular cartilage resorption could be

observed.

In the midterm retrieval group of 11 patients, mean graft

survival before biopsy/retrieval was 2.9 years. The intact

graft cartilage showed focal loss of proteoglycan staining

in the superficial and upper mid zones. Multiple

Table 1. Articular cartilage allografts: histologic findings

Tissue examined Early retrieval (\ 1 year)

(six cases)

Midterm retrieval (2–5 years;

average, 2.9 years) (11 cases)

Long-term retrieval ([ 5 years;

average, 12 years) (24 cases)

Cartilage Normal thickness and architecture Normal thickness and architecture Normal thickness and architecture

Retention of matrix and

proteoglycan staining

Loss of matrix staining in the

superficial and upper mid zones

Matrix staining normal except for

superficial layer and upper mid

zone

Viable chondrocytes Multiple chondrocytes within

chondrons and some loss of

chondrocyte polarity

Mostly viable chondrocytes with

chondrocyte clusters and loss of

chondrocyte polarity

Bone Graft bone structurally intact Host bone extends to subchondral

plate with orderly resorption of

graft bone by host bone

Host bone extends to and is

apposed to calcified cartilage

zone but variable remnants of

dead bone surrounded by live

bone persist

No osteocytes in lacunae

Union of graft with host bone by

6 months
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chondrocytes were seen frequently within the chondrons,

reflecting proliferative activity. Loss of chondrocyte

polarity was observed, as well. By 5 years posttransplan-

tation, within the bone, host appositional new bone

formation extending to the subchondral plate with orderly

resorption of the graft bone was commonly observed. At

the graft periphery, graft trabeculae separated by fibro-

vascular tissue were seen. The bone trabeculae on each side

of the fibrous tissue were mixed, consisting of necrotic

graft bone on which viable appositional new bone was

present. Superficial to the bone with incomplete repair,

erosion of the graft hyaline articular cartilage was

observed. Frequently, this was capped by fibrovascular

connective tissue growing from the adjacent synovial

margin.

In the group with extended survival grafts (24 patients),

mean graft survival before biopsy/retrieval was 12 years.

These grafts showed hyaline cartilage, which frequently

retained its original intact surface thickness and architec-

ture (Fig. 1, 2A–B). Cationic matrix staining was present

except for the superficial layer and upper third of the mid

zone (Fig. 2C). Although sporadic chondrocyte necrosis

was observed, viable graft chondrocytes were present in a

pattern similar to that observed in the mid-term grafts. By

6 years, the host bone was observed extending to the

articular plate and was often seen apposed to the intact

graft calcified cartilage (Fig. 2D). Even at 25 years post-

transplantation, however, focal remnants of necrotic graft

bone could be observed within the articular plate (Fig. 2E).

At the lateral graft margin, host fibrocartilage could be seen

closely apposed to the graft hyaline cartilage along its full

thickness. However, a demarcation line could usually be

discerned between the graft hyaline cartilage and host

fibrocartilage, representing incomplete integration of the

collagenous matrix between host and graft cartilage.

Peripherally, host osteophyte formation could be seen

adjacent to the host fibrocartilage (Figs. 1, 2). In the sub-

chondral bone in the less stable areas, fibrovascular tissue

and active host bone with osteoblasts and occasional

osteoclasts were observed. In the least stable areas, host

fibrovascular tissue extending from the synovial lining

could be seen opposed to the graft hyaline cartilage.

However, less erosion was seen than in the grafts that

survived less than 6 years.

In four of the 29 retrieved grafts in patients undergoing

TKA, there was no remaining graft tissue present. The

articular surface consisted of a mixture of fibrocartilage

and host bone. All patients with this feature were observed

within 2 years after transplantation. In two patients the

fibrocartilage was of the same thickness as the original

hyaline cartilage. The articular plate showed extensive

fibrovascular connective tissue penetration through the

bone and residual calcified cartilage.

Discussion

The fresh osteochondral transplant program was started at

Mount Sinai Hospital, University of Toronto in 1972. The

purpose of the program was to address osteochondral

defects in patients who were too young for prosthetic

replacement. Since then, other surgical modalities have

been developed primarily using autograft tissue, but for

large defects allograft tissue is necessary. We have always

used fresh tissue because the chondrocytes are viable. This

paper contains our data related to our retrieval studies

which confirms the efficacy and safety of using fresh

allograft tissue.

The major limitation of this study is that our results are

related to only those patients that underwent further sur-

gery, and the majority of our patients have never had tissue

studies via biopsy or conversion to knee replacement. The

data presented therefore does not reflect our best clinical

results because most of the tissue is from patients who

underwent subsequent surgery.

Osteochondral defects of the knee, regardless of etiol-

ogy, have long been a therapeutic quandary for orthopaedic

surgeons. Realignment osteotomy, microfracturing, mosa-

icplasty, periosteal grafts, and autologous chondrocyte

transplantation are well-described surgical options for this

difficult clinical entity [3, 6–9, 12, 23, 27, 36, 43, 45, 57,

59, 61]. Although these procedures have been implemented

with varying degrees of success, no consensus exists on the

gold-standard treatment. Technological advances continue

to offer promising therapeutic options in the emerging field

of biologic repair; however, a large osteochondral defect

remains inadequately treated by the aforementioned pro-

cedures. This is principally due to the sheer bulk of both

osseous and chondral tissues required to reconstitute the

defect.

FOCA transplantation has yielded promising results

over the last few decades [2, 4, 5, 13, 15, 16, 19–22, 24–26,

35, 39, 41, 52]. Our most recent series reported allograft

survivorship of 95% at 5 year, 85% at 10 years, and 74% at

15 years for femoral condylar FOCA and 95% at 5 years,

80% at 10 years, and 65% at 15 years for tibial plateau

FOCA [25]. These results also reflect the overall good to

excellent functional and patient-based outcome scores

reported in previous studies [5, 22, 25, 39, 56]. Our latest

functional outcome study reported the mean modified

Harris hip score of 85% and 86% good to excellent results

at an average of 12 years (range, 5–24 years) in patients

with intact FOCA [56].

As a clinical corollary to this study, patient-based

outcome data were gathered from 40 age-matched

cohorts who have not undergone further knee surgeries

after their transplantation. Nineteen of 40 subjects were

available for followup and showed a mean Oxford Knee
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Score of 17.5 (range, 12–40) at an average of 20.9 years

(16–27 years) posttransplantation. Though many were

lost to followup due to our international pool of cohorts

and the lengths of followup, these excellent results

underscore the potential longevity and efficacy of FOCA

transplantation.

FOCA transplantation provides several distinct advan-

tages of biologic joint reconstruction. A carefully matched

and press-fitted (particularly by using a modern trephine

technique) allograft plug results in an anatomic correction

of an osteochondral lesion greater than 3 cm in diameter

and 1 cm in depth. Healing seams such as those seen in

mosaicplasty are thus eliminated. It also represents a bio-

logic tissue that can accommodate meniscal or ligamentous

tissue attachment. This in turn optimizes the potential for

restoration of normal knee kinematics and stability to

prolong joint preservation [1, 4, 5, 37]. Moreover, it does

not cause any donor site morbidity associated with other

biologic procedures. It can also decrease the complexity of

subsequent knee arthroplasty by the restoration of the bone

Fig. 2A–E The histopathologic findings of this patient at 20 years

posttransplantation are shown. (A) A photograph shows a cross-

section of the cartilage graft. Note preservation of graft thickness and

integration of graft bone with host bone. (B) A photomicrograph

shows the surface and superficial zone of the cartilage allograft (Stain,

hematoxylin and eosin; original magnification, 910). Note focal

fallout of chondrocytes in the superficial zone and preservation of

chondrocytes in the upper zone. The chondrocytes normally oriented

‘‘radially’’ are aligned more horizontally. (C) A photomicrograph

shows the superficial zone of the cartilage allograft (Stain, safranin O

[light green stain]; original magnification, 910). The superficial

cartilage matrix shows proteoglycan depletion. The deeper layer

shows intense staining indicative of high proteoglycan concentration.

(D) A photomicrograph shows the deep zone of the cartilage allograft

(Stain, hematoxylin and eosin; original magnification, 910). Note

preservation of graft chondrocytes and tidemark. The bone subjacent

to the tidemark is a mixture of necrotic graft bone and viable host

bone. (E) A photomicrograph shows viable host appositional bone

growing on necrotic graft trabecular bone (Stain, hematoxylin and

eosin; original magnification, 920).
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stock and the retention of ligamentous stabilizers that

minimize joint malalignment.

FOCA transplantations have associated drawbacks as

well. Risks of infectious disease transmission in fresh

allograft specimens persist despite a strict adherence to the

screening guidelines set forth by the American Association

of Tissue Banks. The risks are less than or equal to those

encountered in allogeneic packed red blood cell transfusion

(1/493,000 for HIV, 1/103,000 for Hepatitis C, and

1/63,000 for Hepatitis B) [10, 29, 55]. Given the procedure

is limited by the availability of donor tissue, it also requires

an organized program that can facilitate prompt harvesting

(within 24 hours postmortem), processing and storage of

the allograft specimen, and emergent (less than 72 hours

postharvest) transplantation into the host. Furthermore,

potential complications of FOCA more pertinent to the

focus of this study are allograft-host nonunion and

allograft fracture or degeneration that ultimately lead to

graft failure.

Previous studies have emphasized the importance of

chondrocyte viability for FOCA survival [17, 39]. The

main impetus behind the use of FOCA is its superior short-

and long-term chondrocyte viability when compared to

frozen or cryopreserved allograft [17, 38, 46, 53, 54, 58,

60]. This is believed a direct consequence of the chon-

drocyte loss being an early event related to suboptimal

graft preservation such as in cryopreservation [20]. Cor-

respondingly, our early failure specimens demonstrated the

following key histopathologic features: lack of viable

chondrocytes and cartilage matrix staining. Therefore, the

importance of timely harvesting of allograft and trans-

plantation, thus reducing the ex vivo, nutrient-deficient

phase for the allograft, cannot be overemphasized. Inter-

estingly, the presence of inflammatory cells and mediators

associated with systemic inflammatory diseases was also

noted in the early and late failure specimens. Histologi-

cally, resorption of the cartilage graft tissue by synovial

inflammatory activity at the graft edges was observed.

This, again, is not surprising given its detrimental effects

on chondrocyte viability as seen in rheumatoid arthritis

[34].

Chondrocyte viability continues to play an important

role in the late graft failure as well. FOCA can undergo

degeneration directly related to chondrocyte loss [40].

Clinically, a trend toward better FOCA survivorship with

adjunct meniscal transplantation and realignment osteot-

omy (to shift weightbearing axis away from FOCA) was

noted in our previous study [25]. We continue to recom-

mend these adjunctive procedures with FOCA

transplantation concurrently; their ‘‘antidegenerative’’

effects remain to be further defined with time.

Another key requirement of prolonged FOCA survival is

the mechanical stability at the host-graft interface [30, 39,

50]. Only with a stable interface can the host bone grow

appositionally on graft bone trabeculae and eventually

replace the graft bone by creeping substitution, including

the bone of the subchondral plate. Mechanical instability

results in host-graft nonunion, fractures through the allo-

graft, and active and incomplete remodeling of the allograft

by the host bone. These are the characteristic histopatho-

logic findings of late FOCA failures. In addition, the

articular surface of failed FOCA commonly consisted of a

thick fibrocartilage layer overlying the host bone with

sclerosis. The presence of the fibrocartilage across the

entire articular surface in this manner differs from that

observed in osteoarthritic process. This finding suggests the

integration of the graft bone into the host bone did not

become complete. Subsequently, less stable host-graft

interface produces the replacement of the entire hyaline

cartilage surface with fibrocartilage. Thus, the fundamental

cause of late FOCA failure appears to be graft instability

leading to nonunion and continued remodeling at the host-

graft interface, both bony and cartilaginous. From a tech-

nical point of view, a precisely matched and fitted allograft

into the prepared host bed is of paramount importance in

ensuring the stability.

Our data suggest chondrocyte viability and mechanical

stability with replacement of graft bone by host bone at

host-graft interface are crucial factors for long-term sur-

vival of FOCA. To promote long-term chondrocyte

viability, we recommend prompt postmortem harvesting of

the allograft and a short duration of ex vivo storage. Given

chondrocyte viability, FOCA survival over the long term

depends primarily on stable fixation of the allograft tissue

to the host tissue by compression screws or more recently

by press-fit dowels using a trephine technique. When these

requirements are met, high clinical function can be

expected over many years.
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