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Abstract
Microarray technology provides a powerful tool for the expression profile of thousands of genes
simultaneously, which makes it possible to explore the molecular and metabolic etiology of the
development of a complex disease under study. However, classical statistical methods and
technologies fail to be applied to microarray data. Therefore, it is necessary and motivated to develop
the powerful methods for large-scale statistical analyses. In this paper, we described a novel method,
called Ranking Analysis of Microarray data (RAM). RAM, which is a large-scale two-sample t-test
method, is based on comparisons between a set of ranked T-statistics and a set of ranked Z-values (a
set of ranked estimated null scores) yielded by a “randomly splitting” approach instead of a
“permutation” approach and two-simulation strategy for estimating the proportion of genes identified
by chance, i.e., the false discovery rate (FDR). The results obtained from the simulated and observed
microarray data shows that RAM is more efficient in identification of genes differentially expressed
and estimation of FDR under the undesirable conditions such as a large fudge factor, small sample
size, or mixture distribution of noises than Significance Analysis of Microarrays (SAM).
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Introduction
Microarray technology provides a powerful tool for measuring the expression levels of large
numbers of genes simultaneously, and creates unparalleled opportunities to study complex
physiological or pathological processes, including the development of disease, that are
mediated by the coordinated action of multiple genes [1]. Detection of genes differentially
expressed across experimental, biological and/or clinical conditions is a major objective of
microarray experiments. Methods for finding genes significantly differentially expressed in
the context of microarray data analysis can be classified into three major groups [2,3]: marginal
filters, wrappers [4], and embedded approaches [5,6]. The wrapper and embedded methods are
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a type of search algorithms by which candidate gene subsets that are useful to build a good
predictor are constructed and selected and then evaluated by using a classification algorithm
[3,7]. The filter approaches are a type of simple and fast-speed method including t-tests and
nonparametric scoring [8,9] and analysis of variance (ANOVA) [1,10] for searching for the
features (genes) or feature (gene) subsets that are irrelevant and independent of each other
[3,7]. For the microarray data, the filter approaches encounter a challenging simultaneous
inference problem, as the probability of committing a type I error increases with the number
of tests performed [11]. In order to resolve the statistical problem in testing a large family of
null hypotheses, several multiple procedures have been developed. The Bonferroni procedure,
the Holm procedure [12], Hochberg procedure [13], the Westfall and Young procedure [14]
address the multiple test problem by controlling the family-wise error rate (FWER), which is
the probability that at least one false positive occurs over the collective tests [15]. However,
these methods are based on the assumption that different tests are independent of each other,
they are, thus, not well suited to microarray data, often being too stringent and may yield no
or few positive genes [16] and may result in unnecessary loss of power. Benjamini and
Hochberg [17] have proposed an alternative measure, the false discovery rate (FDR), to control
erroneous rejection of a number of true null hypotheses. FDR is an expected proportion of the
false positives among all the positives detected. The FDR-based multiple testing approaches,
such as the Benjamini and Hochberg(BH) procedure [17,18] and the Benjamini and Liu-
procedure [19] have been developed for testing for a large family of hypotheses. These
procedures are generally suited to larger sample sizes because small sample sizes lead FDR to
be too “granular” [16]. Most recently, Storey [20] and Storey and Tibshirani [21] developed a
new measure, i.e., positive FDR (pFDR) that is an arguably more appropriate variation. It
multiplies the FDR by a factor of, which is the estimated proportion of non-differentially
expressed genes to all genes on π0 the arrays [22]. The estimate of pFDR is smaller than the
estimate of FDR [22]. Tsai et al. [23] suggested the use of the conditional FDR (cFDR) on the
most significant findings. Pounds and Cheng [15,24] proposed the spacing LOESS histogram
(SPLOSH) approach to estimate of cFDR.. Tusher et al. [16] developed a new FDR-based
method, called Significance Analysis of Microarrays (SAM). SAM is very popular because it
can identify genes with significantly expressional change and can estimate FDR based on
permutations. However, the conventional permutation approach is not the most appropriate
method for estimating the null distribution for most microarray data because sample sizes in
such experiments are commonly small which yield relatively small number of permutations
and lead to inaccurate ranking of scores. Although SAM has the advantage of being
distribution-free, its use of a fudge factor (S0) makes it mostly applicable to normal distributions
because S0 is in general smaller than or equal to 1 in normal distributions. Non-normal
distributions or small sample sizes can produce a larger S0, which often makes SAM loss its
power or be not applicable.

These problems in SAM led us to develop a new statistical method called ranking analysis of
microarray (RAM) data. The overall approach of RAM is somewhat similar to SAM, which is
to identify genes with significant expression changes through the use of gene-specific t-tests,
but RAM evaluates its significance based on an improved empirical distribution generated by
a “randomly splitting” approach instead of the permutation approach and implementation of a
simulation-based interval method for estimation of FDR. As a result, the RAM has all the major
advantages of SAM, plus performs very well for small sample sizes, which are typical in
microarray experiments.

Tan et al. Page 2

Genomics. Author manuscript; available in PMC 2008 November 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Methods
T-statistic

For simplicity, we will focus our discussion on the analysis of expression data from experiments
of two different classes (designated as 1 and 2), which is very common in practice. The two
classes may correspond to two different genotypes of individuals, treatments, cell types, tissues,
etc. Let N be the number of genes examined and mik be the number of replicate observations
for the expression of gene k (k = 1, …, N) in class i (i =1, 2). We will refer to the collection of
all the observations for a given gene in class i as sample i. Therefore, mik is the size of sample
i for gene k. Typically m11 = m12 = … = m1N = m1 and m21 = m22 = … = m2N = m2, otherwise
the experiments is said to have some missing observations

Let x̄ik and  represent the mean and variance of the expression of gene k in sample i,
respectively. Define for gene k

The traditional t-test statistic for testing if there is a significant difference between two sample
means is equal to

where in the current context

for unequal variances for the two class experiments or

for equal variances. Although the traditional t-statistic is a reasonable choice for some
expression data sets, its applicability is often questionable because that a small sampling
variance (≪ 1), which can often arise due to randomness from large number of genes and small
sample size, and relatively large value of dk may lead to erroneous conclusion. Such effect is
generally known as the fudging effect. To reduce the fudging effect, Tusher et al. [16] proposed
a modified t-statistic defined as

where S0 is a constant representing the minimal coefficient of variation of tk computed as a
function of σk in the moving windows across the data. However, in our own studies, we noted
the fudging effect using the modified t-statistic is still quite strong when the sample size is
small. In particular, small sample size often leads to an unreasonably large value of S0 that
dominates the test statistic and consequently reduces the power of the analysis. To circumvent
the problem, we propose a simple alternative correction δk for the variance of expression for
gene k as

(1a)

for the case of unequal variances and
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(1b)

for the case of equal variances where

(2)

Thus, the t-statistic for the difference of expression levels of gene k is redefined as

(3)

Since Tk = tk unless dk > σk <1, the new test statistic is a simpler extension of the traditional t-
statistic than that proposed by Tusher et al. [16].

Ranking Analysis
To identify genes whose expression levels are significantly different in two experimental
conditions, a common practice is to rank the genes according to their values of the chosen
statistics, which in our situation is T. Suppose Tk* is the k*-th largest T value, then its
corresponding gene k is said to have significantly different expression between the two
experimental conditions for a given threshold value Δif

(4)

where Zk* = E(Tk*) is the expectation of Tk*under the null hypothesis that there is no gene
having a significant difference in expression. This type of test is known as the Ranking Test.

To enable the ranking test, it is critical to obtain a good estimate of Zk*. Tusher et al. [16]
proposed a permutation approach for this purpose, which uses a standard permutation
procedure for each gene. This process works well if the sample size is large. When the sample
size is small, however, the number of permutated samples for each gene is rather small, which
leads to a biased ranking test and even renders the test not applicable. This appears to be caused
by the randomness introduced by permutations that lead to biased tail distributions for ranked
values. The observations from analyzing both real and simulated data lead us to develop a
Randomly Splitting (RS) approach to estimate Z as follows.

First each sample is randomly split into two subsamples with size difference not larger than a
given value C. We found that it is best to set C=4. For the J-th split, let  be the mean of
subsample h of sample i for gene k. Define  and , and hence,

(5)

The splitting process is carried out for every gene, and define 

The set of  values is then ranked. Let  be the k*-th largest value for the J-th split. Then
we estimate Zk*by the mean of  over all the splits, i.e.

(6)

Fig. 1(panel A) shows the use of Zk* in the identification of the genes that are differentially
expressed in a set of 3000 genes in a stroke response experiment. In this figure the solid line
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represents T = Z and the two dashed lines represent the lower and upper boundaries
corresponding to a threshold Δ. The dots below the lower boundary and over the upper
boundary represent genes that are significantly expressed at the given threshold Δ.

Estimate of FDR
Consider a series of threshold values Δi (i=1,…L). Let N(i) be the number of genes that are
significant at the threshold Δi by the ranking analysis. N(i) is then comprised of two parts: the
number of true positives Nt(i) and the number of false positives Nf(i). Therefore N(i) = Nt(i) +
Nf(i). The false discovery rate (FDR) at the threshold Δi can be written as RFD(i) = Nf(i)/N(i)
which requires to be estimated since Nf(i) is unknown. To improve the accuracy of estimating
FDR, we propose a new strategy to obtain FDR as an average of two estimates each derived
from simulation under a specific condition. The first estimate is carried out as follows.

For each gene, two samples of m replicates are simulated from a normal distribution, one with
mean randomly set to be  or  and variance , another with mean
randomly set to be  or  and variance , where  is the mean
of subsample h of the sample i for gene k produced by the RS procedure in the observed data.

The process will produce M sets of simulated data each is subjected to the ranking analysis
described in the previous section. For each simulated data set, every ranked position has thus
a corresponding T value that is denoted by . Since we are concerned about false positive,
we consider only those genes that are not significant in the original ranking analysis. Comparing

 to Z ̄k* for every ranking position will allow one to identify genes that are becoming
significant. The number of such genes in the J-th set of simulation data at the threshold Δi is
denoted by N(1, J,i).

Let  which is the mean number of N(1,J,i). For an ascending series of
threshold values, N(1,i) rises initially and declines when the threshold value exceeds a certain
value Δ. Define

(7)

as the first estimate of FDR where  and N(1,i) = N(Δ) when Δi< Δ. f(1,i) is
thus a decreasing function and bounded between 1 and 0 (See Fig. 2).

The second estimate of FDR is obtained also from simulation. The simulation of the two
samples for each gene is done in the same way as the first simulation, except that the two means
are set to be equal, i.e.,  or . Also correspondingly for the J-
th simulation data set, ranking analysis of the T values lead to , where “2” represents the
second simulation.  is compared to its average T ̄k*2, and the significances across all the
ranking positions at threshold Δi are counted as N(2,J,i). Let . Since the
noise distribution produced by the RS approach from the simulated data agrees well with that
produced by the RS approach from the observed data (see Fig. 3 panel B and Fig. 4 panels C
and D), N(2,i) is a reasonable estimate of Nf(i) for a given threshold Δi. However, in order to
avoid the possibility that R(FD,i) = N(2,i)/N (i) = ∞ occurs when N(i) =0, in particular, in the
extreme cases of which there is no or small expression difference between two samples. We
define
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(8)

as the second estimate of FDR. Equation (8) shows that f(2,i) = 1 when N(i) = 0 and N(2,i) ≥
1, f(2,i) = 0.5 when N(i) = N(2,i), f(2,i) < 0.5 when N(i) > N(2,i), and f(2,i) = 0 when N(i) ≥ 1
and N(2,i) = 0.

Although we intended to find a lower and upper bounds for FDR, it can be seen from Fig. 2
that although the two estimates of FDR provide two bounds for the FDR, f (1,i) does not remain
as the lower bound nor the upper bound, same as f(2,i). The role of the two in bounding the
FDR switches after certain threshold value. For this reason, we explore a single estimate of
FDR which value lies between the two bounds. One conservative estimate is to give more
weight to the larger of the two bounds, which results in the third estimate of FDR as

(9)

where ai = f(1,i)/[f(1,i) + f(2,i)] and bi = 1 − ai. We found that at threshold level Δi, a better
estimate of FDR is obtained by

(10)

To further smooth the estimates of FDR, consider the difference between the numbers of genes
found to be significant at adjacent thresholds Δi and Δi+1, define a recursive formula modifying
the probability fi as

(11)

where pi = [N(i) − N(i + 1)]/[1 + N(i) − N(i + 1)]and qi = 1 − pi. Equation (11) suggests that
fi+1 =fi if N(i) = N(i + 1). Thus, the number of the false discoveries among those found to be
significant at threshold Δi in the observed data is estimated by

(12)

and an estimate of the FDR at threshold Δi is given by

(13)

It can be seen from Fig. 2 that the line for the true value RFD(i) agrees well with that for
R̂FD(i), indicating that R̂FD(i) is a good estimate of FDR. We also found that, if no gene in the
simulation was found to be significant, R̂FD(i) would be more than 0.5 at threshold Δi of f(1,i) <
f(2,i) (the result is not shown).

Simulation Results
Estimate of The Null Distribution

To determine if the empirical distributions obtained by the permutation approach and the RS
approach are appropriate for the analysis of expression data, we simulated three sets of
microarray data sets each consisting of 3000 genes and two samples of 12 replicates each. The
means and variances for each gene are set to the observed means and variances from the real
microarray data obtained from our laboratory. In our real microarray data sets, the expression
levels of 3000 genes were measured for two different strains [the spontaneously hypertensive
rat (SHR) and stroke-prone spontaneously hypertensive rat (SHRSP)] each consisting of 12
rat individuals. In the first simulation data set, all 3000 genes were set to have no treatment
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effect. In the second and third simulation data sets, treatment effects of G=10R and G = 30R,
respectively, were randomly assigned to 30% of the genes where R is a random variable in the
uniform distribution (0,1].

In the ranking analysis, a set of Zk*values for each simulated data set was computed from 100
permutations or 100 random splits. As Zk*is an estimate of Tk*under the null hypothesis, a
desirable property is that Zk*has a linear relationship with Tk*. This property can be seen by
plotting Zk*versus Tk*. Fig. 3 shows the plot of Z obtained by the permutation (panel A) and
RS (panel B) approaches. It can be seen from panel A that the Z-distribution obtained by either
the permutation approach from the observed or the first simulated data sets remarkably deviates
from the null distribution when |T| is large. More specifically, in the tails of T, the observed
Z-values remarkably overestimate the null scores whereas the simulated Z-values
underestimate the null scores. These patterns were also seen from simulation incorporating
different treatment effects on gene-expressions. In Fig. 4 panel A, the Z*-values obtained by
the permutation approach from the second simulation data set where 30% of the genes were
given treatment effect values of 10R are in between the Z-values obtained by the permutation
approach from the first simulation data set where no gene was given treatment effect and the
null scores (simulated T-values) when T > 1.5 or < −1.5 whereas in Fig. 4 panel B, Z*-values
from the third simulation data set where 30% of the genes were given treatment effect values
of 30R are much larger than the null scores at T > 3 or much smaller than the null scores at T
< −3. These results indicate that when the treatment effect contributing to expression variations
of genes is weak or lacking, the Z-distribution yielded by the permutation approach would
negatively deviate from the null distribution, i.e., Zk* ≤ Tk*> 0 or Zk*≥ Tk*< 0, so that type I
errors observed in the ranking-test would be more than those expected. However, when a large
treatment effect to different extent contribute to expression variations of a part of the genes,
the Z-distribution would remarkably positively deviate from the null distribution, i.e., Zk* ≥
Tk*> 0 or Zk* ≤ Tk*< 0. In this case type II errors observed in the ranking-test would be much
more than those expected. These observations in the case of small samples are in fact a general
feature of the permutation approach (see Appendix A).

It can be seen from Fig. 3 panel B, however, that the Z-distributions obtained by the RS
approach from the observed and the first simulated data sets and the simulated T distribution
(the null distribution) are almost overlapped with each other. This is also shown in. Fig. 4
panels C and D where the Z*-values were obtained by the RS approach from the second and
third simulation data sets and the Z- values from the first simulation data set. The similar results
to those shown in Fig. 4 panels C and D were obtained in the case of sample size = 6. These
results strongly suggest that the Z-distribution, as an empirical distribution, produced by the
RS approach is a desirable approximation of the null distribution and in particular it is
independent of treatment effect or sample size, which is essential for the rank-test.

Estimate of FDR
Since it is generally unknown if a given gene expresses differently in two different conditons,
it is not necessarily best to use real data of gene expression to evaluate a FDR estimator.
Therefore, we also conducted a computer simulation for comparing expression status
(significance or insignificance) of a gene identified by a method with its real status. In this
simulation study, we also generated two data sets of 3000 genes where treatment effect values
of 10R were randomly assigned to 10% and 30 % of the genes, respectively, and sample size
was set to be 6 replicates. This simulation procedure was iterated 20 times. Four criteria, i.e.,
absolute average, maximum and minimum, and variance of differences between the estimated
and true numbers of the false discoveries across all R̂FD(i)% ≤ λ obtained from these 20 two-
sample simulated data sets were used to assess an estimator. We set λ = 40, 30, 20, 10, and
5%. Table 1 summarizes the results obtained by applying RAM and SAM (the software comes
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from http://www-stat.stanford.edu/~tibs/SAM/) to these simulated data sets in the situations
of 10% and 30% of the genes given effect values of 10R, respectively. These results shown in
Table 1 clearly indicate that the RAM estimator has a much better accuracy in estimating FDR
than the SAM estimator. In particular, for FDR of 5%, which is an important threshold value
in practice, the RAM’s estimate is, on average, 0.65 false discoveries with variance <1, and
variation interval of 1~3 false discoveries whereas SAM estimate is, on average, about 2 false
discoveries with variance larger than 6 and variation interval of 7 false discoveries. Fig. 2 shows
the whole profile of the RAM’s estimates of FDRs over all given thresholds based on the second
simulation data set. In this profile, the estimated and true curves are well agreed, suggesting
that the RAM’s estimate is reliable.

Identification of Differentially Expressed Genes
The exact distribution for the expression level of a gene is unknown in microarray experiments.
For some genes, normal distributions may be appropriate, while for some gamma distribution
may be more accurate, and for some none of the standard distributions may be adequate. When
many thousands of genes are examined simultaneously, a variety of distributions is likely
present. Therefore, it is appropriate to evaluate a method using data generated from a mixture
of distributions. For simplicity, we limited ourselves in the simulation to use gamma and normal
distributions to yield data sets consisting of 3000 genes in two samples each having 6 replicates.
Then at random we mixed them together at a given proportion (for example, 30% gamma
distribution and 70% normal distribution) to construct a new set of microarray data. We applied
SAM and RAM to the simulation data set. The results are summarized in Fig. 1 panel B and
Table 2 where the exchangeability (fudging) factor S0 = 10.75 at percentile= 33%. One can
find in Fig. 1 panel B that all dots on plots are close to the expected lines, suggesting that the
SAM fails to work in such data whereas the other result in Table 2 shows that RAM works
very well for identifying genes that are significantly differentially expressed and for the
estimation of FDR.

Application to the Real Microarray Data
Both SAM and RAM were applied to the two-sample real microarray data of 7129 genes
obtained from two small samples (4 replicates for each sample) provided in the SAM software
package. The results shown in Table 3 is helpful for explaining the observation in Table 1 of
Tusher et al.[16]. A larger S0 (S0=3.3) is the primary cause for SAM’s poor performance: 12%
FDR in the 48 genes identified to be significant at threshold Δ =1.2. It can be seen from Table
3 that RAM found 61 genes having significant expressional change at an acceptable FDR level
of 3.3% whereas SAM identified only 21 genes at an acceptable FDR level of 4.7%. The
difference of 40 genes between both is because of an unnecessarily larger fudging factor (S0=
3.4) used in SAM. In deed, these 40 genes all have d > σ < 1, suggesting that a large value of
S0 indeed led some truly differentially expressed genes to be missed by SAM.

Discussion
In conventional statistical resampling, permutation is a popular approach to estimate a null
distribution. However, as seen from our analysis and as indicted in Appendix A, the
distribution-free method based on permutations would be generally biased because for
microarray data analysis small sample sizes limit the number of distinct permutation samples
and ranking the T-statistics at each permutation does not completely remove the treatment
effect contributing to gene-expression variations. The RS approach is developed in this paper
to circumvent the aforementioned problems of SAM. The resulting RAM has the advantage
of being insensitive to the treatment effect often present in real data and having a better estimate
of FDR. Another important advantage of RAM is that it works well for small sample size that

Tan et al. Page 8

Genomics. Author manuscript; available in PMC 2008 November 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www-stat.stanford.edu/~tibs/SAM/


is particularly useful for analyzing microarray data that often have small sample sizes. In
addition, the RS approach can be easily extended to the pair data set (see Appendix B)

FDR is often used to control error rate in the BH-procedure [18] and in SAM [16] and [22]. In
practice, for a multiple-test method based on t-statistic, it is important to obtain an accurate
estimate of FDR. In SAM, the FDR estimate is realized through the permutation approach in
which fluctuations around expectation occur among permutated samples. The fluctuations
would be impacted on by the data itself, i.e., sample size, treatment effect, and data noise. The
RAM estimator of FDR is based on a two-simulation strategy so that it avoids these impacts
on the estimate of FDR. Our simulation results indicate that the RAM estimator of FDR is
generally accurate at a given threshold of interest.

In an idealized setting where all expression level is normally distribution, SAM and RAM all
work well for identifying differentially expressed genes. However, in the case that most of the
expression levels follow a normal distribution and a small fraction, for example, 30 percent of
the genes, possibly follow a gamma distribution, SAM performs poorly or even fails to work
due to a larger fudge factor S0 whereas RAM continues to performs well. In addition, small
sample size makes it possible to produce the sample variances far smaller than 1 in a large-
scale gene-expression profile. This situation, as seen in Tusher et al. [16], also produces a larger
fudging factor for SAM, but in RAM this fudging impact can effectively be excluded.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix A
Suppose we have two classes Xk = {xk1,…, xkm) and Yk = {yk1,…, ykn) of m replicates for gene
k. A permutation produces two resampling classes Xk′ = {xk1,…,xkm−r, yk1,…,ykr) and Yk′ =
{xk1,…,xkr, yk1,…,ykn−r). From these resampling two-class data, we have two resampling
means

(A1a)

(A1b)

Let xkj = μk + τxk + exkj and ykj = μk + τyk + eykj where μk is overall mean (expectation) for
expression levels of gene k, τxk and τyk are assumed to be treatment effects contributing to
expression variation of gene k, exkj and eykj are expression noises. Thus, these two means can
also be expressed as

(A2a)

(A2b)

where r is number of exchanged members between two classes. It is clear that with difference
between  and  treatment effect difference is
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if r = m/2, otherwise, d(τk) ≠ 0. In addition, rank of Z-values across all position at each
permutation changes the Z-values in position k* in the rank space so that the component dealing

with d(τk) in the Z-value in position k* in the rank space, that is,  where
 or  is a pooled standard

deviation of two samples in position k* at permutation J. This indicates that the Z-distribution
obtained by the permutation approach contains treatment effect difference for the microaaray
experiments if r ≠ m/2. This is why a large treatment effect on expression levels of a part of
the genes leads to an obviously “positive deviation” of the Z-distribution obtained by the
permutation approach from the null distribution as seen in Fig. 3 panel A, Fig. 4panel A and
B, say, Zk* ≥ Tk* ≥ 0 or Zk* ≤ Tk* ≤ 0 where Tk* = d(ek*)/σk* is a null score of the T-statistic.

For no treatment effect, i.e., τxk = τyk = 0 and for small sample size for gene k, ∑ek ≥ 0 or
∑ek ≤ 0, and hence, Equations A1a and A1b are changed to

(A3a)

(A3b)

In the difference between  and , there is a error difference,

(A4)

where d(ek) = exk − eyk and d[ek (r)] = ēyk(r) − ēxk(r). It is clear from equation (A4) that d(εk)
≠ d(ek) if d[ek (r)] ≠ 0. On the other hand, due to ēxk(r) ∊ ēxk and ēyk(r) ∊ ēyk, d[ek (r)] =
ēyk(r) − ēxk(r) is negatively related to d(ek) = ēxk − ēyk, that is, if d(ek) > 0, then d[ek (r)] ≤ 0 or
if d(ek)] < 0, then d[ek (r)] ≥ 0. Again, rank of the Z-value across all positions leads to

 or 
consequently, the average of  in position k* over all permutations is larger or less

than or equal to zero, that is,  or , which then
results in a “negative deviation” of the Z-distribution from the null distribution as seen in
Figures 3A, 4A and 4B, i.e., Zk* ≥ Tk* ≤ 0 or Zk*≤ Tk* ≥ 0.

Appendix B
For paired data, since two samples of mk observed values (x1k,…, xmkk) and (y1k,…, ymkk)
become a sample of mk distant values (d1k,…, dmk k), k =1,…, N, the sample of mk replicates
for distances can be also at random cut into two subsamples. Let dik = xik − yik = dk + exik −
eyik = dk + eik, i = 1,…, mk where dk is difference between treatment effects on the expression

of gene k. We then have . In two subsamples at split J, two

subsample means are expressed as  and  where  is
average of errors in subsample i at split J for gene k in system g (g = x, y). Therefore, ēk is
estimated by

Tan et al. Page 11

Genomics. Author manuscript; available in PMC 2008 November 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



say, ēk in the paired data is equivalent to that in the unpaired data. The null score of the T-
statistic is estimated by the Z-value:

where σ 2 (dk) is the sample variance of distances between two paired data for gene k.
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Fig. 1.
Identification of the genes significantly differentially expressed. Panel A is a plot of T-values
vs Z-values based on the observed data of 3000 genes in two samples each consisting of 12 rat
individuals in response to stroke where estimates of Z-values were obtained by use of the RS
approach. Panel B is plot of observed T vs expected T (Z) in SAM. The simulated data set was
comprised of 30% expression noises following gamma distribution and 70% following normal
distribution where expression levels of 3000 genes in two samples each consisting of 12
replicates were simulated using one set of the observed sample means and two sets of the
observed sample variances, and treatment effect values of G= 10R (for 30% of the genes) where
R is a random uniform variable over (0, 1].
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Fig. 2.
Estimation of the FDR. f (1,i) and f (2,i) are two threshold functions and are used to construct
an estimation interval for estimate of FDR at threshold Δi. RFD (i) and R̂FD(i) are true and
estimated FDR at threshold Δi, respectively, where RFD(i) were calculated by comparing genes
identified by RAM with those given treatment effect (G = 10R).
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Fig. 3.
Plots of Z-values vs T-values. The observed Z-value (the b line) and simulated Z-value (the c
line) were obtained by the permutation approach (panel A) and the RS approach (panel B). The
observed microarray data of 3000 genes were obtained in two samples each consisting of 12
rat individuals. The first set of the simulated microarray data were produced using the
pseudorandom generator and one set of 3000 observed means and two sets of 3000 observed
variances where no gene was not given a treatment effect value. The simulated T- values (the
a line) were a set of 3000 null scores produced from 100 repeated simulations of the first set
of the simulated data (see text).
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Fig. 4.
Plots of Z-values vs T values. The simulated Z-values were obtained from the first (the c line),
second (the b lines in panels A and C) and third (the b lines in panels B and D) sets of the
simulated data of 3000 genes, respectively. In the first, second, and third simulation sets,
treatment effect values of G=0R, 10R and 30R were randomly assigned to 30% of the genes,
respectively, where R is a random variate in the uniform distribution (>0,1] (see text for
simulation). The simulated T-values (the a line) were a set of 3000 null scores (see text). The
results shown in A and B were obtained by the permutation approach and those shown in panels
C and D were based on the RS approach.
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Table 1
Difference between the estimated and true false discoveries at FDR [R̂FD]% ≤ λ
obtained by SAM and RAM from the simulated microarray data of 3000 genes.

Method λ Absolute Average Variance Maximum Minimum

30% of genes received treatment effect values of G =10R

RAM 40 3.021 18.787 16 −17
30 2.398 9.659 7 −8
20 2.119 7.677 6 −8
10 1.363 3.554 4 −7
5 0.649 0.739 2 −1

SAM 40 5.309 55.240 11 −25
30 3.406 18.915 11 −9
20 3.044 16.582 11 −9
10 2.209 9.214 6 −4
5 1.850 8.684 6 −1

10% of genes received treatment effect values of G =10R

RAM 40 1.961 7.219 8 −5
30 1.471 3.963 6 −3
20 1.046 1.835 3 −3
10 0.641 0.763 2 −2
5 0.300 0.333 0 −1

SAM 40 3.182 18.129 12 −11
30 2.468 9.873 8 −4
20 2.048 7.268 7 −3
10 1.826 6.909 7 0
5 1.667 6.705 7 0
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Table 2
The results obtained by SAM and RAM from the simulated microarray data sets of 3000 genes where 30% of the genes
were given treatment effect values of 8R and 30% of the expression noises followed a gamma distribution and the
others followed a normal distribution.

SAM RAM

Δi N(i) N ̂f(i) R̂FD(i) % Δi N(i) N ̂f(i) Nf(i) R̂FD(i) % RFD (i) %

0.00050 1127 1160 102.9 0.0676 1821 1296 1279 71.2 70.2
0.01035 351 292.5 83.3 0.0851 1715 1199 1199 69.9 69.9
0.01217 350 286 81.7 0.1025 1660 1147 1157 69.1 69.7
0.01943 346 282 81.5 0.1374 1505 753 1040 50.0 69.1
0.02073 345 277 80.2 0.1724 1372 462 938 33.7 68.4
0.02932 315 248 78.7 0.1900 1288 369 875 28.6 67.9
0.03368 311 239.5 77.0 0.2251 1137 295 764 25.9 67.2
0.04193 308 230 74.6 0.2428 984 232 657 23.6 66.8
0.05636 301 218.5 72.5 0.2782 802 172 523 21.4 65.2
0.06288 289 206.5 71.4 0.3138 401 82 230 20.4 57.4
0.06851 256 178 69.5 0.3677 102 21 21 20.6 20.6
0.08908 153 99 64.7 0.3858 99 20 20 20.2 20.2
0.11274 135 83 61.4 0.4039 97 19 19 19.6 19.6
0.12576 127 75.5 59.4 0.4405 95 18 18 18.9 18.9
0.13374 124 73 58.8 0.4589 92 17 17 18.5 18.5
0.14284 123 70 56.9 0.4775 89 16 16 18.0 18.0
0.14912 120 68 56.6 0.4961 87 15 15 17.2 17.2
0.15884 88 45.5 51.7 0.5337 83 14 15 16.9 18.1
0.16771 86 43 50.0 0.5909 79 12 13 15.2 16.5
0.18042 85 42 49.4 0.6103 77 11 13 14.3 16.9
0.18894 80 38 47.5 0.6494 74 10 11 13.5 14.9
0.19440 74 35 47.2 0.6692 72 10 10 13.9 13.9
0.19750 73 35 47.9 0.6892 71 9 9 12.7 12.7
0.20497 71 33 46.4 0.7502 68 8 9 11.8 13.2
0.20650 48 22 45.8 0.7918 65 6 8 9.2 12.3
0.21360 44 20 45.4 0.8344 64 6 7 9.4 10.9
0.21474 39 18 46.1 0.8560 61 6 5 9.8 8.2
0.21516 38 17 44.7 0.8779 60 5 5 8.3 8.3
0.21815 26 11 42.3 0.9226 57 5 4 8.8 7.0
0.22433 19 7 36.8 1.0156 47 3 4 6.4 8.5
0.23141 19 7 36.8 1.0893 42 3 2 7.1 4.8
0.23953 15 6 40.0 1.1147 41 3 2 7.3 4.9
0.27464 14 4 28.5 1.1939 40 2 2 5.0 5.0
0.45645 5 1 20.0 1.3691 36 2 2 5.6 5.6
1.02531 1 1 100.0 1.4011 34 2 1 5.9 2.9
1.04895 0 1 NA 1.4340 32 1 1 3.1 3.1

2.2410 24 0 0 0 0

Note: Nf (,i) and RFD(i) are true number and the rate of false discoveries according to the comparison between identified and true gene differentially
expressed in the simulated data
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Table 3
Numbers of genes called significant, and of the false discoveries estimated by SAM and RAM from the observed
microarray data sets of 7129 genes in 4 replicate experiments provided in SAM software.

SAM (S0= 3.46 at percentile = 0.01) RAM

Δi N(i) N ̂f(i) R̂FD(i) % Δi N(i) N ̂f(i) R̂FD(i) %

0.00676 4046 3736.4 92.3 0.04641 6834 5060 74.0
0.02311 4011 3682.4 91.8 0.10520 6392 4261 66.7
0.03355 3952 3621.4 91.6 0.16402 5956 3964 66.6
0.04874 3933 3591.4 91.3 0.22289 5539 1993 36.0
0.07252 3893 3551.5 91.2 0.28185 5144 1656 32.2
0.08402 3882 3536.5 91.1 0.34092 4736 1389 29.3
0.08731 3855 3499.5 90.7 0.40013 4188 1430 34.1
0.08885 3305 2955.7 89.4 0.45952 3752 1043 27.8
0.08977 3211 2879.7 89.6 0.51911 3245 553 17.0
0.09132 1936 1716.2 88.6 0.57893 2660 617 23.2
0.09278 1751 1529.3 87.3 0.63901 1795 100 5.6
0.09538 1739 1510.3 86.8 0.69939 1480 110 7.4
0.09691 1718 1487.3 86.5 0.76010 1220 71 5.8
0.09886 1703 1464.3 85.9 0.82118 783 61 7.8
0.10159 752 568.2 75.5 0.88266 310 17 5.5
0.10943 739 550.2 74.4 0.94457 6161 2 3.3
0.11610 599 436.8 72.9 1.00697 58 2 3.4
0.12068 531 383.3 72.1 1.06988 57 1 1.8
0.13922 410 268.3 65.4 1.13336 57 1 1.8
0.15164 352 218.4 62.0
0.18234 268 155.9 58.1
0.19807 261 147.9 56.6
0.20716 213 116.9 54.9
0.33398 167 64.9 38.9
0.43301 124 39.9 32.2
0.57814 88 19.4 22.1
0.65578 74 12.9 17.5
0.76837 62 9.9 16.1
0.86358 46 5.9 13.0
1.24876 36 2.9 8.3
1.38245 26 1.9 7.6
1.60219 21 0.9 4.7
2.03175 12 0.9 8.3
2.43241 11 0.9 9.0
2.69035 3 0.9 33.3
4.19555 0 0.9 NA
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