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Abstract

Background: Bile-duct ligated (BDL) rats recruit pulmonary intravascular macrophages (PIMs)
and are highly susceptible to endotoxin-induced mortality. The mechanisms of this enhanced
susceptibility and mortality in BDL rats, which are used as a model of hepato-pulmonary syndrome,
remain unknown. We tested a hypothesis that recruited PIMs promote endotoxin-induced
mortality in a rat model.

Methods: Rats were subjected to BDL to induce PIM recruitment followed by treatment with
gadolinium chloride (GC) to deplete PIMs. Normal and BDL rats were treated intravenously with
E. coli lipopolysaccharide (LPS) with or without GC pre-treatment followed by collection and
analyses of lungs for histopathology, electron microscopy and cytokine quantification.

Results: BDL rats recruited PIMs without any change in the expression of IL- 1§, TNF-a and IL-10.
GC caused reduction in PIMs at 48 hours post-treatment (P < 0.05). BDL rats treated intravenously
with E. coli LPS died within 3 hours of the challenge while the normal LPS-treated rats were
euthanized at 6 hours after the LPS treatment. GC treatment of rats 6 hours or 48 hours before
LPS challenge resulted in 80% (1/5) and 100% (0/5) survival, respectively, at 6 hours post-LPS
treatment. Lungs from BDL+LPS rats showed large areas of perivascular hemorrhages compared
to those pre-treated with GC. Concentrations of IL-13, TNF-a and IL-10 were increased in lungs
of BDL+LPS rats compared to BDL rats treated with GC 48 hours but not 6 hours before LPS (P
< 0.05).

Conclusion: We conclude that PIMs increase susceptibility for LPS-induced lung injury and
mortality in this model, which is blocked by a reduction in their numbers or their inactivation.

Background and portal hypertension, has no treatment and causes sig-
Bile duct ligated (BDL) rats show biliary cirrhosis and are  nificant mortality [1,2]. BDL rats have increased vascular
used as a model to study hepato-pulmonary syndrome  translocation of Gram negative bacteria, increased blood
which occurs in 10-15% of human patients with cirrhosis ~ levels of TNF-a, endothelin-1 and endotoxins as well as
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recruitment of PIMs [3,4]. PIMs have been linked to an
increase in TNF-a expression and iNOS activity in BDL
rats [2,3]. Although a relationship between PIMs and sen-
sitivity of BDL rats to endotoxin-induced mortality has
been speculated [5], a direct link between the two is yet to
emerge.

PIMs are unique inflammatory cells, which are normally
present in sheep, cattle, goat and horse but not in
humans, dogs, rats and mice [6,7]. The species without
PIMs, compared to those with PIMs, tolerate large dosages
of endotoxin without showing significant pulmonary vas-
cular responses, inflammation and edema [8-11]. The
PIMs are credited with removal of majority of blood-
borne endotoxins and bacteria even following injection in
hepatic portal vein [12]. We and others have shown that
removal of PIMs with gadolinium chloride or clodronate
inhibits endotoxin-induced lung inflammation|[13,14].
Interestingly, PIM recruitment is observed in species nor-
mally devoid of these cells under experimental physiolog-
ical stresses such as liver injury induced by chronic BDL
and intraperitoneal infection with E. coli [5,15,16].
Although the biology of recruited PIMs is poorly under-
stood, PIM recruitment may increase host susceptibility
for lung inflammation [15].

The role of recruited PIMs in endotoxin-induced inflam-
mation in BDL rats, which are used as a model for hepat-
opulmonary syndrome, is largely obscure. Therefore, we
investigated the biology of PIMs in BDL rats with an aim
to determine if PIM depletion protects against endotoxin-
induced mortality and lung inflammation. The experi-
mental data show that BDL induces recruitment of PIMs
and their depletion or inactivation protects BDL rats from
E. coli LPS induced lung inflammation and mortality.

Materials and methods

Animals

The experimental protocols were approved by the Univer-
sity Protocol Review Committee on Animal Care and Sup-
ply, and experiments were conducted according to the
Canadian Council on Animal Care Guidelines. Specific
pathogen free 350-400 gram male Sprague-Dawley rats
were procured from Charles River Laboratories, Canada.
Rats were acclimatized for a period of one week before the
experiment.

Experiment |

BDL was performed on rats as previously described [1,5].
Briefly, rats were anesthetized by intraperitoneal adminis-
tration of xylazine (20 mg/kg) and ketamine (100 mg/kg).
A mid line incision was made, the common bile duct was
identified and ligated at two points 5 mm apart and
resected in between the two ligatures (N = 10). In sham
operated animals (N = 4), the common bile duct was
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identified and separated from the surrounding soft tissue
without ligation and resection. After recovery from
anesthesia, rats had free access to water and rat chow. After
4 weeks, five of the BDL rats were treated with gadolinium
chloride (GC;10 mg/kg tail vein) and remaining five were
used as BDL controls. The rats were euthanized 48 hours
after the GC treatment under xylazine-ketamine anesthe-
sia and cardiac exsanguation. Five rats were euthanized
without any surgery or treatment.

Experiment 2

Control and BDL (4 weeks after the surgery) rats (n = 6/
group) were administered E. coli lipopolysaccharide (LPS)
intravenously (0.1 mg/kg iv). In another group, 10 BDL
rats were administered GC (10 mg/kg i.v) and were chal-
lenged with E. coli LPS either 6 hours (N = 5) or 48 hours
(n = 5) after GC treatment. All animals were euthanized 6
hours after the LPS treatment.

Lung tissue collection and processing

Lungs were collected as previously described [15]. The
right bronchus was ligated followed by right lung removal
and freezing in liquid nitrogen. The left lung was instilled
with 2% paraformaldehyde with 0.1% glutaraldehyde
under 20 cm water pressure and ligated at the level of the
trachea to prevent backflow. The ligated left lung was
removed and fixed in 4% paraformaldehyde for 24 hours.
Following fixation, the lung was cut into several pieces of
3 mm thickness. From each lung, pieces numbered 2, 4
and 6 were collected for light microscopy. Tissues col-
lected for light microscopy were processed and embedded
in paraffin. Sections (five micron) were cut onto the poly-
L-Lysine coated slides and used for hematoxylin and eosin
staining and immunostaining.

Pieces of the left lung were fixed in 2% paraformaldehyde
containing 0.1% glutaraldehyde for 3 hours at 4°C and
processed for embedding in LR White followed by polym-
erization under ultraviolet light for immuno-electron
microscopy. One micron sections were prepared and
stained with toluidine blue to select appropriate areas for
preparation of thin (100 nm) sections, which were placed
on nickel grids.

Immunohistochemistry for monocytes/macrophages

Immunohistochemical methods have been described pre-
viously [15]. Briefly, lung sections from all the rats in each
of the groups were deparaffinized and rehydrated fol-
lowed by quenching of endogenous peroxidase. Sections
were treated with pepsin (2 mg/ml 0.01 N hydrochloric
acid) to unmask antigens, to 1% bovine serum albumin to
block non-specific sites and to primary anti-macrophage
ED-1 antibody (1:100) for 60 minutes followed by appro-
priate horseradish peroxidase-conjugated secondary anti-
body (1:100) for 30 minutes. The color was developed

Page 2 of 11

(page number not for citation purposes)



Respiratory Research 2008, 9:69

with a commercial kit (Vector Laboratories, Canada). The
staining controls included incubation of sections with
only secondary antibody, isotype matched antibodies or
with only color development reagents. Another control
was to stain some of the sections with anti-von Wille-
brand Factor (vWF) antibody (1:200), which recognizes
vascular endothelium. Finally, sections were counter-
stained with methyl green.

Quantification of ED-1 positive cells

The methods have been described previously [15]. An
observer, who was blinded to the identity of treatment
groups, counted the ED-1 positive cells in alveolar septa.
The observer obtained counts of septal cells stained with
ED-1 antibody from 10 fields at X100 in lung sections
from all the rats used in the experiments.

Immuno-gold electronmicroscopy

Immuno-gold electron microscopy methods have been
described elsewhere [15]. Briefly, the sections were
blocked with 1% bovine serum albumin and 0.1% Tween-
20 in tris-buffered saline; pH 7.9 for 30 minutes followed
by incubation with primary (ED-1, TNF-a, IL-1B and IL-
10) antibodies for one hour and appropriate gold conju-
gated secondary antibodies for one hour. The sections
were stained with 2% aqueous uranyal acetate and then
lead citrate.

Reverse transcriptase-polymerase chain reaction

Total RNA was extracted from lungs of three rats from
each group tissues of rat by sequential extraction with TRI-
zol reagent (Invitrogen, ON, Canada) followed by treat-
ment with RNase-free DNase (Qiagen, ON, Canada) and
purification on RNeasy mini columns (Qiagen) according
to the manufacturer's instructions. Integrity of RNA was
confirmed by agarose gel electrophoresis and RNA was
quantified by spectrophotometric analysis. Superscript I11
one-step RT-PCR system with Platinum Tag DNA
polymerase (Invitrogen) was used to detect expression of
IL-1B: 5'-TTGCCCGTGGAGCITC-3' 5'-CGGGITCCAT-
GGTG AAC-3'), TNF-a: 5'-GCACAGAAAGCATGATCC-3'
5'-GTGGGTGAGGAGCACAT-3') and IL-10 (5'-GCT-
GCGACGCTGTCAT-3' 5'-GCGCTGAG CTGTTGCT-3') in
lung tissues from various treatments. Reactions were per-
formed as directed by the manufacturer. Each reaction was
performed using 10 ng of total RNA and thermocycler was
programmed for reverse-transcription at 55°C for 30 min,
initial denaturation of the cDNA at 94°C for 2 min, 30
amplification cycles, each of which consisted of 94°C for
15 sec, 59°C for 30 sec, and 68°C for 1 min followed by
a final extension at 68 °C for 5 min. To ensure lack of DNA
contamination 2 units of Platinum Taq DNA polymerase
was substituted for the Superscript III RT/Platinum Taq
mixture in the reaction. A negative control reaction con-
sisted of all the components of the reaction mixture except
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RNA. Amplified PCR products were electrophoresed on a
1 % TAE-agarose gel, stained with ethidium bromide and
photographed under UV light.

Myeloperoxidase assay

Myeloperoxidase (MPO) assay was performed on lung tis-
sues from three rats from each group as described previ-
ously [17]. Briefly, Lung tissues were homogenized in 50
mM Hepes (pH 8.0) containing 0.5% CTAC and cell-free
extract was stored at -20°C till further use. Samples were
diluted in phosphate citrate buffer (pH 5.0). To the 75 pl
sample, equal volume of the substrate (977.5 pl/mL of
TMB, 20.0 pl/mL of 6 mM Resorcinol and 2.5 pl/mL of
3% H,0,) was added and after 2 minutes, the reaction
was stopped by adding 150 pl of stop solution (1 M
H,SO,). For zero minutes, 75 pl of sample was added to
150 pl of cold stop solution containing 75 pl of substrate.
Microplate was read at 450 nm and the change in OD/min
was calculated.

Enzyme-linked immunosorbent assay

For enzyme-linked immunosorbent assay (ELISA), frozen
lung tissues from three rats from each group were homog-
enized in HBSS solution containing protease inhibitor
cocktail and centrifuged at 4 °C for 20 minutes at 15000 g.
Supernatants were collected and stored at -80°C till fur-
ther use. Microtitre plates were coated with 50 ul of cap-
ture antibody diluted with sodium phosphate buffer and
incubated at 4 °C overnight. Next day, following wash and
incubation with blocking buffer (1% BSA in PBS) for one
hour, wells were washed with PBST (PBS containing
0.05%Tween-20). Standards and samples (100:1; diluted
in PBST containing 1% BSA) were added to the wells and
plate was incubated at 37°C for 2 hours. After removing
standards and samples, wells were washed with PBST and
detection antibody (100:1; diluted in PBS containing 1%
BSA) was added. Plates were incubated at 37°C for one
hour. After washing wells with PBST, streptavidin-HRP
(100:1; 1:2500 in PBS containing 1% BSA) was added to
each well and incubated at room temperature for 30 min-
utes. Wells were washed thoroughly with PBST, TMB sub-
strate (100:1) was added and incubated in dark at room
temperature for 20 minutes. On color development, reac-
tion was stopped by adding 50:1 of 0.5 M sulfuric acid.
Microplates were read at 450 nm.

Statistical analysis

Analysis was done using a statistical software package
(SPSS 12.0 for windows). Differences among groups were
compared using one-way analysis of variance followed
post-hoc group comparisons. Mortality data were com-
pared with Fischer's test. Statistical significance was
accepted at p < 0.05.
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Results

Effect of BDL

Response to BDL

Rats became dull and inactive within two days of ligation
of their bile ducts. Their food and water intake decreased
and all rats lost up to 50-100 grams of weight over one
week after the surgery. Although rats started eating and
drinking normally and regained their body weights by 4
weeks after BDL, their urine and mucous membranes
became progressively icteric. Nearly four weeks post-BDL,
a swelling was evident upon palpation in the anterior
abdomen of most of the rats as a result of proximal dila-
tation of ligated bile duct. Sham operated rats continued
to grow normally even after surgery.

PIM recruitment

Histologic examination showed normal lung morphology
in control rats (no surgery) and sham-operated rats and
increased numbers of mononuclear cells in the alveolar
septa (data not shown). Immunohistochemistry with ED-
1 antibody, which recognizes rat monocytes/macro-
phages, stained numerous septal monocytes/macro-
phages in lungs of BDL rats compared to the normal rats
(Figures 1A-D). Immuno-electron microscopy confirmed
the intravascular location, adherence to endothelium and
ED-1 reactivity of septal macrophages (Figure 1E). Once
the intravascular location of ED-1 positive cells was deter-
mined with immuno-electron microscopy, we counted
these cells in lung sections under a light microscope. BDL
rats showed more ED-1 positive cells in their alveolar
septa compared to control rats (p = 0.002). GC treatment
of BDL rats depleted ED-1 positive cells (p = 0.05) (Figure
2).

Expression of IL-1 5, TNF-cx and IL-10

We detected mRNA for IL-18, TNF-a and IL-10 in lung
homogenates from rats from control, BDL and BDL+GC
group. There were no differences in protein concentra-
tions of these three cytokines in lungs of rats from three
groups (data not shown).

Recruited PIMs, lung inflammation and mortality

Response to LPS challenge

Sham-operated rats did not show signs of stress following
LPS treatment and were euthanised at 6 hours post-LPS
treatment (Table 1). In contrast, all of the BDL rats (N =
6) upon challenge with LPS became dull and inactive,
showed labored breathing, piloerection, defecation and
urination before dying within 3 hours of the treatment.
Interestingly, all the BDL rats (N = 5) that were treated
with GC 48 hours before the LPS challenge survived till 6
hours after the LPS treatment. Furthermore, 4 out of the 5
BDL rats treated with GC 6 hours prior to the LPS chal-
lenge survived up to 6 hours post-LPS treatment. The mor-
tality in BDL+LPS group was significantly higher (P <
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PIM recruitment: Lung section stained with only sec-
ondary antibody (A) show no reaction while anti-
VWEF antibody stained vascular endothelium (arrow).
Lung sections from control rats (C) contained occasional
septal ED | -positive cells (arrow) while those from BDL rats
had numerous reactive cells in the septa (arrows). Immuno-
electron micrograph (E) shows gold labeling (arrows) in the
cytoplasm as an indication of ED-1 staining in a PIM. En:
Endthelium; PIM: pulmonary intravascualr macrophage; L: lys-
osome. Bar: A-B: 50 um; C-D: 100 pum; E: | pum.
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Mean number of ED-1 positive cells per HFF

Control BDL BODL+GC

Figure 2
Numerical counts of PIMs: Septal ED-1 positive cells showed increase in PIMs in BDL rats compared to the
normal rats or at 48 hours after GC treatment of BDL rats (*: P < 0.05).

Table I: Mortality in rats (* = P < 0.05 compared to all other groups).

Experimental group Number of animals Mortality within 6 hrs of LPS challenge
Number of rats %
LPS N=5 0 0
BDL+LPS N=6 6* 100
BDL+GC(6H)+LPS N=5 | 20
BDL+GC(48H)+LPS N=5 0 0
Page 5 of 11
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0.05) compared to all other groups while there were no
differences between BDL rats treated with GC before the
LPS challenge, the control rats and control rats given only
LPS (P > 0.05).

Histopathology, neutrophil and PIM recruitment

We observed perivascular hemorrhages in BDL rats treated
with LPS compared to those BDL rats treated with GC
prior to LPS treatment (Figure 3). Interestingly, MPO
assay showed no differences in neutrophil recruitment in
lungs among various treatment groups (data not shown).
We found significantly more ED-1 positive cells in
BDL+LPS rats compared to all other groups including
those BDL rats treated with GC before LPS challenge (P <
0.05; Figure 4).

Expression of IL-1 3, TNF-a and IL-10

BDL rats challenged with LPS had significantly higher
concentrations (P < 0.05) of IL-1p (Figure 5A), TNF-a
(Figure 5B) and IL-10 (Figure 5C) in their lungs compared
with the control rats, normal rats given only LPS and BDL
rats treated with GC 48 hours but not 6 hours before the
LPS treatment. Control rats and normal rats treated with
LPS had similar lung concentrations of IL-10 (Figure 5C).
Immuno-gold electron microscopy showed labeling of
PIMs for TNF-o (Figure 6), IL-1B and IL-10 (data not
shown).

Discussion

There is relatively little data on the biology of PIMs com-
pared to other lung macrophages. We have used BDL rats,
which recruit PIMs and have been used by others as a
model of hepato-pulmonary syndrome, to investigate the
role of PIMs in endotoxin-induced mortality and lung
inflammation. The data show that PIM depletion as well
as inactivation prevents mortality and lung inflammation
in LPS-treated BDL rats.

GC reduces the numbers of recruited PIMs in BDL rats

BDL rats have been used to study the biology of PIMs as
well as the mechanisms of hepato-pulmonary syndrome
in human patients with liver cirrhosis [4,5,18,19]. Similar
to previous studies, we also found recruitment of ED-1
positive PIMs in BDL rats. ED-1 antibody binds to a single
chain 110 kD glycoprotein expressed in lysosomes of
monocytes/macrophages. Due to spatial resolution limits
of the light microscope, we used electron microscopy to
confirm that ED-1 reactive cells were in septal capillaries,
attached to the endothelium and contained lysosomes.
Therefore, these cells fulfill ultrastructural and molecular
phenotypic criteria for PIMs [6,20]. Recruited PIMs in
BDL rats form tighter adhesion with capillary endothe-
lium compared to the transiently recruited PIMs following
intraperitoneal E. coli infection [15,16,21]. We observed
that GC significantly reduced PIM numbers in BDL rats
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Figure 3

Histopathology of lungs: H&E staining showed nor-
mal histology of lungs from control rats (A) but hem-
orrhages in perivascular space (*) in lungs of BDL
rats treated with LPS (B). Perivascular hemorrhage was
absent in lungs of control (A) and BDL rats treated with GC
before LPS challenge (C). BR: Bronchiole; BV: Blood vessel.
Bar: 100 pm.
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PIM quantification: BDL rats treated with LPS showed more numbers of PIMs (¥¥) compared to all other
groups while both GC-treated BDL groups had higher number of PIMs (+) compared to the control and the

LPS groups (P < 0.05).

without affecting expression of IL-1f, TNF-a and IL-10.
GC quickly inactivates macrophages before inducing
apoptosis in them [22,23] and has been used to remove
PIMs in vivo in sheep, cattle and horses and alveolar mac-
rophages in mice and rat, [11,14,24-26]. Interestingly,
histologic evaluation showed lack of reduction in macro-
phages in liver of GC-treated animals. This relative lack of
impact of GC on liver cells including macrophages could
be due to sequestration of GC, similar to other vascular
substances such as endotoxins as shown previously, in
PIMs and little availability for liver macrophages in PIM-
containing species [12]. Taken together, these light and
electron microscopic data confirm identity of PIMs, and a
reduction in their numbers with GC treatment in BDL rats
provides us a model to compare host response in BDL rats
in the absence or presence of PIMs.

PIM reduction protects against LPS-induced mortality in
BDL rats

We delineated role of PIMs by comparing LPS-induced
lung inflammation and mortality in BDL rats and GC-
treated BDL rats. The dramatic finding was 100% and
80% survival in BDL rats that were treated with GC 48
hours and 6 hours, respectively, prior to the LPS challenge
compared to 100% mortality in LPS-treated BDL rats. In

addition to the reduced mortality, there was a reduction in
the severity of histological signs of inflammation includ-
ing recruitment of ED-1 positive cells in the BDL rats
treated with GC before the LPS treatment. Although mor-
tality in LPS-treated BDL rats was similar to that previ-
ously reported [5], the striking impact of reduction in PIM
numbers at 48 hours post-GC treatment on the mortality
in BDL rats is novel. The reduced mortality observed in
BDL rats treated with GC 6 hours before the LPS challenge
is intriguing. In vitro data show that GC rapidly inacti-
vates macrophages before inducing apoptosis in them by
24-48 hours [22,23]. Although it is difficult to determine
inactivating effects of GC on PIMs in vivo, we speculate
that improved survival in the 6 hour group may be due to
inactivation of PIMs by the GC. Taken together, the evi-
dence that PIM depletion or inactivation protects against
LPS-induced mortality shows PIMs' central role in mortal-
ity in this model.

We used the LPS treatment because there is evidence of
translocation of endotoxins from the gut of BDL rats,
which have been used as a model for hepato-pulmonary
syndrome by other investigators [3,4]. Endotoxin-
induced inflammation and shock is characterized by a
"cytokine storm" [27]. Macrophages interact with endo-
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Figure 5

Cytokine expression: IL-13 (A) TNF-a (B) and IL-10 (C) protein concentrations in lung homogenates of various
groups. BDL rats treated with LPS showed higher concentrations (**) of all the measured cytokines compared to all other
groups. * indicates more concentrations than the control and the LPS group while * means more than the control rats. P <
0.05.
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Figure 6

Ultrastructural localization of TNF-a: Immuno-gold electron microscopy showed TNF-a labeling (arrows) in
cytoplasm of a pulmonary intravascular macrophage (PIM) and endothelium (En). L: Lysomse; AS: Alveolar space.
Bar: | pum.
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toxins via Toll-like receptor 4 and are one of the major
sources of proinflammatory cytokines in endotoxic shock
[28-30]. Therefore, we believe that transient reduction of
a major cellular source of multiple cytokines such as a PIM
instead of neutralization of a single cytokine in a disease
is more beneficial and more rational. The role of recruited
PIMs is indirectly highlighted by the recent linkage
between susceptibility to diseases such as hepatopulmo-
nary syndrome, for which BDL rats used as a model, and
the MCP-1 gene [31]. We observed increased expression
of MCP-1 protein in lungs of BDL rats (unpublished
data). Even though PIM reduction/inactivation had bene-
ficial effect in LPS-treated BDL rats and in itself is mecha-
nistic, we further examined the lung concentrations of IL-
1B, TNF-a and IL-10. These three inflammatory cytokines
play critical roles in endotoxin-induced pathophysiology
[32-38] First, we observed ultrastructural localization of
IL-1B, TNF-a and IL-10 in PIMs in LPS-treated BDL rats.
Second, we found a significant reduction in the concentra-
tions of these important and highly relevant cytokines in
PIM-depleted LPS-treated BDL rats compared to LPS-
treated BDL rats, which could be a reason for 100% sur-
vival in these rats. Although mortality was also signifi-
cantly attenuated in the 6 hour pre-treatment group, there
was no reduction in the concentrations of the measured
cytokines in lung homogenates. The reasons for this dis-
crepancy between cytokine levels in the lung and reduced
mortality are not readily apparent. Based on the GC's pre-
viously demonstrated ability to inactivate macrophages,
we speculate that GC-induced PIM inactivation may have
prevented secretion of these cytokines and resulted in
intracellular retention leading to their measurements with
ELISA on lung homogenates. Another reason for reduced
mortality in GC-treated BDL rats challenged with LPS may
be attenuation of massive perivascular hemorrhages
observed in BDL rats challenged with LPS. An intriguing
observation was lack of effect of GC treatment on neu-
trophil recruitment indicated by similar MPO levels in
lung homogenates of various groups. Although neu-
trophils have been linked to increased inflammation, tis-
sue damage and mortality, the cytokines such as IL-1f can
directly induce shock and mortality [32,39]. We do
believe that additional experiments focusing on the role
of individual cytokine such as IL-18 and TNF-a through
their blockade or the use of specific gene knockout mice
will shed more light on the mechanisms of this inflamma-
tory process. Taken together, these data show that PIM
depletion leading to reduced concentrations or intracellu-
lar retention of IL-1f, TNF-a and IL-10 results in the ben-
eficial effects.

These new data demonstrate a critical role of recruited
PIMs in endotoxin-induced mortality in a BDL rats. It is
striking that depletion of a single inflammatory cell
results in remarkable reduction in key inflammatory
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cytokines, inhibition of lung inflammation and mortality.
Although significant effort is invested in therapeutic tar-
geting of single cytokines, these data show the attraction
of therapeutic targeting of a cell such as PIMs.
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