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Abstract
Case-control studies of unrelated subjects are now widely used to study the role of genetic
susceptibility and gene-environment interactions in the etiology of complex diseases. Exploiting
an assumption of gene-environment independence, and treating the distribution of the
environmental exposures to be completely nonparametric, Chatterjee and Carroll (2005) recently
developed an efficient retrospective maximum-likelihood method for analysis of case-control
studies. In this article, we develop an extension of the retrospective maximum-likelihood approach
to studies where genetic information may be missing on some study subjects. In particular, special
emphasis is given to haplotype-based studies where missing data arises due to linkage-phase
ambiguity of genotype data. We use a profile likelihood technique and an appropriate EM
algorithm to derive a relatively simple procedure for parameter estimation, with or without a rare
disease assumption, and possibly incorporating information on the marginal probability of the
disease for the underlying population. We also describe two alternative robust approaches that are
less sensitive to the underlying gene-environment independence and Hardy-Weinberg-Equilibrium
assumptions. The performance of the proposed methods are studied using simulation studies in the
context of haplotype-based studies of gene-environment interaction. An application of the
proposed method is illustrated using a case-control study of ovarian cancer designed to study the
interaction between BRCA1/2 mutations and reproductive risk factors in the etiology of ovarian
cancer.
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1 Introduction
Risks of complex diseases, such as cancers, are determined by both genetic and
environmental factors. Advances in human genome research have thus led to epidemiologic
investigations not only of the effects of genes alone, but also of their effects in combination
with environmental exposures. The case-control study design, which has been widely used
in classical questionnaire based epidemiologic studies, is now being increasingly used to
study the role of genes and gene-environment interactions in the etiology of complex
diseases.
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The traditional approach for analysis of case-control studies is prospective logistic
regression. Here the basis of inference is formed by the likelihood of the disease (D)
outcome data conditional on covariate information (X) ignoring the fact that under the case-
control sampling design data are observed on X conditional on D. Andersen (1970) and
Prentice and Pyke (1979) showed that such a prospective approach is actually equivalent to
the retrospective maximum likelihood analysis that properly accounts for the case-control
sampling design, provided that the distribution of the covariates are treated completely
nonparametrically. Roeder et al. (1996) generalized these results to show that even in the
presence of covariate missing data or/and measurement error, the prospective and
retrospective maximum-likelihood methods for analyzing case-control studies are equivalent
as long as the underlying model for the covariate distribution is nonparametric.

In studies of genetic epidemiology, it often may be reasonable to assume certain parametric
or semi-parametric models for the covariate distribution in the underlying source population.
For example, if G represents one of the three possible genotypes a subject can have at a
particular bi-allelic locus, the population frequencies of the three genotypes could be
specified in terms of the allele frequency of one of the alleles under the Hardy-Weinberg
Equilibrium (HWE) assumption. Another assumption that is commonly invoked in practice
is that genetic susceptibility and environmental exposures are independently distributed in
the population. The prospective logistic regression analysis, being the semiparametric
maximum likelihood solution for the problem that allows an arbitrary covariate distribution,
clearly remains a valid option for analyzing case-control studies in such setting. However,
retrospective methods that can exploit these various covariate distributional assumptions can
be more efficient (Epstein and Satten, 2003; Satten and Epstein, 2004; Chatterjee and
Carroll, 2005).

Chatterjee and Carroll (2005) developed a retrospective maximum-likelihood approach for
analysis of case-control studies exploiting the gene-environment independence and possibly
the HWE assumption. In this article, we extend this approach for dealing with missing data
on genetic risk factors (G). Missing data on genetic factors could arise due to incomplete
genotyping information. Moreover, in haplotype-based studies, where the effect of a gene is
studied in terms of ‘haplotypes’, the combination of alleles at multiple loci along individual
chromosome, missing data arises due to intrinsic “phase ambiguity” of the locus-specific
genotype data. For example, if A/a and B/b denote the major/minor alleles in two bi-allelic
loci, then subjects with genotypes (Aa) and (Bb) at the first and the second locus,
respectively, are considered “phase ambiguous”: their genotypes could arise from either the
haplotype-pair (A-B,a-b) or the haplotype-pair (A-b, a-B).

As haplotype-based association studies are becoming increasingly popular, a number of
researchers have developed methods for logistic regression analysis of case-control studies
in the presence of phase ambiguity. Zhao et al. (2003) described an estimating-equation
approach where the logistic regression parameters are estimated based on score-equations
derived from a prospective likelihood of the disease outcome data given covariates. The
estimates of the haplotype frequencies, which are required for evaluation of the prospective
score-equations, were proposed to be estimated using an EM algorithm (Excoffier and
Slatkin, 1995) applied to the genotype data of the controls. Lake et al (2003) described a
similar prospective approach, except that they proposed estimating the haplotype-
frequencies jointly with the regression parameters from the prospective likelihood itself.
Incorporation of environmental factors is straightforward in these approaches under the
assumption of gene-environment independence.

Epstein and Satten (2003) described an alternative approach for haplotype-based analysis of
case-control studies that jointly estimates the regression parameters and haplotype-
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frequencies by maximizing the proper retrospective likelihood of the data under the case-
control sampling design. The authors observed that the retrospective likelihood approach
yielded more efficient estimates of the regression parameters than the previously proposed
prospective methods, a consequence of the fact that the former approach fully exploited the
HWE assumption for the underlying population. Incorporation of environmental factors,
however, is complicated in this approach because the retrospective likelihood involves
potentially high dimensional nuisance parameters that specify the distribution of the
environmental factors in the underlying population. Stram et al (2003) described yet another
approach based on the joint likelihood of the disease and genotype data, after accounting for
the ascertainment scheme that cases and control are selected with differential probabilities
from the underlying population. We will show later that an extension of this ascertainment-
corrected-joint-likelihood method, which can incorporate environmental covariates, is
equivalent to the retrospective-maximum likelihood method we propose in this article.

In this article, we extend the profile likelihood approach of Chatterjee and Carroll (2005) to
develop a relatively simple algorithm for obtaining the efficient retrospective maximum-
likelihood estimator for case-control studies that can incorporate both genetic and
environmental factors and can account for the presence of missing data in the genetic
factors. In Section 2, we first describe the key results for derivation of the profile likelihood
and related asymptotic theory in a general missing data setting. In Section 3.1 we describe a
representation of the profile likelihood that links the retrospective-maximum-likelihood
procedure to the ascertainment-corrected joint likelihood approach of Stram et al. (2003). In
Sections 3.2–3.3, we describe a computational algorithm for implementation of the profile
likelihood method in the context of haplotype-based gene-environment interaction studies.
Further simplification of the proposed methodologies under the rare disease assumption is
also described.

In Section 3.4, we describe extension of the methods to account for possible correlation
between genetic and environmental factors that may arise due to their dependence on other
common factors, such as ethnicity. In Section 3.5, we describe a modified prospective
estimating equation approach that is fairly robust to violation of the gene-environment
independence and HWE assumptions. We discuss how this latter approach contrasts with
some of the recently proposed “prospective” method that could be inconsistent under the
case-control design, even if the true haplotype-frequencies were known and the model
assumptions were valid. In Section 4, we study the performance of the proposed estimators
using simulated data in the context of gene-environment interaction studies involving
haplotypes. In Section 5, we illustrate the application of the proposed method based on a
case-control study of ovarian cancer aiming to study the interaction of reproductive risk
factors and BRCA1/2 mutation.

2 Methods: The General Setting
2.1 Notations and model assumptions

Let D be the binary indicator of the presence, D = 1, or the absence, D = 0, of a disease.
Suppose the prospective risk model for the disease given a subject’s genetic covariate of
interest, H, and environmental risk factors, X, is given by the logistic regression model pr(D
= 1|H, X) = ℒ{β0 + m(H, X; β1)} is the logistic, where ℒ(u) = {1 + exp(−u)}−1 distribution
function and m(·) is a known but arbitrary function. We assume H and X are independently
distributed in the underlying population and their joint distribution is given by the product
form V (H, X) = Q(H)F(X), where Q and F are the marginal distribution functions of H and
X, respectively. We assume H is discrete with pr(H = Hj) = q(Hj; θ) where q(·) is a known
function and θ is a vector of parameters. The environmental covariates X can be of arbitrary
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type, possibly including both continuous and discrete components. The corresponding
distribution F(x) is left completely unspecified.

Suppose that the true genetic covariate of interest, H, may not be always directly observed.
Let G denote all the genetic information for a subject that is directly observed. We assume
that G is independent of (D, X) given H, i.e., G does not contain any additional information
on D and X given H. Let Δ be a variable whose values indicate what sort of genetic
information is measured in G. For example, in a haplotype-based study, we could have

Suppose that N0 controls and N1 cases are sampled from the conditional distributions pr(Δ,

G, X|D = 1) and pr(Δ, G, X|D = 0), respectively, and let  denote the
corresponding covariate data of the N0 + N1 study subjects. We assume pr(Δ|D, X, H) =
pr(Δ|D, X, G), i.e., the type of genetic information measured does not depend upon the
individual’s true genetic covariate (H) given the disease status (D), environmental covariates
(X) and the measured genetic information (G).

Define ℋ to be the set of all possible values of H and ℋG = {hj:hj is consistent with G} to
be the set of all possible values of H that are consistent with the observable genetic
information G. Then,

The log-likelihood of the data under the case-control sampling scheme assuming the above
model is given by

(1)

where

2.2 Identifiability
In a nonparametric setting, where no assumption is made about the form of the covariate
distribution V (h, x), it is well known that neither V (·) nor the intercept parameter β0 is
identifiable from case-control data (Prentice and Pyke, 1979). In contrast, under the
assumption of gene-environment independence, Chatterjee and Carroll (2005) noted that
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except for some boundary situations, the intercept parameter β0 and the covariate
distribution V (·) are identifiable from the retrospective case-control likelihood. In general,
the identifiability of β0 is intrinsically related to the class of V (·) that is under consideration.

In the presence of missing data on H, the identifiability of the parameter estimates also
depends on the nature of missing data and the form of the functions m(H, X, β1) and q(H, θ).
In haplotype-based studies, for example, where H reflects the pair of haplotypes (diplotypes)
a subject carries in two homologous chromosomes, certain diplotypes may never be directly
observable from the unphased genotype data. In such a situation, identifiability of parameter
estimates requires specifying the distribution q(H, θ) using the HWE assumption (see
Section 3) and restricting the model m(H, E, β1) so that it does not involve interaction
between pairs of haplotypes which are never directly observed together. For the subsequent
calculations, we will assume that depending on the missing data structure of H, the model
q(H; θ) and m(H, X, β1) are chosen in such a way that all of the parameters β0, β1, θ and the
nonparametric distribution function F(x) are identifiable from prospective studies. In what
follows, we state easily verifiable conditions for identifiability of parameters of a
prospective model from retrospective studies.

We will assume X to be discrete with K possible values. Although the results we state below
can be expected to hold for continuous X, a rigorous proof would require a more
sophisticated argument. Let q(G) and f(X) denote the marginal probability mass functions for
G and X in the underlying population. Further define

to be the log-odds-ratio of the disease associated with the joint-exposure (G, X) in reference
to a chosen baseline value (G0, X0) and let α = logit{pr(D = 1|G0, X0)}, so that α is the
corresponding baseline odds of the disease. With slight abuse of notation, let f, q and φ
denote the vectors that contain the values of f(X), q(G) and φ(G, X), respectively, for distinct
values of X and G. We note that the parameter vector ϑ = (α, φT, ψT, fT)T completely
characterizes the joint distribution pr(D, G, X). It is clear that φ is identifiable from
retrospective studies because prospective and retrospective odds-ratios are equivalent. In the
following Lemma, we state conditions under which the other components of ϑ are
identifiable from retrospective studies.

Lemma 1—Define α* = α + log[{N1prϑ(D = 0)}/{N0prϑ(D = 1)}]. Let ℬ0 ⊂ ℬ be the
subspace for the parameter vector ϑ that satisfies the constraint

(2)

for some probability mass functions q*(G) and f*(X). Then, for all ϑ ∉ ℬ0,
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if and only if ϑ = ϑ*. Moreover, if the model q(H; θ) and m(H, X, β1) are chosen in such a
way that γ = (β0, β1, θ) are uniquely identifiable from the prospective-likelihood pr(D, G, X),
then for all γ ∉ Γ0 ≡ {γ:ϑ(γ) ∈ Θ0},

if and only if γ = γ*

Lemma 1 first ensures the conditions under which the joint distribution pr(D, G, X) of the
observable variables (D, G, X) can be nonparametrically identified from retrospective
studies. Further, it states the condition under which the parameters β0, β1, θ, that
characterizes the joint distribution pr(D, H, X) involving the potentially unobservable
variable H, can be identified from the retrospective studies. The proof of our Lemma 1
follows from Lemma 1 of Roeder, et al (1996), which states that the V*(G, X) is the only
distribution of (G, X) that can yield the same value of the retrospective-likelihood as the true
distribution V (G, X) = q(G)f(X). Now, for ϑ ∉ ℬ0, V*(G, X) lies outside the model-space
under consideration that assumes G and X are independent. Thus, for ϑ ∉ ℬ0, the
retrospective-likelihood uniquely identifies the joint distribution V (G, X), which together
with the odds-ratio parameters φ(G, X) further identifies the intercept parameter α.

Consider the hypothetical population * that could be obtained by sampling each subject
from the original population  according to a Bernoulli sampling with the selection
probability for the cases and controls being proportional to N1/pr(D = 1) and N0/pr(D = 1). A
case-control sample from the population  can be viewed as a random sample from the
population *. Moreover, with some algebra it can be seen that V*(G, X) represents the
distribution of (G, X) for the selected population *. Thus the constraint (2) can be checked
in the data by testing for independence of G and X in the combined case-control sample. The
boundary condition (2) implies that if G and X are assumed to be independently distributed
in the underlying population, then the departure of the distribution of (G, X) in the case-
control sample from independence is informative for estimation of V (G, X) and α. Similarly,
if certain parametric models, such as HWE, are assumed to hold for q(G) in the underlying
population, then the departure of the distribution of G in the case-control sample from the
assumed parametric models is informative for estimation of q(G) and α.

2.3 Estimation
Now we consider maximization of L with respect to the underlying parameters of the
model,β0, β1, θ, and the nonparametric distribution function F(x). We consider the restricted
nonparametric maximum likelihood estimator of F that allows positive masses only within
the set  = {x1, …, xK} that represents the unique values of X that are observed in the case-
control sample of N = N0 + N1 study subjects. Thus, for obtaining the maximum likelihood
estimator it is sufficient to consider the class of discrete F that have support points within
the set . Any F in this class can be parameterized with respect to the probability masses
{δ1, …, δK} that it assigns to the points {x1, …, xK}.

Since the dimension of δ could easily becomes very large when X consists of multiple
covariates, possibly including continuous ones, direct maximization of the log-likelihood
with respect to (β0, β1, θ, δ) may be complex or even infeasible. Following Chatterjee and
Carroll (2005) we consider deriving the profile likelihood for the lower dimensional
parameters γ = (β0, β1, θ) by maximizing the likelihood with respect to δ for fixed values of
γ. The result in the following lemma shows that the profile likelihood L{γ, δ̂(γ)} can be
obtained in a closed form up to only one additional parameter κ and thus numeric
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maximization of the likelihood L(γ, δ) with respect to the potentially high-dimensional
nuisance parameter δ can be avoided.

Lemma 2—Let κ = β0+log[{N1pr(D = 0)}/{N0pr(D = 1)}], Ω = (γ, κ) and S(D, X, H, Ω) =
q(H, θ) exp[D{κ + m(X, H, β1)}]/[1 + exp{β0 + m(X, H, β1)}]. The profile loglikelihood L{γ,
δ̂(γ)} can be computed as L*{γ, κ ̂(γ)} where

(3)

and κ̂(γ) is defined by the solution of the equation ∂L*(κ, γ)/∂κ = 0 for fixed γ.

The proof of the Lemma is given in the Appendix.

In the above approach, for rare diseases, the estimate of the parameter β0 itself can be
expected to be imprecise because of intrinsic noninformativeness of the retrospective
likelihood. Much more precise estimation of β0 is possible when the marginal probability of
the disease, pr(D = 1) = p1, for the underlying population is known, which is often the case
for case-control studies conducted within a well defined population or an established cohort.
In this case, we observe that κ and β0 are uniquely determined from each other based on the
formula

(4)

Thus the profile-likelihood can be defined in terms of the reduced set of parameters Ω = (β0,
β1, θ). Hereafter, we will use the generic notation Ω so that our results are valid for both the
cases of pr(D = 1) being known and pr(D = 1) being unknown, with the convention that Ω =
(β0, β1, θ) in the former case and Ω = (β0, κ, β1, θ) in the latter case.

The score function is given by  where

and SΩ(Di, Xi, H, Ω) = ∂SΩ(Di, Xi, H, Ω)/∂Ω. Further define I = −N−1E{∂2L*(Ω)/∂Ω∂ΩT},
with the expectation being taken under the case-control sampling design. Let

In the following lemma we state the main asymptotic result, which in turn is used to obtain
estimates of the asymptotic variance-covariance matrix of the parameter estimates.
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Theorem 1—Under suitable regularity conditions, the following results hold:

i.
The estimating equations  have a unique,
consistent sequence of solutions, {Ω ̂}N N≥1;

ii. Moreover, N1/2 (Ω ̂N − Ω0) → Normal(0, Σ) in distribution, with Σ = I−1 − I−1ΛI−1.

3 Haplotype-Based Gene-Environment Studies
3.1 Background, Notation and Model

For haplotype-based studies, the underlying genetic factor (H) of interest for a subject is
defined by “diplotypes”, that is, the two haplotypes the individual carries in his/her pair of
homologous chromosomes, where each “haplotype” is the combination of alleles at the loci
of interest along an individual chromosome within the genomic region of interest. We
denote the diplotype data for subject by Hd = (H1, H2) where H1 and H2 denote the
constituent haplotypes. The diplotype data however, is not directly observable using
standard PCR methods. Instead, for each subject, the multi-locus genotype data G is
observed, which contain information on the pair of alleles the subject carries on the pair of
homologous chromosomes at each locus, but does not provide the “phase information”, that
is which combination of alleles appears along each of the individual chromosomes. Thus,

the same genotype data G could be consistent with multiple diplotypes. We will denote 
to be the set of all possible diplotypes that are consistent with the genotype data G. We
observe that for subjects who carry two copies of the same allele (homozygous genotype) at
all loci or all but one locus, the diplotype information is uniquely identifiable. It is for the
subjects who are heterozygous at two or more loci that the phase remains ambiguous.

Given the diplotype data Hd and environmental covariate X, we assume the risk of the
disease is given by the logistic regression model

Often, one imposes structural assumptions on the risk associated with Hd by modelling its
effect through the constituent haplotypes according to a dominant, additive or recessive
model (Wallenstein, Hodge, and Weston, 1998). Such modelling may be necessary due to
identifiability considerations (Epstein and Satten, 2003). Such modelling may also be
desirable when the effects of the haplotypes themselves are of direct scientific interest. For
example, a logistic regression model which assumes an additive effect for each copy of a
haplotype (additive model) corresponds to

where βX is the main effect of X, βhi is the main effects of haplotypes hi, i = 1, 2 and βhiX is
the interaction effect of X with haplotype hi, i = 1, 2.

We assume that Hd is independent of X in the population. Moreover, we assume that the
distribution of the diplotypes is specified by the Hardy-Weinberg-Equilibrium (HWE)
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(5)

where θi denotes the frequency for haplotype Hi.

In the following, we present an alternative representation of L*that links the retrospective-
maximum-likelihood approach to an extension of the approach of Stram et al. (2003) to
account for environmental covariates. For algebraic convenience we now introduce some
further notations. Define

Consider a sampling scenario where each subject from the underlying population is selected
into the case-control study using a Bernoulli sampling scheme where the selection
probability for a subject given his/her disease status D = d is proportional to μd = Nd/pr(D =
d). Let R = 1 denote the indicator of whether a subject is selected in the case-control sample
under the above Bernoulli sampling scheme. We observe the following probability equalities

(6)

(7)

(8)

and

(9)

With some algebra, one can now show that the log-profile-likelihood given in Lemma 1 can
be expressed in the form
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(10)

When no environmental factors are involved, Stram et al. (2003) proposed analysis of
haplotype-based case-control studies using an “ascertainment corrected joint-likelihood” of
the form Πi pr(Yi, Gi|Ri = 1). The representation of the profile likelihood L* given in (10)
suggests that when F(x) is treated completely nonparametrically, the efficient retrospective
maximum-likelihood estimate of the haplotype frequency and the regression parameters can
be obtained by conditioning on X in the approach of Stram et al (2003).

In the next two sections we develop an algorithm for estimating Ω = (κ, β1, θ) using L*

assuming pr(D = 1) is known. Then we describe modification of the methods required when
pr(D = 1) is unknown.

3.2 Estimation of Haplotype Frequencies
Here, we describe an estimation method for the haplotype-frequency parameters (θ) for
fixed (κ, β). Let Nk(Hd) be the number of copies of haplotype Hk contained in the diplotype
Hd. Note Nk(Hd) could be 0,1 or 2. The value of θ that maximizes L* with the constraints

 will satisfy the equation

The resulting estimating equation can be shown to be

(11)

where ∂log{prθ(H)}/∂θk = Nk(H)/θk and the expectations in the first and second terms are
taken with respect to the distribution pr(Hd|D, G, X, R = 1) (see formula 8) and pr(Hd|X, R =
1) (see formula 9), respectively. Now multiplying the estimating equation (11) by θk,

summing it over k, and using the fact that  we can show that λ = 2N − 2N =
0. Thus, we have shown that the estimating function for θ is given by

(12)

Now we notice that
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This representation suggests the following iterative approach for solving (12) in terms of θ:

(13)

where  is the expected count for the kth

haplotype under the current parameter estimates. We observe that by definition, .

Further, in each iteration we will normalize . Thus, we note that the
estimate of haplotype-frequencies using formula (13) is given by the expected haplotype-
count as a ratio of an “effective sample-size” formula.

3.3 Estimation of β1 and κ
Define β*= (κ, β1). The estimating equation corresponding to ∂L*/∂β* = 0 can be written in
the form (B1) + (B2) + (B3) = 0, where

Let Vβ*(Ω) = (B2) + (B3) We propose to estimate β* by iteratively solving

(14)

We observe that the estimating equations given in (14) are similar to the corresponding
estimating equations for β0 and β1 in a logistic regression model in the presence of missing
data, except that we are equating them to a non-zero term. Because of the similarity with the
parameter estimation in standard logistic regression model, we can get a fairly stable
algorithm for solving these equations.

Unknown pr(D = 1)

We observe that in the calculations given above, the value of pr(D = 1) is only needed to get
an estimate β0 from the estimate of κ. Moreover, the parameter β0 enters into computation
only through the function rΩ(H, X). If we assume rare disease, then we have
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(15)

Thus, if one assumes rare disease, β0 need not be estimated and hence pr(D = 1) need not be
known. Under this rare disease approximation, the proposed retrospective maximum-
likelihood method reduces to that of Epstein and Satten (2003) in the absence of
environmental covariates. If one is not willing to make the rare disease assumption, we
propose to estimate θ, κ and β1 by maximizing L* for fixed values of β0 and then do a one-
dimensional grid-search to find the estimate of β0 that maximizes the profile likelihood
L*(β0, β ̂*(β0), θ ̂(β0)). We have found that the grid-search method performs very well for
unbiased estimation of the odds-ratio parameters (β1) of interest, see Table 2, unknown pr(D
= 1). The estimates of the intercept parameter β0, however, are typically imprecise. Gains in
precision are possible if one places reasonable bounds on pr(D = 1).

3.4 Population Stratification
Although in many situations genetic susceptibility and environmental exposures are unlikely
to be causally related at an individual level, these factors may be correlated at a population
level due to their dependence on other factors. A classic example is “population
stratification” due to ethnicity. Allele frequencies for many genes vary widely across
different races. Moreover, environmental covariates such as life-style or dietary factors also
often have different distributions for people of different races. Thus, although the genetic
and environmental factors may be independently distributed within an ethnic group, there
could be spurious correlation between these factors when ethnicity is ignored. In this
section, we will briefly describe how to generalize our methods to handle such “population
stratification”.

We assume there is a set of co-factors W so that gene-environment independence and HWE
holds conditional on W. We consider a polytomous logistic regression model for specifying
the haplotype-frequencies given W as

for k = 1, …, K, where h0 is a reference haplotype, typically chosen to be the most common
haplotype. We further assume HWE conditional on W, that is,

We also allow W to be potential risk factors for the disease by simply extending the disease-
risk-model to be

Define
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Following previous arguments, the estimating equation for γk that corresponds to
maximization of the profile likelihood L*= ΣiΣ Hd∈ℋGi log{pr(Di, Hd|Xi, Wi, R = 1)} can be
shown to be

(16)

where

(17)

One can get a fairly stable Newton-Raphson or related algorithm for solving (16) by
exploiting the GLM form of (17). Finally, the updating procedures for κ and β1 remain the
same as before, except that throughout we condition on W.

3.5 Alternative Robust Estimation of β
Although exploitation of the gene-environment independence and the HWE assumptions can
lead to major efficiency gains for analysis of case-control studies, we recommend cautious
use of these assumptions, because violation of them can lead to major bias in parameter
estimation (Albert et al., 2001; Satten and Epstein, 2004; Chatterjee and Carroll, 2005). The
gene-environment independence assumption, for example, is likely to be satisfied in a wide
range of studies involving external environmental agents, exposure to which is not directly
controlled by an individual’s own behavior. When an exposure depends on subject’s
individual behavior, on the other hand, the independence assumption could be violated due
to direct or indirect association. Family history of a disease, for example, which is associated
with genetic risk factors, may influence a subject to change his/her behavior regarding
established environmental risk factors such as smoking for lung cancer. In Section 3.3, we
have proposed a possible remedy for accounting for such indirect association between G and
E due to their dependence on other common factors S. There could be also direct
association. Genetic polymorphisms in the smoking metabolism pathway, for example, may
not only modify a subject’s risk from smoking, but may also influence a subject’s degree of
addiction to smoking.

When violation of the HWE or/and the gene-environment independence assumption seems
plausible, it is important to consider alternative methods for analysis of case-control studies
that are less sensitive to these assumptions. In the absence of missing data, it is well known
that the standard prospective logistic regression analysis is such an option because it does
not rely on any assumption on the covariate distribution. In the presence of missing data, a
prospective likelihood-based method that treats the distribution of the cofactors to be
completely nonparametric will be also such a robust option (see e.g. Roeder et al, 1996). For
haplotype-based studies, however, complete nonparametric treatment of the covariate
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distribution may not be possible because of a lack of parameter identifiability. Nevertheless,
when no environmental factors are involved, Satten and Epstein (2004) showed that methods
that estimate the regression parameters from the prospective likelihood of the data are less
sensitive to the violation of the HWE assumption than those based on the true retrospective
likelihood. Following, we point out a problem for use of prospective estimating equation for
analysis of case-control study and propose an appropriate remedy.

For fixed values of the haplotype-frequency parameter θ, the score-equations for the
regression parameters β*= (κ, β1) corresponding to the prospective likelihood of the data is
given by

(18)

We argue in the appendix that this “purely prospective” score-equation (18) is biased under
the case-control sampling design due to the underlying covariate distributional assumptions.
In other words, even if the true haplotype-frequencies were known and the underlying HWE
and gene-environment independence assumptions were valid, the estimator of the regression
parameter β1 based on solving the score-equation (18) is not consistent. We, however, show
that the following simple modification of the prospective score equation is unbiased:

(19)

The only structural difference between the two sets of score-equations is that (19) is
obtained from (18) by replacing q(hd, θ) with rΩ(hd, Xi)q(hd; θ). The unbiasedness of the
modified prospective-score equations under the case-control sampling design is shown in the
appendix. We also show that with an appropriate rare disease approximation, the proposed
method is equivalent to the estimating equation approach proposed by Zhao et al. (2003).
However, we note that the proof of the asymptotic unbiasedness of the estimating equation
approach that is given in Zhao et al (2003) assumes random sampling of subjects and does
not properly account for the case-control sampling design. Thus our derivation justifies the
validity of the procedure of Zhao et al (2003) under the case-control sampling design.
Moreover, it shows how one can avoid the rare disease approximation by using the exact
score-equation (19) itself.

We observe that evaluation of the score-function (19) requires knowing θ and β0. Similar to
Satten and Epstein, we propose estimating θ for fixed value of β*and β0 by maximization of
the retrospective likelihood, the algorithm for which we have described in Section 3.2. As
before, we observe that if pr(D = 1) is known, then β0 could be evaluated as a function of κ
using the relationship (4). If pr(D = 1) is unknown, one can use the rare disease
approximation given in equation (15) so that evaluation of (19) does not require knowing β0.
Alternatively, one can estimate θ and β for fixed values of β0 following above procedures
and then do a one-dimensional grid-search to estimate β0 as the maximizer of the profile
likelihood L*{β0, β ̂*(β0), θ ̂(β0)}. Finally, we observe that the functional form of the right
hand side of the score-equations (19) is equivalent to that of B1, the first of the three terms of
the score-equations corresponding to the retrospective likelihood that are given in Section
3.3. Thus, the proposed prospective estimation method can be implemented with minimal
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modification of the algorithm for the retrospective method and vice versa. A sandwich
variance estimator, that properly accounts for the case-control design, can be also easily
obtained based on estimating equation theory. A general formula for the variance estimator
is given in the Appendix.

4 Simulation Studies
4.1 H and X are Independent

In the first set of simulation studies, we examined the performance of the proposed
retrospective semiparametric maximum-likelihood method in haplotype-based studies of
gene-environment interaction. We simulated data in a setting similar to that of Lake et al
(2003). We considered the first five of the six SNPs listed in Table 1 of Lake et al. The
corresponding haplotypes and their frequencies are listed in Table 1. Given these haplotype
frequencies, we generated diplotypes for each subject under the assumption of Hardy-
Weinberg Equilibrium. Additionally, we generated an environmental covariate for each
subject independent of the subject’s diplotype status, from a lognormal distribution, where
the underlying normal distribution has mean and variance 0 and 1, respectively. The
environmental covariate was truncated above at 10. Given the diplotype status Hd and
environment covariate X, we generated the binary disease status for each subject according
to the model

where N3(Hd) denote the number of copies of h3 contained in Hd and (β0, βX, βH, βHX) =
(−3.5, 0.1, 0.15, 0.20). For each replicate of our simulation, we first generated data for a
large random sample of subjects, which was then treated as the underlying study base for
selection of 1000 cases and 1000 controls. For analysis of each data, we assume only the
unphased genotype data are observed. Further, to examine the influence of missing genotype
data, we deleted genotype information for the 4th and the 5th SNP in a randomly selected
subset of subjects. The proportion of subjects who can have missing genotypes for both of
the SNPs was chosen to be 20% and that of the subjects who can have missing genotypes
only for one but not the other was chosen to be 10% and vice versa.

We analyzed each dataset using the retrospective maximum-likelihood method under the
assumption that Hd and X are independent in the population, with pr(D = 1) being known
and unknown, the algorithms for which are described in Section 3.1–3.3. In the case of pr(D
= 1) being unknown, we used the grid search method for estimation of β0 that we described
earlier. Although we know that there are eight true haplotypes in the underlying population,
for analysis of each data, we allowed all possible 32 haplotypes to arise and let the algorithm
estimate the frequencies of each of the haplotypes separately. For estimation of the
regression parameters (β1), we pooled three rare haplotypes h6, h7, h8 and all of the artificial
haplotypes which may appear in a given data to have non-zero, but small, frequencies. The
performance of the proposed method for estimation of the haplotype-frequency (θ) and the
regression parameters (β) are shown in Table 2. For convenience of presentation, the
frequency estimates are shown for the non-null haplotype H3 which is known to be
associated with the disease, for one null “common” (f = 15%) haplotype and for one null
“rare” (f = 5%) haplotype. The estimates of the regression parameters are shown for the non-
null haplotype (h3), for one “common” haplotype (h2) and for the pooled category of rare
haplotypes.
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Using the results shown in Table 2, we observe that the proposed method performed very
well in estimating both the regression parameters (β) and the haplotype-frequencies (θ). The
proposed standard error estimator also performed very well and the corresponding 95%
confidence intervals had coverage that is very close their nominal values. Estimates of the
interaction parameter βHX for the non-null haplotype h3 were more precise when pr(D = 1)
known than when pr(D = 1) was unknown.

4.2 H are X are independent given S
In the second simulation study, we examined the robustness of alternative methods in a
scenario where the assumptions of gene-environment independence and HWE hold only
within subpopulations. We consider a population comprised of two strata, with frequencies
0.40 (S = 1) and 0.60 (S = 2), which differed in their distribution of both haplotypes and
environmental factors. We assumed a simple scenario involving four haplotypes constructed
from two binary SNPs with the haplotypes {(0, 0), (0, 1), (1, 0), (1, 1)} having frequencies (.
35, .30, .15, .20) and (.35, .20, .30, .15) in strata 1 and 2, respectively. We chose the
frequencies for the larger stratum (stratum 2) to correspond to the haplotypes defined by the
3rd and the 4th SNP listed in Table 1. The values of , a popular measure for haplotypes-
phase uncertainty (Stram et al, 2003), for the haplotypes {(0, 0), (0, 1), (1, 0), (1, 1)} were
(0.88, 0.87, 0.79, 0.83) for stratum 1 and were (0.88, 0.83, 0.87, 0.78) for stratum 2. Thus, in
this setting, the degree of phase-uncertainty was modest, but not negligible.

We generated the environmental covariate from a lognormal distribution with the mean and
variance for the underlying normal distribution to be .67 and 1 for stratum 1 and 0 and 1 for
stratum 2. Again, we truncated the environmental exposure above at 10 for both strata.
Additionally, we assumed that the stratification variable, S, is a risk factor for disease. In
particular, the disease status for each subject was generated according to the model

where N2(Hd) denotes the number of copies of h2 = (0, 1) contained in Hd and where the
parameters (β0, βX, βH, βHX, βS, βHS) = (−3.5, 0.1, 0.15, 0.20, 0.69, 1.10). For each replicate
of our simulation, we first generated data for a large random sample of subjects, which was
then treated as the underlying study base for selection of 1000 cases and 1000 controls.

During analysis of each data set, as before, we assumed only that the locus-specific
genotype data were available, but the phase information was unknown. Each data set was
analyzed using (a) the retrospective maximum-likelihood method under the assumption that
Hd and (X, S) are independently distributed in the population; (b) the retrospective
maximum-likelihood method under the assumption that Hd and X are independent
conditional on S (see Section 3.4) and (c) using the modified prospective estimating
equation method (see Section 3.5). We assumed pr(D = 1) to be known for this set of
simulations.

The results shown in Table 3 suggest the following important observations. First, when the
true model assumed that Hd and X are independent conditional on S, but we analyzed the
data as though Hd and (X, S) are independent in the entire population, we induced substantial
bias in estimating the parameters βH,βS, and βHS. Neither the prospective method nor the
method which accounts for the population stratification suffered from such bias. Secondly,
the prospective method had the largest variance of the three methods, while the maximum-
likelihood method under the unconditional independence assumption had the smallest. The
method which takes the populations stratification into account provided both small bias and
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relatively small variance. These observations suggest that when gene-environment
dependence is suspected, the use of the retrospective maximum-likelihood method under the
conditional gene-environment independence model could be optimal, assuming the factors
which may induce such dependence are observable. If such factors are not observable, or if
direct association between genetic and environmental factors may exist, then the use of the
modified prospective method should be considered.

4.3 Bias of alternative prospective methods
Stram et al. (2003) observed that although a naive prospective-method which ignores the
case-control sampling design may not be strictly correct, the bias in such a method is
typically small unless the predictability of haplotypes given the genotypes, as measured by
the  statistics, is low and the magnitudes of the true risk-parameters are high. We
evaluated the bias of alternative prospective methods in a situation where the bias of a naive
prospective method is expected to be high. We implemented three procedures:(a) the naive
prospective method based on cohort likelihood (Lake et al., 2003); (b) the estimating
equation approach of Zhao et al (2003) assuming rare disease; (c) the proposed modified
prospective-score-equation approach assuming Pr(D = 1) to be known. We considered a
simulation scenario involving three SNPs. To generate maximal amount of phase ambiguity,
we assumed all of the 23 = 8 haplotypes are equally likely. We generated diplotypes for each
subject under the assumption of Hardy-Weinberg Equilibrium. We generated a continuous
environmental covariate for each subject, independent of the subject’s diplotype status,
using a log-normal model as before (see Section 4.1). We assumed one of the eight
haplotypes were associated with the disease, with the mode of the effect being dominant.
The true values of the parameters for the underlying logistic regression model were (β0, βX,
βH, βHX) = (−3.5, 0.1, 0.69, 1.60), which corresponded to an overall disease rate of 10.7%.
In each replication, we generated data for 1000 cases and 1000 controls.

We implemented all of the three methods to estimate the regression parameters associated
the known “risk haplotype”. From the results shown in Table 4, we observe that while the
proposed modified prospective method was unbiased in estimating all of the three
parameters, both the naive prospective method and the estimating equation approach of
Zhao et al (2003) produced substantial bias for estimation of the parameters βH and βHX. The
large bias in the approach of Zhao et al. was likely to have been caused by the violation of
the underlying rare disease assumption. In the current simulation setting, although the
overall disease rate for the population is low (10.7%), the risk of the disease could become
very high for those subjects who carried the risk haplotype and also had a high value of the
environmental exposure. It is, however, important to note that the example reflects a fairly
extreme scenario involving large amount of phase ambiguity and strong genetic effects on
risk of the disease. In many other examples, that involved less extreme parameter settings,
the bias for both the naive prospective method and the estimating equation approach of Zhao
et al. were found to be very small or negligible.

5 Data Analysis: Israeli Ovarian Cancer Study
Chatterjee and Carroll (2005) described an application of their proposed methodology on a
case-control study of ovarian cancer in Israeli women that was performed to investigate the
interaction between the BRCA1/BRCA2 mutations and oral contraceptive use and parity
(Modan et al.,2001). Briefly, this study consisted of all ovarian cancer cases identified in
Israel between March 1, 1994 and June 30, 1999. For each case, two controls were selected.
The selected cases and controls provided blood samples for testing mutations in the BRCA1
and BRCA2 genes. In addition, data were collected on reproductive/gynaecological history
such as parity, number of years of oral contraceptive use and gynaecological surgery.
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Chatterjee and Carroll (2005) restricted their analysis to 832 cases and 747 controls who
were genotyped for BRCA1/2 mutations, leaving out 50 cases and 763 controls for whom
BRCA1/2 status was missing, but data on all other risk factors were available. We
reanalyzed the data using the proposed retrospective maximum-likelihood method including
the subjects with missing genotype information. Similar to Chatterjee and Carroll (2005) we
considered the following logistic regression model for risk of ovarian cancer:

where I(BRCA1/2) denotes the 0–1 indicator of carrying at least one BRCA1/2 mutation, OC
denotes years of oral contraceptive use, Parity denotes the number of children and Z denotes
the set of all cofactors that Modan et al. (2001) used to adjust their regression analysis.
Moreover, similar to Chatterjee and Carroll (2005) we assumed the independence between
presence of mutation and reproductive risk factors conditional on Age, Ethnicity, Personal
history of breast cancer (PHB) and Family history of breast and ovarian cancer (FHBO). The
genotype frequencies were modelled as a function of these four factors using the parametric
model

The results of our analysis for the main covariates of interest, parity, oral contraceptive use,
BRCA1/2 mutation, and the interactions between the mutations and each of the two
reproductive risk factors, are presented in Table 5. Compared to the analysis of Chatterjee
and Carroll (2005) that included only those individuals with complete genotype information,
we observe that there were important reduction in the standard errors for the main effects of
the two environmental factors, OC use and Parity. This result is intuitive given that the
additional subjects who were incorporated in the new analysis provided data on these two
risk factors. In addition, the new analysis confirms the original finding of Modan et al.
(2001) which suggested an interaction between BRCA1/2 mutation and OC use. In
particular, the results suggest that, unlike for non-carriers, the risk of ovarian cancer for
carriers did not decrease with increasing oral contraceptive use.

6 Discussion
We have developed a method for retrospective maximum-likelihood analysis of case-control
studies of genetic and environmental factors that can account for missing genetic
information. Particular emphasis has been given to haplotype-based studies where missing
data arises due to phase ambiguity of available genotype data. By utilizing a profile
likelihood of the data under the assumption of gene-environment independence and HWE,
we were able to develop a relatively simple computational algorithm for obtaining the
estimator. We also showed how this profile likelihood approach established a connection
between two seemingly different methods for haplotype-based association analysis of case-
control studies: the ascertainment corrected joint-likelihood approach of Stram et al. (2003)
and the retrospective maximum-likelihood approach. Further simplifications of the
methodology under a rare disease assumption were also described.
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Simulation studies in this current article as well as those reported in Epstein and Satten
(2003), Satten and Epstein (2004) and Chatterjee and Carroll (2005) show that retrospective
methods that can exploit various covariate distributional assumptions, such as HWE and
gene-environment independence, can lead to major efficiency gains for analysis of case-
control studies. However, caution is needed in practical use of these methods because these
simulation studies also demonstrate the possibility of major bias in the retrospective
methods when the underlying covariate distributional assumptions are violated in truth. In
this article, we proposed two alternative methods for relaxing the covariate distributional
assumptions. In one, we proposed explicitly accounting for those factors, such as ethnicity,
which could be both related to allele frequencies and environmental factors, possibly
inducing association between these factors in the population. In the second, we propose a
variation of prospective-estimating equation which we showed to be asymptotically
consistent under the retrospective case-control design, assuming the underlying covariate
distributional assumptions are valid. Moreover, in simulation studies we showed that the
method produced very little bias in parameter estimates even when the covariate
distributional assumptions were violated.

A novel finding of our simulation studies as well as those reported in Chatterjee and Carroll
(2005) is that when the G-E independence assumption holds, incorporation of external
information on the marginal probability of disease in the population can lead to further
efficiency in the estimation of regression parameters of interest. In traditional logistic
regression analysis, knowing the marginal probability of disease allows one to estimate the
intercept term of the regression model, but otherwise does not have any effect on the
estimation of the other regression parameters of interest. The marginal probability of the
disease, possibly stratified by basic demographic factors such as age, sex, race, is often
available or can be estimated precisely in population based case-control studies as well as in
case-control studies that are nested within a larger cohort study. The proposed methodology
allows incorporation of such additional information into the analysis and hence can lead to
further precision gain in the estimation of regression parameters under the G-E
independence model.

When a study involves a large number of haplotypes, estimation of their frequencies as well
as the associated regression parameters could become unstable due to the presence of rare
haplotypes. Schaid (2004) gives an excellent review for various currently available
techniques for tackling this problem. In principle, in our setting, the parametric model
prθ(Hd) can incorporate genetic models based on evolutionary history, thus specifying the
haplotype frequencies in terms of a reduced set of genetic parameters. Similarly, hierarchical
modelling techniques can be used to specify the regression parameters β in terms of a set of
lower dimensional parameters. This and other extensions of the proposed methodology will
be pursued in future.
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Appendix

A.1 Proof of Lemma 2
Recall that ζm is the probability mass function for X = xm, m = 1, …K. For fixed γ = (β0, β1,
θ), and except for constants, the log-likelihood function for ζ has the form

Taking derivatives with respect to each ζm and solving, we find that

However, notice that pr(D = d) = ΣkΣhj∈ℋ pr(D = d|X = xk, H = Hj)q(Hj, θ)ζk, and define
μ(d) = Nd/{N pr(D = d)}. This implies that pr(D = d) = Nd/{Nμ(d)} and
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It is easily shown that Σm ζm = 1. Substituting, and except for constants, the profile log-
likelihood function has the form

Now, define κ so that log{μ(1)} = log{μ(0)} + κ − β0. Then,

Defining Ω = (γ, κ), and recalling the definition of S(d, x, H, Ω), simple algebra completes
the proof.

A.2 Proof of Theorem 1
Let subscripted Ω denote partial derivatives, e.g., SΩ(•) and SΩ Ω (•) are the vector and
matrix of first and second partial derivatives of S(•) with respect to Ω, respectively.
Obviously, the semiparametric likelihood score is

That LΩ(Ω) is an unbiased estimating equation is a simple consequence of the following
easily proved result. Let fX(•) be the probability density function of X. Let the distinct values
of G be (g1, …, gM), and let ℋgj be the values of h consistent with gj. Recall the definition
of μ(0) = N0/{N pr(D = 0)}.

Lemma A.1
For any function R(D, X, G), and any function R*(D, X, H),
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In addition, assuming that N0/{N pr(D = 0)} = μ(0) converges to a finite, positive constant,
the obvious law of large numbers applies to the sums in the expectations.

Lemma A.1 can be used to compute the expectations of the matrix of second partial
derivatives (the so-called “bread of the sandwich”) and the variance of the score.

A.2.1 The Matrix of Second Partial Derivatives—Note that

It is easy to show using Lemma A.1 that

and that SN1−SN2 = op(1). A further application of Lemma A.1 shows that the expectations,
and hence the probability limits of SN3 and SN4 are given by

Hence, the matrix I defined in Theorem 1 is η3 − η4.

A.2.2 The Variance of the Score
Recall that
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Define A3(d, Ω) = E{A1(Δ, D, X, G, Ω) − A2(X, Ω)|D = d}. Then, ,
because the score is unbiased. Thus we can write,

Notice that each of the terms in this sum is independent with zero mean. Then,

where the expression {•} here means a repetition of the previous argument. The first term
can be written as , where by Lemma A.1, D2 = D3 and

Since D1 − D3 = −N−1E{LΩ ΩT(Ω)]}, we have shown that

Application of the Central Limit Theorem yields Theorem 1.

A.3 Consistency Issue for Prospective Estimating Equations
We first prove that the modified prospective score-equation (19) is unbiased for estimation
of κ and β1, assuming θ and β0 are fixed at their true values. We note that the joint
distribution of D, Hd and X in the underlying population is characterized by the parameters
β0, β1 and the distribution function V (hd, x) = qθ(hd) × F(x). Using Lemma 1 of Roeder et al.
(1996), we observe that for any given value of the parameters β0, β1 and any given function
V (·), one can chose β0 *and a distribution function V *(·) such that,
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and

In particular, by construction the authors showed that  and

Let P and P*denote the probability law for (D, Hd, X) under (β0, β1, V) and (κ, β1, V*),
respectively. Let E and E*denote expectations under the probability law P and P*. Now, the
right hand side of equation (19) when evaluated at true values of κ, β1, θ and β0 can be
expressed as

(A.1)

Let

Thus, under the case-control sampling design, the asymptotic limit of (19) divided by the
total sample size N = N0 + N1 can be written as

(A.2)

Since P*(D = 1) = N1/N and P*(G, X|D) = P(G, X|D), we can write (A.2) as

(A.3)

which in turn can be shown to be zero by following standard theory of unbiasedness of the
prospective-score equations under random sampling.
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To see why the proof of consistency fails for the ordinary prospective-estimating-equation
we note that each individual term of the equation (18) when evaluated at true values of κ,β1
and θ can be written as

The above, however, cannot be written in the usual expectation form because while
prκ,β1(Di|hd, Xi) correspond to the probability law of [D|H, X] under P*, q(hd; θ) correspond
to the probability law of [H|X] = [H] under P. Thus, the ordinary prospective-score equation,
when evaluated at κ, β1, θ, does not have a conditional expectation form, which was key to
the proof given in Zhao (2003). Nevertheless, we observe that

Assuming the disease is rare in the population for all combination of Hd and X, one can
make the approximation [1 + exp{β0 + m(β1, Hd, X)}]−1 ≈ 1, which, when substituted in
equation (19) yields the approximate estimating function of Zhao (2003).

A.4 Sandwich variance estimator under case-control design
Let Ω̂ = (β ̂*, θ ̂) be the estimate of Ω = (β ̂*, θ ̂) that solves the estimating equation

 for a vector-valued kernel function ΨΩ (Di, Gi, Xi) that has the same
dimension as Ω. Using standard estimating equation theory, it follows that under suitable
regularity conditions,

where

A consistent variance estimator can be obtained by based on the above sandwich formula by
estimating ΨΩ Ω, A and B with their respective empirical versions.
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Table 1

The haplotypes and associated frequencies used to generate case-control data for the simulation studies
reported in Section 4.1.

Haplotype Frequency

h1 = (0, 0, 0, 0, 0) 0.25

h2 = (0, 0, 0, 1, 0) 0.15

h3 = (0, 1, 1, 0, 1) 0.25

h4 = (0, 1, 1, 1, 0) 0.10

h5 = (1, 0, 0, 0, 0) 0.10

h6 = (1, 0, 0, 1, 0) 0.05

h7 = (1, 0, 1, 1, 1) 0.05

h8 = (1, 1, 1, 0, 0) 0.05

Genet Epidemiol. Author manuscript; available in PMC 2008 November 20.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Spinka et al. Page 27

Ta
bl

e 
2

Th
e 

re
su

lts
 fr

om
 1

00
0 

si
m

ul
at

ed
 c

as
e-

co
nt

ro
l s

tu
di

es
 fr

om
 a

 p
op

ul
at

io
n 

un
de

r H
W

E,
 w

ith
 in

de
pe

nd
en

t d
is

tri
bu

tio
ns

 fo
r h

ap
lo

ty
pe

s (
H

) a
nd

 e
nv

iro
nm

en
ta

l
co

va
ria

te
s (

X)
. E

ac
h 

re
pl

ic
at

e 
co

nt
ai

ns
 1

00
0 

ca
se

s a
nd

 1
00

0 
co

nt
ro

ls
 a

nd
 is

 a
na

ly
ze

d 
us

in
g 

th
e 

pr
op

os
ed

 re
tro

sp
ec

tiv
e 

m
ax

im
um

-li
ke

lih
oo

d 
m

et
ho

d
as

su
m

in
g 

H
W

E 
an

d 
H

-X
 in

de
pe

nd
en

ce
. E

st
im

at
es

 a
re

 sh
ow

n 
(a

) u
si

ng
 th

e 
kn

ow
n 

pr
ob

ab
ili

ty
 o

f t
he

 d
is

ea
se

 in
 th

e 
po

pu
la

tio
n 

an
d 

(b
) e

st
im

at
in

g 
th

e
pr

ob
ab

ili
ty

 fr
om

 th
e 

da
ta

 u
si

ng
 th

e 
gr

id
-s

ea
rc

h 
m

et
ho

d.

pr
(D

=1
)

Pa
ra

m
et

er
V

al
ue

B
ia

s
O

bs
er

ve
d 

St
an

da
rd

 E
rr

or
E

st
im

at
ed

 S
ta

nd
ar

d 
E

rr
or

C
ov

er
ag

e 
Pr

ob
ab

ili
ty

K
no

w
n

β X
0.

10
−
0.
00
9

0.
05

3
0.

05
4

0.
96

1

β H
0.

15
−
0.
01
3

0.
11

9
0.

12
2

0.
94

5

0
0.

00
6

0.
17

1
0.

17
2

0.
95

1

0
−
0.
00
7

0.
14

7
0.

14
5

0.
94

8

β H
X

0.
20

0.
00

9
0.

03
6

0.
03

7
0.

93
9

0
−
0.
00
1

0.
04

9
0.

05
0

0.
95

3

0
0.

00
1

0.
04

1
0.

04
2

0.
96

4

θ
0.

25
0.

00
1

0.
00

9
0.

00
9

0.
95

4

.1
5

< 
0.

00
1

0.
00

9
0.

00
9

0.
95

4

.0
5

< 
0.

00
1

0.
00

4
0.

00
4

0.
93

8

U
nk

no
w

n
β X

0.
10

−
0.
00
6

0.
05

4
0.

05
6

0.
96

1

β H
0.

15
−
0.
00
8

0.
12

3
0.

12
9

0.
96

1

0
0.

00
6

0.
17

1
0.

17
2

0.
95

1

0
−
0.
00
7

0.
14

7
0.

14
5

0.
94

9

β H
X

0.
20

0.
00

7
0.

04
0

0.
04

3
0.

96
4

0
−
0.
00
1

0.
04

9
0.

04
9

0.
95

3

0
0.

00
1

0.
04

1
0.

04
2

0.
96

3

θ
0.

25
< 

0.
00

1
0.

01
0

0.
01

1
0.

96
7

.1
5

< 
0.

00
1

0.
00

9
0.

00
9

0.
95

6

.0
5

< 
0.

00
1

0.
00

4
0.

00
4

0.
93

9

Genet Epidemiol. Author manuscript; available in PMC 2008 November 20.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Spinka et al. Page 28

Ta
bl

e 
3

Th
e 

re
su

lts
 fr

om
 1

00
0 

si
m

ul
at

ed
 c

as
e-

co
nt

ro
l s

tu
di

es
 fr

om
 a

 p
op

ul
at

io
n 

w
he

re
 H

W
E 

an
d 

th
e 

in
de

pe
nd

en
ce

 b
et

w
ee

n 
ha

pl
ot

yp
es

 (H
) a

nd
 e

nv
iro

nm
en

ta
l

co
va

ria
te

 (X
) h

ol
ds

 w
ith

in
 st

ra
ta

 d
ef

in
ed

 b
y 

S.
 E

ac
h 

re
pl

ic
at

e 
co

nt
ai

ns
 1

00
0 

ca
se

s a
nd

 1
00

0 
co

nt
ro

ls
 a

nd
 is

 a
na

ly
ze

d 
us

in
g 

(a
) t

he
 p

ro
po

se
d 

un
co

nd
iti

on
al

re
tro

sp
ec

tiv
e 

m
ax

im
um

-li
ke

lih
oo

d 
(R

M
L)

 m
et

ho
d 

th
at

 a
ss

um
es

 H
W

E 
an

d 
H

 –
 X

 in
de

pe
nd

en
ce

 h
ol

d 
in

 th
e 

en
tir

e 
po

pu
la

tio
n;

 (b
) t

he
 p

ro
po

se
d 

co
nd

iti
on

al
R

M
L 

m
et

ho
d 

as
su

m
in

g 
H

W
E 

an
d 

H
-X

 in
de

pe
nd

en
ce

 h
ol

d 
co

nd
iti

on
al

 o
n 

S 
an

d 
(c

) t
he

 p
ro

po
se

d 
m

od
ifi

ed
 p

ro
sp

ec
tiv

e 
sc

or
e-

eq
ua

tio
n 

(P
SE

) m
et

ho
d

β X
β H

β H
X

β S
β H

S

(a
) U

nc
on

di
tio

na
l R

M
L

B
ia

s
0.

00
9

−
0.
54
7

−
0.
03
3

−
0.
10
2

0.
75

5

Em
pi

ric
al

 S
E

0.
05

9
0.

29
0

0.
06

4
0.

30
5

0.
26

4

Es
tim

at
ed

 S
E

0.
06

2
0.

30
3

0.
06

3
0.

31
8

0.
28

1

C
ov

er
ga

ge
 P

ro
b

0.
95

6
0.

55
1

0.
89

7
0.

94
1

0.
22

3

(b
) C

on
di

tio
na

l R
M

L

B
ia

s
−
0.
00
4

−
0.
01
2

0.
01

0
0.

00
8

0.
00

2

Em
pi

ric
al

 S
E

0.
06

1
0.

31
3

0.
06

5
0.

33
1

0.
30

7

Es
tim

at
ed

 S
E

0.
06

3
0.

32
7

0.
06

7
0.

33
9

0.
31

7

C
ov

er
ga

ge
 P

ro
b

0.
95

5
0.

96
3

0.
95

4
0.

95
7

0.
96

5

(c
) M

od
ifi

ed
 P

SE

B
ia

s
0.

00
1

−
0.
02
2

−
0.
00
3

0.
01

0
0.

02
9

Em
pi

ric
al

 S
E

0.
07

0
0.

32
6

0.
07

5
0.

33
7

0.
30

2

Es
tim

at
ed

 S
E

0.
06

9
0.

35
0

0.
07

6
0.

34
9

0.
33

0

C
ov

er
ga

ge
 P

ro
b

0.
94

2
0.

96
6

0.
94

7
0.

96
0

0.
97

2

Genet Epidemiol. Author manuscript; available in PMC 2008 November 20.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Spinka et al. Page 29

Table 4

Bias and standard errors for regression parameters estimated using three alternative prospective methods: (a)
the naive prospective method based on cohort likelihood (Lake et al., 2003); (b) the estimating equation
approach of Zhao et al (2003) assuming rare disease; (c) the proposed modified prospective-score-equation
approach assuming Pr(D = 1) to be known

βX βH βHX

(a) Naive prospective

Bias 0.055 −0.198 0.181

Empirical SE 0.040 0.252 0.216

(b) Zhao et al.

Bias −0.022 0.692 −0.705

Empirical SE 0.042 0.216 0.119

(c) Modified PSE

Bias −0.002 0.004 0.017

Empirical SE 0.044 0.250 0.200
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Table 5

Parameter estimates and estimated standard errors for the parameters of interest for the Israeli ovarian cancer
study. The current analysis includes all individuals available for study, regardless of whether or not they have
BRCA1/2 status measured.

Current Analysis Chatterjee and Carroll (2005)

Parameter Estimate St. Error Estimate St. Error

βmut 3.183 0.337 3.154 0.329

βpar −0.051 0.024 −0.061 0.032

βoc −0.068 0.020 −0.051 0.026

βmut;par −0.046 0.060 −0.036 0.053

βmut;oc 0.092 0.030 0.086 0.033
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