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Abstract This paper investigates robust stability of

genetic regulatory networks with distributed delay. Dif-

ferent from other papers, distributed delay is induced. It

says that the concentration of macromolecule depends on

an integral of the regulatory function of over a specified

range of previous time, which is more realistic. Based on

Lyapunov stability theory and linear matrix inequality

(LMI), sufficient conditions for genetic regulatory net-

works to be global asymptotic stability and robust stability

are derived in terms of LMI. Two numerical examples are

given to illustrate the effectiveness of our theoretical

results.
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Introduction

In recent years, genetic regulatory networks have received

more and more attention in the biological and biomedical

sciences, few results have been done in this area (Becskei

and Serrano 2000; Cao and Ren 2008; Chen and Arihara

2002; De Jong 2002; Elowitz and Leibler 2000; Gardner

et al. 2000; Grammaticos et al. 2006; MacDonald 1989;

Smolen 2000a, 2000b; Wei et al. 2007). As we all known,

in order to understand the functioning of organisms on the

molecular level, we need to know which genes are

expressed, when and where in the organism, and to which

extent. In fact, gene expression is a complex process reg-

ulated at several stages in the synthesis of proteins. The

central dogma of molecular biology states that gene

expression consists of two main processes, namely, tran-

scription and translation. So the expression of a gene may

be controlled during RNA processing and transport (in

eukaryotes), RNA translation. The proteins fulfilling the

above regulatory functions are produced by other genes.

Typically a gene is subject to the regulatory effect of a few

other genes which can act on it in either an activating or a

suppressing way. How does genes and proteins produced

by other genes interact to perform complicated biological

functions? How to regulate the expression of genes? These

questions makes us fell obliged to investigate genetic

regulatory networks.

The study of genetic regulatory network requires large

amounts of experimental data by gene expression assays.

But only experimental data is not enough, a framework for

deriving and expressing the biochemical architecture of

genetic systems, using experimental data, is also required.

The precision of mathematical language makes it a useful

tool to model a useful framework for conceptualizing and

understanding complex biochemical systems. Some theo-

retical results have made development based on

mathematical models (Cao and Ren 2008; Chen and Ari-

hara 2002; Grammaticos et al. 2006; Smolen 2000a,

2000b; Wei et al. 2007). In fact, there are many formalisms

to describe genetic regulatory networks, such as Bayesian

networks, Boolean network, ordinary differential equations

(ODEs) and Piecewise-linear differential equation (PLDE)

and so on. Among them, ODEs is the most widespread

W. He (&) � J. Cao

Department of Mathematics, Southeast University,

Nanjing 210096, China

e-mail: wanglihe07@gmail.com

J. Cao

e-mail: jdcao@seu.edu.cn

123

Cogn Neurodyn (2008) 2:355–361

DOI 10.1007/s11571-008-9062-0



formalism to model the dynamics of genetic regulatory

systems. Several simple genetic networks have been con-

structed and verified by experiments (Becskei and Serrano

2000; Elowitz and Leibler 2000; Gardner et al. 2000).

When modelling the genetic networks, time delay is an

important factor, due to slow biochemical reactions such as

gene transcription and translation, which should be con-

sidered. Nicholas (2003) showed that the observed

oscillatory expression and activity of three proteins is most

likely to be driven by transcriptional delays. Smolen et al.

(2002) found time delays were essential for simulation of

circadian oscillations with this model. Time delays in gene

networks could strongly affect stimulus responses (Mac-

Donald 1989), and also have an effect on synchronized

spike-burst networks (Jirsa 2008). Therefore, it is necessary

to take delay into consideration when modelling genetic

networks. There are several theoretical analysis of different

mathematical models with and without time delay. Chen

and Arihara (2002) proposed a delayed genetic regulatory

networks and analyzed nonlinear properties of the model in

terms of local stability and bifurcation. Later, Li et al.

(2006) investigated the stability of genetic regulatory net-

works with random perturbation. They further considered

the stochastic stability of genetic network with disturbance

attenuation (Li et al. 2007). Time delays are either discrete

or continuous with the derivative less than 1. Improved on

it, Ren and Cao (2008) discussed the robust stability of

genetic network with time-varying delay, only bounded is

required for the time-varying delays. We can see that time

delays all of above are discrete. In fact, transport can be

modelled as diffusive or active in nature. If active it can be

modelled with a time delay. The time delay can be discrete,

which assumes each macromolecule takes the same length

of time to translocate from its place of synthesis to the

location where it exerts an effect. However, this simplifi-

cation may be too drastic, another approach is to assume a

distributed delay (De Jong 2002; MacDonald 1989; Smolen

2000a). In principle, this approach is general enough to

model any mechanism of macromolecular transport. For

example, if movement of mRNA from a transcription site

to translation sites is an active process with a significant

range of transport times for individual molecules, a dis-

tributed delay would be the proper modelling framework.

However, there are little work about the stability with

distributed delays.

In the design of networks, such as genetic networks and

neural networks, a common problem is that parameters

acquired are inaccurate. There might also be some fluctu-

ations in the parameters, which might lead to complex

dynamical behavior. Therefore, it is essential to investigate

the globally robust stability of such networks with

uncertainties. There have been some studies on the robust

stability or distributed delays analysis for neural networks

(Lien and Chung 2007; Wang et al. 2006; Yang and Chu

2007). In fact, the biologic networks can show robust

character under perturbation (Kwok et al. 2007). However,

few works are done on the robust stability of genetic reg-

ulatory networks. Inspired by the above work, this paper

aims to investigate robust stability of genetic regulatory

networks with distributed delay by using Lyapunov func-

tional and linear matrix inequality (LMI) technique which

is used frequently for its easily being verified. Several

criteria are derived to guarantee the asymptotic and robust

stability of such networks. Two numerical examples are

also given to verify the effectiveness of our obtained

results.

Notation: Throughout this paper, AT denotes the trans-

pose of a matrix A. Rn denotes the n dimensional Euclidean

space. Rn�m is the set of all n 9 m real matrices. I denotes

the identity matrix with appropriate dimensions. diag{…}

denotes the diagonal matrix. The notation X [ 0 (respec-

tively, X \ 0) means that the matrix X is positive

(negative) definite, that is the eigenvalues of X are positive

(respectively, negative).

Methods

Model description and preliminaries

A genetic regulatory network (GRN) is composed of a

number of genes that interact and regulate the expression of

other genes by proteins (the gene product). The dynamic

behavior of a genetic regulatory networks with variable

delays can be described by the following state equations

(Cao and Ren 2008; Chen and Arihara 2002; Elowitz and

Leibler 2000; Li et al. 2006, 2007; Ren and Cao 2008):

_mi ¼� aimiðtÞ þ giðp1ðt � sÞ; p2ðt � sÞ; . . .; pnðt � sÞÞ;
_pi ¼� cipiðtÞ þ dimiðt � sÞ; i ¼ 1; 2; . . .; n; ð1Þ

where mi(t), pi(t) denote the concentration of mRNA and

protein of the ith node at time t. ai and ci are positive real

numbers that present the degradation rates of mRNA and

protein, respectively. di is the translation rate. s is the node

delay, and the functions gi denotes the feedback regulation

of the protein on the transcription, which is generally

nonlinear function but has a form of monotonicity of each

variable (De Jong 2002; Smolen 2000b). In most existed

paper, function gi is of the SUM logic form (Cao and Ren

2008; Chen and Arihara 2002; Li et al. 2006, 2007), which

is gi =
P

j=1
n Gij(pj(t)). The functions Gij(pj(t)) are usually

expressed by the Hill form

356 Cogn Neurodyn (2008) 2:355–361

123



GijðpjðtÞÞ

¼

aij
ðpjðtÞ=bjÞHj

1þðpjðtÞ=bjÞHj
;

if transcription factor j is an activator of gene i;

aij
1

1þðpjðtÞ=bjÞHj
;

if transcription factor j is a repressor of gene i;

8
>>>>><

>>>>>:

where Hj is the Hill coefficients, bj is positive constants, aij

are bounded constants, while are the dimensionless

transcription rate of transcription factor j to i. From this,

one can rewrite Eq. (1) as follows:

_mi ¼� aimiðtÞ þ
Xn

j¼1

bijfjðpjðt � sÞÞ þ Ji;

_pi ¼� cipiðtÞ þ dimiðt � sÞ; i ¼ 1; 2; . . .; n;

ð2Þ

where fiðxjÞ ¼
ðxj=bjÞHj

1þðxj=bjÞHj
; Ji ¼

P
Ii
aij and Ii is the set of all

the j which is a repressor of gene i, B = (bij) is defined as

follows:

bij

¼
aij; if transcription factor j is anactivator of gene i

0; if there is no link from j to i

�aij; if transcription factorj is a repressor of gene i

8
><

>:

Most paper considered the model (2) with discrete time

delay (Cao and Ren 2008; Chen and Arihara 2002; Li et al.

2006, 2007). In fact, this simplification maybe too drastic.

Here we consider the genetic regulatory networks with

distributed delay. The derivative of mRNA and protein

depends on an integral of a function of one or more

variables over a specified range of previous time. A general

distributed delay take the forms

_mi ¼� aimiðtÞ þ
Xn

j¼1

bij

Z t

�1
kjðt � sÞfjðpjðsÞÞdsþ Ji;

_pi ¼� cipiðtÞ þ di

Z t

�1
kiðt � sÞmiðsÞds; i ¼ 1; 2; . . .; n;

ð3Þ

where kj is the delay kernel, which is a real value non-

negative continuous function defined on [0, ? ?] satisfying
Z þ1

0

kjðsÞds ¼ 1; j ¼ 1; 2; . . .; n:

Rewrite the system (3) into compact matrix form, we obtain:

_mðtÞ ¼ � AmðtÞ þ B

Z t

�1
Kðt � sÞf ðpðsÞÞdsþ J;

_pðtÞ ¼ � CpðtÞ þ D

Z t

�1
Kðt � sÞmðsÞds; i ¼ 1; 2; . . .; n;

ð4Þ

where m(t) = [m1(t), m2(t), …, mn(t)]T, p(t) = [p1(t), p2(t) ,

…, pn(t)]T, K(t-s) = diag{k1(t-s), k2(t-s), …, kn(t-s)},

f(p(t)) = [f1(p1(t)),f2(p2(t)), …, fn(pn(s))]T, A = diag{a1,

a2, …, an}, C = diag{c1, c2, …, cn}, D = diag{d1, d2,

…, dn}. In principle, this approach is general enough to

model any mechanism of macromolecular transport

(Smolen 2000a). Let ((m*)T,(p*)T)T be an equilibrium point

of Eq. (4), i.e. it is the solution of equation

�Am�ðtÞ þ Bf ðp�ðtÞÞ þ J ¼ 0;
�Cp�ðtÞ þ Dm�ðtÞ ¼ 0;

Next we will shift an intended equilibrium point ((m*)T,

(p*)T)T of system (4) to the origin. Using the following

transformation

xðtÞ ¼ mðtÞ � m�; yðtÞ ¼ pðtÞ � p�;

the model (4) can be transformed into the following form:

_xðtÞ ¼ � AxðtÞ þ B

Z t

�1
Kðt � sÞhðyðsÞÞds;

_yðtÞ ¼ � CyðtÞ þ D

Z t

�1
Kðt � sÞxðsÞds; i ¼ 1; 2; . . .; n;

ð5Þ

where x(t) = [x1(t), x2(t), …, xn(t)]T, y(t) = [y1(t), y2(t),

…, yn(t)]T, h(y(s)) = [h1(yi(s)), h2(yi(s)), …, hn(yi(s))]T,

hi(yi(s)) = fi(yi(s) ? p�i ) - fi(p
�
i ). Since fi is a mono-

tonically increasing function with saturation, it satisfies

0� fiðxÞ � fiðyÞ
x� y

� li; 8x; y 2 R; x 6¼ y:

Clearly, the function hi(x) satisfies the sector condition

0� hiðxÞ
x
� li;

which is equivalent to the following one

hiðxÞðhiðxÞ � lixÞ� 0: ð6Þ

Results

In this section, we give two main theorems to ensure the

asymptotic and robust stability of genetic regulatory net-

works. First, we analyze the asymptotic stability of system

(5).

Asymptotic stability for GRN

Theorem 1 If there exists positive definite matricesP, Q

and diagonal positive definite matrices K, R = diag{r1,

r2, …, rn}, E = diag{e1, e2, …, en} with appropriate

dimensions respectively, such that
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X¼

�PA�AT PþR 0 0 0 PB
0 �QC�CT Q K QD 0

0 K �2KL�1þE 0 0

0 DQ 0 �R 0

BT P 0 0 0 �E

2

6
6
6
6
4

3

7
7
7
7
5
\0

ð7Þ

where L-1 = diag{l1
-1, l2

-1, …, ln
-1}, then system (5) is

asymptotically stable.

Proof Based on the system (5), we construct the follow-

ing Lyapunov functional:

VðtÞ ¼ xTðtÞPxðtÞ þ yTðtÞQyðtÞ

þ
Xn

j¼1

ej

Z 1

0

kjðrÞ
Z t

t�r
h2

j ðyjðrÞÞdrdr

þ
Xn

j¼1

rj

Z 1

0

kjðrÞ
Z t

t�r
x2

j ðsÞdsdr: ð8Þ

Differentiating V with respect to time along the solution

of (5) yield:

_VðtÞ ¼ 2xTðtÞP½�AxðtÞ þ B

Z t

�1
Kðt � sÞhðyðsÞÞds�

þ 2yTðtÞQ½�CyðtÞ þ D

Z t

�1
Kðt � sÞxðsÞds�

þ
Xn

j¼1

ej

Z 1

0

kjðrÞh2
j ðyjðtÞÞdr

�
Xn

j¼1

ej

Z 1

0

kjðrÞh2
j ðyjðt � rÞÞdr

þ
Xn

j¼1

rj

Z 1

0

kjðrÞx2
j ðtÞdr

�
Xn

j¼1

rj

Z 1

0

kjðrÞx2
j ðt � rÞdr

¼ �2xTðtÞPAxðtÞ þ 2xTðtÞPB

Z t

�1
Kðt � sÞhðyðsÞÞds

� 2yTðtÞQCyðtÞ þ 2yTðtÞQD

Z t

�1
Kðt � sÞXðsÞds

þ hTðyðtÞÞEhðyðtÞÞ

�
Xn

j¼1

ej

Z 1

0

kjðrÞdr
Z 1

0

kjðrÞh2
j ðyjðt � rÞÞdr

þ xTðtÞRxðtÞ

�
Xn

j¼1

rj

Z 1

0

kjðrÞdr
Z 1

0

kjðrÞx2
j ðt � rÞdr

It follows from Hölder inequality that

�
Xn

j¼1

ej

Z 1

0

kjðrÞdr
Z 1

0

kjðrÞh2
j ðyjðt � rÞÞdr

� �
Xn

j¼1

ej

Z 1

0

kjðrÞhjðyjðt � rÞÞdr

� �2

¼ �
Z t

�1
Kðt � sÞhðyðsÞÞds

� �T

E

Z t

�1
Kðt � sÞhðyðsÞÞds

ð9Þ

and

�
Xn

j¼1

rj

Z 1

0

kjðrÞdr
Z 1

0

kjðrÞxjðt � rÞdr

� �
Xn

j¼1

rj

Z 1

0

kjðrÞxjðt � rÞdr

� �2

¼ �
Z t

�1
Kðt � sÞxðsÞds

� �T

R

Z t

�1
Kðt � sÞxðsÞds

ð10Þ

By Eq. (6), for any diagonal positive matrix K one can

get

2yT KhðyðtÞÞ � 2hTðyðtÞÞKL�1hðyðtÞÞ� 0; ð11Þ

where L-1 = diag{l1
-1, l2

-1 , …, ln
-1}.

Combining Eqs. (9–11), we can get

_VðtÞ � xTðtÞð�PA�AT PþRÞxðtÞþ2xTðtÞPB
Z t

�1
Kðt� sÞhðyðsÞÞdsþ yTðtÞð�QC�CT QÞyðtÞ

þ2yTðtÞQD

Z t

�1
Kðt� sÞxðsÞdsþhTðyðtÞÞEhðyðtÞÞ

þ2yT KhðyðtÞÞ�2hTðyðtÞÞKL�1hðyðtÞÞ

�
Z t

�1
Kðt� sÞhðyðsÞÞds

� �T

E

Z t

�1
Kðt� sÞhðyðsÞÞds

�
Z t

�1
Kðt� sÞxðsÞds

� �T

R

Z t

�1
Kðt� sÞxðsÞds

�nTðtÞXnðtÞ;

where n(t) = [xT(t),yT(t),hT(y(t)), ($t
-?K(t-s)x(s)ds)T,

($t
-?K(t-s)h(y(s))ds)T]T. X is defined as Eq. (7). Clearly,

if condition (7) holds, then _V\0; 8xðtÞ; yðtÞ 6¼ 0 . It follows

from Lyapunov–Krasovskii theorem (Hale and Verduyn-

Lunel 1993) that the genetic regulatory network (5) with

distributed delay is asymptotically stable. h
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Robust stability of uncertain GRN

Consider the following uncertain GRN

_mðtÞ ¼ �ðAþDAðtÞÞmðtÞþðBþDBðtÞÞ
Z t

�1
Kðt�sÞf ðyðsÞÞds;

_pðtÞ ¼ �ðCþDCðtÞÞpðtÞþðDþDDðtÞÞ
Z t

�1
Kðt�sÞmðsÞds; i¼1;2;...;n; ð12Þ

where DA(t), DB(t), DC(t), DD(t) are parametric uncer-

tainties satisfying

½DAðtÞ DBðtÞ DCðtÞ DDðtÞ� ¼ M � FðtÞ � ½N1 N2 N3 N4�;

M, Ni, i [ [1, 2, 3, 4] are some given constant matrices,

F(t) is an unknown real time-varying function with

appropriate dimensions and bounded as follows:

FTðtÞFðtÞ� I; 8t� 0:

Next, let us give the following lemma which will be used in

the proof of our main results.

Lemma 1 (Singh 2004) LetU, V, W and X be real

matrices of appropriate dimension with X satisfying

X = XT, then

X þ UVW þWT VT UT\0; for all VT V � I;

if and only if there exists a scalar e [ 0 such that

X þ e�1UUT þ eWT W ¼ X þ e�1UUT

þ e�1ðeWÞTðeWÞ\0:

Lemma 2 (Boyd et al. 1994) (Schur complement) For a

given matrix

S ¼ S11 S12

ST
12 S22

� �

;

withS11 = S11
T , S22 = S22

T , then the following conditions are

equivalent:

(1) S \ 0,

(2) S22 \ 0, S11-S12S22
-1S12

T \ 0.

Theorem 2 System (12) is robust stable if there exist

some positive definite matricesP, Q, diagonal positive

definite matrices K, R, E and a constant e [ 0 satisfying

X U

UT K

� �

\0; ð13Þ

where X is defined in Theorem 1 and

U ¼

PM 0 �eNT
1 0

0 QM 0 �eNT
3

0 0 0 0

0 0 0 eNT
4

0 0 eNT
2 0

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

;

K ¼
�eI2n1�2n1

0

0 �eI2n2�2n2

" #

:

whereM is n 9 n1, Ni, i = 1, 2, 3, 4 are n2 9 n.

Proof Take the same Lyapunov functional as that in the

proof of Theorem 1 and replace A,B,C, and D by

A ? MF(t)N1, B ? MF(t)N2, C ? MF(t)N3, and

D ? MF(t)N4, the sufficient condition to guarantee the

asymptotic stability of system (12) can be obtained.

X þ

PM 0

0 QM

0 0

0 0

0 0

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

FðtÞ 0

0 FðtÞ

� � �N1 0 0 0 N2

0 �N3 0 N4 0

� �

þ

�NT
1 0

0 �NT
3

0 0

0 NT
4

NT
2 0

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

FTðtÞ 0

0 FTðtÞ

� �
MT P 0 0 0 0

0 MT Q 0 0 0

� �

\0:

ð14Þ

From lemma 1 and 2, conditions (13) and (14) are

equivalent, we can conclude that system (12) is robust

stable. h

Computer simulation

In this section, we will give two examples to illustrate the

correctness of our results.

Example 1 Consider a genetic regulatory network with

distributed delay described by the following equations:

_mðtÞ ¼ �AmðtÞ þ B

Z t

�1
Kðt � sÞf ðpðsÞÞdsþ J;

_pðtÞ ¼ �CpðtÞ þ D

Z t

�1
Kðt � sÞmðsÞds;

ð15Þ

where A = diag{3, 4, 5}, C = diag{1.5, 3, 4},

D = diag{4.5, 1, 5}, J = [2.5, 2.6, 2.4]T,
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B ¼
0 0 �2:5

�2:6 0 0

0 �2:4 0

2

6
4

3

7
5;

s = 2, fi(x) = xi
2/(1 ? xi

2), i.e., the Hill coefficient is 2.

The maximal value of the derivation of fi(x) is\0.65, so let

li = 0.65, i = 1, 2, 3. kj(s) = e-s, j = 1, 2, 3. By using the

Matlab LMI Toolbox, we solve the LMI (7) for P [ 0,

Q [ 0, R [ 0, E [ 0, K = I and obtain P = diag{ 1.3759,

0.4549, 2.5304}, Q = diag{0.2861, 4.9528, 1.8482},

>R = diag{3.8981, 1.3271, 10.0111}, E = diag{0.7113,

2.7313, 2.8210}. Therefore, it follows from Theorem 1 that

the genetic regulatory network (15) is globally asymptotically

stable. Figure 1 depicts the temporal evolution of each

variable of the genetic regulatory network mi, pi, i = 1, 2, 3

with five random initial conditions, respectively.

Example 2 Consider the following uncertain genetic

regulatory network:

_mðtÞ ¼ � ðAþ DAðtÞÞmðtÞ þ ðBþ DBðtÞÞ
Z t

�1
Kðt � sÞf ðpðsÞÞds;

_pðtÞ ¼ � ðC þ DCðtÞÞpðtÞ þ ðDþ DDðtÞÞ
Z t

�1
Kðt � sÞmðsÞds; i ¼ 1; 2; . . .; n;

ð16Þ

where DA(t), DB(t), DC(t), DD(t) are parametric uncer-

tainties satisfying

½DAðtÞ DBðtÞ DCðtÞ DDðtÞ� ¼ M � FðtÞ � ½N1 N2 N3 N4�:

For simplicity, let M = diag{0.1, 0.1, 0.2}, N1 =

diag{0.1, 0.2, 0.1}, N2 = diag{0.05, 0.11, 0.25}, N3 =

diag{0.12, 0.01, 0.53}, N4 = diag{0.1, 0.15, 0.08}.

F(t) = diag{sin(t), cos(2t), sin(t)}. Again, by solving the

LMI (12) for e [ 0, P [ 0, Q [ 0, R [ 0, E [ 0, K = I,

we obtain

P ¼
1:3243 �0:0054 �0:0076

�0:0054 0:2745 �0:0180

�0:0076 �0:0180 2:4271

2

6
4

3

7
5;

Q ¼
0:2824 0 0

0 2:5666 0

0 0 1:8081

2

6
4

3

7
5;

R ¼ diagf3:8649; 0:7696; 10:3020g;
E ¼ diagf0:4369; 2:7160; 2:8772g; e ¼ 2:0898:

which indicates that system (16) is globally asymptotically

stable. Figure 2 depicts the temporal evolution of each

variable of the genetic regulatory network mi,pi, i = 1,2,3.

We can see that the curves are not smooth as in Fig. 2,

especially for mi, i = 1, 2, 3. It shows that the uncertain
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Fig. 1 Trajectories of m1, m2,

m3 and p1, p2, p3, for (15)
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Fig. 2 Trajectories of m1, m2,

m3 and p1, p2, p3 for (16)
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parameters do have an effect on system (15), but not

obviously. The numerical simulation verifies the effec-

tiveness of Theorem 2.

Discussion

In this paper, we discussed the robust stability of genetic

regulatory network with distributed time delay. To the best

of our knowledge, there are rare results above this issue. It

is a more realistic model when taking distributed delay into

account. In principle, this approach is general enough to

model any mechanism of macromolecular transport. The

analytical results obtained in this paper may therefore give

new insights on the dynamics of genetic regulatory

networks.
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