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Abstract NMDA receptor-dependent long-term po-
tentiation (LTP) in the hippocampus is widely
accepted as a cellular substrate for memory formation.
Age-related declines in the expression of both
NMDAR-dependent LTP and NMDAR subunit pro-
teins in the CAl region of the hippocampus have
been well characterized and likely underlie age-
related memory impairment. In the current study, we
examined NMDAR-dependent LTP in young Fischer
344 rats (4 months old) and aged rats (24 months old)
given either a control diet or a diet supplemented with
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blueberry extract for 6-8 weeks. NMDAR- dependent
LTP was evoked by high-frequency stimulation (HFS)
in the presence of nifedipine, to eliminate voltage-
gated calcium channel LTP. Field excitatory postsyn-
aptic potentials (fEPSPs) were increased by 57% 1 h
after HFS in young animals, but this potentiation was
reduced to 31% in aged animals. Supplementation of
the diet with blueberry extract elevated LTP (63%) in
aged animals to levels seen in young. The normali-
zation of LTP may be due to the blueberry diet
preventing a decline in synaptic strength, as measured
by the slope of the fEPSP for a given fiber potential.
The blueberry diet did not prevent age-related
declines in NMDAR protein expression. However,
phosphorylation of a key tyrosine residue on the
NR2B subunit, important for increasing NMDAR
function, was enhanced by the diet, suggesting that an
increase in NMDAR function might overcome the
loss in protein. This report provides evidence that
dietary alterations later in life may prevent or
postpone the cognitive declines associated with aging.

Keywords Anti-oxidant - Long-term potentiation -
NMDA receptor - Phosphorylation - Synaptic strength

Introduction
Loss of cognitive function in the elderly presents an

overwhelming challenge to the families of those
afflicted. With America’s demographic shift toward
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a more aged population, such mental declines will
become an ever increasing challenge. In an effort to
reduce the impact of age-related memory loss,
intensive research efforts are underway to find ways
to slow or reverse this cognitive impairment.

One aspect of cognitive function that appears to
decline with age both in humans and in animal
models is spatial learning (Barnes 1979, 1987,
Rosenzweig and Barnes 2003). Several studies have
focused on dietary alterations or supplementation to
ameliorate the age-related loss of cognitive function
in rat models (Stoll et al. 1993; Joseph et al. 1999;
Eckles-Smith et al. 2000; Liu et al. 2002, 2003). In
one such study, supplementation of the diet with
extracts from blueberries, strawberries or spinach for
eight weeks enhanced memory performance in the
Morris water maze test (Joseph et al. 1999). While the
beneficial behavioral effects of this diet in rats are
clear, the cellular changes contributing to these effects
have yet to be fully understood.

The major cellular mechanism thought to underlie
spatial learning and memory is NMDAR-dependent
long-term potentiation (LTP) in the hippocampus
(Danysz et al. 1988; Morris 1989; Martin and Clark
2007). In the aged hippocampus voltage-gated calcium
channel (VGCC)-dependent LTP is evoked by HFS, in
addition to NMDAR-dependent LTP (Shankar et al.
1998). These two forms of LTP appear to oppose each
other in learning and memory, blockade of NMDA
receptors impairs (Danysz et al. 1988; Morris 1989),
whereas blockade of VGCCs appears to enhance
hippocampal dependent learning (Deyo et al. 1989;
Meneses et al. 1997; Veng et al. 2003). In aged animals
NMDAR-dependent LTP is reduced, while VGCC-
dependent LTP is enhanced (Shankar et al. 1998).
Because of the increase in VGCC LTP, the deficits in
NMDAR-dependent LTP are only apparent when
VGCCs are blocked or weak induction paradigms are
used (Shankar et al. 1998; Clayton et al. 2002; Moore et
al. 1993; Deupree et al. 1993; Eckles-Smith et al. 2000).

The age-related impairment of NMDAR-dependent
LTP is proposed to be due to decreases in NMDAR
function (Barnes et al. 1997) and NMDAR subunit
expression (Eckles-Smith et al. 2000; Clayton and
Browning 2001; Sonntag et al. 2000; Kuehl-Kovarik
et al. 2000). Consistent with this, we found that
spermine, which enhances NMDAR function, rescued
NMDA-dependent LTP in aged animals (Clayton et
al. 2002). In another study from our lab, the age-
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related deficits in both NMDAR-dependent LTP and
NRI1 subunit expression were ameliorated by life-long
caloric restriction (Eckles-Smith et al. 2000). Based
on these previous studies, we chose to focus on age-
related changes in NMDAR-dependent LTP. There-
fore, in the current study, we wanted to investigate
whether a diet enriched with blueberry extract could
overcome the biochemical and electrophysiological
sequela associated with aging. Consistent with previ-
ous reports, we found deficits in both NMDAR-
dependent LTP and synaptic strength in hippocampal
slices from aged animals. In slices from animals given
the blueberry-enriched diet, both NMDAR-dependent
LTP and synaptic strength were elevated to levels
seen in young controls. While the deficits in NMDAR
subunit expression were not rescued by the diet,
phosphorylation of a key tyrosine residue in the
NMDAR was enhanced.

Materials and methods

Animals Five young adult (4 months old) and eight
aged (22 months old) Fischer 344 rats were obtained
from the National Institutes of Aging breading colony at
Harlan Laboratories. Animals were housed two to three
per cage in a climate-controlled environment with a
12-h light/dark cycle with water and rat chow available
ad libitum. Aged animals were randomly divided into
two groups of four animals: one received a control diet,
while the other group received a diet enriched with
blueberry extract for 6-8 weeks (Joseph et al. 1999).
Aged animals were 23-24 months old at the time of
experiment.

Tissue preparation Following euthanasia, the brain
was removed to ice-cold oxygenated artificial cere-
brospinal fluid (aCSF; 124 mM NaCl, 4 mM KClI,
1 mM MgCl, 2.5 mM CaCl,, 10 mM dextrose,
1 mM KH,PO,4, 25.7 mM NaHCO;). Both hippo-
campi were removed, and the CAl region was
isolated as previously described (Clayton et al.
2002). Transverse CAl mini-slices were made by
chopping the CAl (400 um) on a Mcllwain tissue
chopper. Slices were recovered for 90 min at 32°C in
a perfusion chamber with aCSF (oxygenated with
95% 0,/5% CO,) flowing at 3 ml/min.

After recovery some slices were prepared for Western
blot by sonication in 1% sodium dodecyl sulfate
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(SDS), 1 mM ethylenediamineteraacetic acid, 10 mM
Tris (pH 8). Samples were heated to 95°C for 5 min, and
then frozen at —80°C. The remaining slices were kept in
the perfusion chamber for electrophysiology.

Extracellular field recordings One or two slices from
each animal were used for electrophysiological
studies. Field excitatory post-synaptic potentials
(fEPSPs) were obtained by stimulating the Schaffer
collateral pathway using a bipolar tungsten stimulat-
ing electrode. The recording electrode, a silver
chloride recording electrode inside a finely drawn
glass capillary containing aCSF, was placed in the
dendritic layer of the CAl. Stimuli were given at a
rate of 0.033 Hz. Both the initial slope and the peak
amplitude of the resulting fEPSP were measured.

An input/output curve was obtained for each slice
by increasing the stimulus intensity and measuring the
resulting fiber potential and slope of the fEPSP. To
compare input/output curves from different groups the
fiber potential was measured and plotted against
the initial slope of the corresponding fEPSP. Before
the LTP experiment began, the applied stimulus was
adjusted to produce an fEPSP that was 30-50% of the
maximum amplitude. Baseline responses before po-
tentiation had average initial slopes of —160+22,
—128+11, and —147£12 mV/us in young, aged control
and aged blueberry diet animals, respectively. Baseline
responses in aged control animals were slightly (but
not significantly) lower than the other groups. Once a
stable baseline was recorded for at least 20 min, 25 uM
nifedipine, the voltage-gated calcium channel (VGCC)
blocker, was perfused for 30 min. As previously
described (Shankar et al. 1998), aged animals exhibit
robust potentiation via VGCCs and this obscures
NMDA-dependent LTP in these animals. LTP was
then induced by four 1-s trains of 100-Hz stimulation
separated by 30 s. Following this high frequency
stimulation (HFS), nifedipine perfusion was then
terminated. Responses were continuously recorded at
0.033 Hz for at least 1 h after HFS. LTP was
measured as the percent change in the initial slope
of the fEPSP at 1 h post HFS by comparing the fEPSP
responses at 55-65 min with those spanning the
10 min prior to HFS, using one-way ANOVA with
Tukey’s post-hoc.

Semi-quantitative Western blotting Briefly, protein
concentrations were determined by BCA assay

(Pierce). Samples were diluted to equal protein
concentrations in sample loading buffer (2.3% SDS,
67.5 mM Tris, 10% glycerol, 5% (3-mercaptoethanol,
0.017% bromophenol blue). To allow comparison of
samples run on different gels, each gel contained a
five-point standard curve with 1.5-12 pg of whole
hippocampal homogenate in sample loading buffer.
The standards used on all gels in the study were from
the same batch. Samples and standards in loading
buffer were boiled for 5 min then loaded onto 7.5%
polyacrylamide gels. Gels were run at 200 V until the
bromophenol blue exited the gel. Proteins were
transferred to polyscreen PVDF (New England
Nuclear) using the Genie transfer apparatus (Idea
Scientific). Blots were blocked with 3% BSA in Tris-
buffered saline (140 mM NaCl, 20 mM Tris, pH 7.6)
with 0.1% Tween 20 (TTBS) for 1 h, then probed
with primary antibody overnight at 4°C. Antibodies to
NR1 (BD Pharmingen), NR2B (Snell et al. 1996), p-
Y1472 NR2B (Phosphosolutions) and GIluR2/3
(Chemicon) were diluted 1:3,000 in 1% BSA. Blots
were probed with HRP-conjugated goat anti-mouse or
goat anti-rabbit (Bio-Rad) antibodies and detected
using Super Signal west dura ECL reagent (Pierce).
Digital images of the blots were captured using a
Chemiimager 4400 (Alpha Innotech). Briefly, each
blot contained samples from young, aged control and
aged blueberry diet in duplicate as well as a standard
curve of hippocampal homogenate. An integrated
density value (IDV) for samples and standards was
determined as the sum of the intensity of the pixels
constituting each band. A standard curve was generated
by plotting the IDV of each standard by the micrograms
of total protein loaded in that lane. The IDV of each
sample was then compared with the standard curve to
determine the immunoreactivity of that sample. Only
bands that had an IDV within the standard curve were
used. The immunoreactivity was divided by the amount
of sample protein (in micrograms) loaded in each lane
and reported in the figures.

Statistics One-way ANOVAs with Tukey’s post-hoc
were performed with GraphPad Prizm (GraphPad).
Because two slices were used from several animals in
the LTP study, a nested ANOVA was preformed with
rat as a random factor nested in condition. This test
confirmed that the variance was due to condition and
not a clustering effect of rat as a subgroup within the
condition group.
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Results
NMDAR-dependent LTP in the CA1 of aged rats

We examined the effects of a blueberry-enriched diet on
NMDAR-dependent LTP in area CA1 of the hippocam-
pus in aged animals. Previously, we reported that the
LTP of population spikes induced by primed burst
stimulation was absent in aged animals and that the
deficit was relieved by a life-long calorically restricted
diet (Eckles-Smith et al. 2000). Furthermore, we have
shown that addition of certain berry extracts to the diet
can slow the loss of function in memory tasks in aged
rats (Joseph et al. 1999). In the current study, the
decline of LTP in aged animals was examined by
supplementation of the diet with blueberry extract later
in life to determine the effectiveness of the diet for
reducing the age-related decline in synaptic plasticity.

Field excitatory post-synaptic potentials (fEPSPs)
were recorded from CAl mini-slices of young
(4 months old) and aged (24 months old) Fisher 344
rats. NMDAR-dependent LTP was induced by appli-
cation of four trains of high-frequency stimulation
(HFS) in the presence of nifedipine. Because VGCC-
dependent LTP is reportedly elevated in aged animals,
slices were treated with nifedipine before and during
LTP induction to insure that only NMDAR-dependent
LTP was induced (Shankar et al. 1998). Nifedipine
had no effect on the slope or amplitude of the fEPSP.

The initial slope of the fEPSP was measured before
and after induction of LTP (Fig. 1). The degree of
LTP was reported as the percent increase in fEPSP
slope at 1 h after LTP induction relative to the fEPSP
slope just before induction. NMDAR-dependent LTP
was reduced in aged animals (30.8+4% potentiation;
Fig. 1) compared with young (57.2+7%). LTP in aged
animals receiving the blueberry enriched diet for 6—
8 weeks was comparable with that seen in young
animals (63.3£9.5%). Potentiation was equivalent in
young and aged animals given the blueberry diet, and
both were elevated relative to aged control animals as
determined by one-way ANOVA with Tukey’s post-
hoc [F(2,19)=5.59, p<0.05].

Synaptic strength in the CAl region of aged rats
It has been reported previously that there is a reduction

in the fEPSP size relative to the fiber potential in aged
animals, and this synaptic weakening may contribute to
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cognitive impairments (Barnes et al. 1992, 1997; Hsu et
al. 2002; Deupree et al. 1991; Potier et al. 2000). To
that end, we examined the input/output curve (I/O
curve) by comparing the relationship between the fiber
potential and the initial slope of the corresponding
fEPSP. Figure 2a shows amplitude of the fiber potential
relative to the stimulus intensity. The fiber potential
generated for a given stimulus was slightly elevated in
young animals relative to aged [F(2,17)=37.2, p<0.001;
0.134£0.007, 0.073+£0.004, and 0.086+0.004 in
young, aged controls, and aged blueberry diet, respec-
tively]. There was, however, no difference between
slices from aged animals given the control diet and
those given the blueberry diet. As previously reported,
there was a rightward shift of the input/output function
in aged animals compared with young as measured by
the slope of the I/O lines (2,702+163 in young vs
1,223+73 in aged; Fig. 2). This reduction in synaptic
strength was ameliorated in the aged animals given the
blueberry enriched diet (2,988+156), suggesting that
this diet may prevent or delay this important synaptic
change. The slope of the I/O curve was comparable
in young and age animals on the blueberry diet, and
both were significantly elevated from aged controls
[F(2,17)=39.5, p<0.001). The loss of synaptic strength
is postulated to represent a loss of functional synapses
in the aged animal (Barnes et al. 1997; Rosenzweig and
Barnes 2003). Thus, the age-related loss of synaptic
strength and the amelioration of this loss by the
blueberry diet may provide a mechanism for the decline
of LTP with age and the subsequent normalization by
the blueberry diet.

Age-related changes in NMDAR expression
and phosphorylation

In addition to loss of synaptic strength, age-related
decreases in expression of the NR1 and NR2B subunits
of the NMDA receptor may also contribute to the LTP
deficits (Eckles-Smith et al. 2000; Clayton and Browning
2001; Gemma et al. 2004). Therefore, we examined the
expression of NMDA receptor subunit proteins from the
CA1 mini-slices of young, aged, and aged animals give
the blueberry diet. The expression of both NR1 and
NR2B subunits was reduced in the aged animals
compared with the young adults by 25% [Fig. 3, NR1:
F(2,9)=5.17, p<0.05, NR2B: F(2,9)=7.7, p<0.05].
However, the blueberry-enriched diet failed to rescue
the deficits in NR1 or NR2B expression (p>0.05).
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Fig. 1 a—c¢ Age-related def-
icit in NMDAR-dependent
LTP in the CA1 is rescued
by blueberry-enriched diet.
a Sample traces showing
EPSPs before and after HFS
from young, aged control
diet, and aged blueberry
diet. The thin line depicts
control EPSPs and the
thicker line represents
responses 60 min after HFS.
b Time course of NMDAR-
dependent LTP as measured
by the initial slope of the
EPSP in young (open
circles; n=8), aged control
diet (closed triangles; n=T)
and aged blueberry diet
(closed squares; n="7).
Baseline responses were
obtained for 15 min with
drugs and for 30 min in the
presence of nifedipine. Then
LTP was induced by appli-
cation of four trains of 100-
Hz stimulation for 1 s per
train, each train was 30 s
apart. Nifedipine perfusion
was terminated after the last
train. ¢ Potentiation of the
slope of the EPSP at 60 min 04
after HFS. LTP in aged
control diet is significantly
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Expression of the AMPAR subunits GluR2/3 was not
significantly altered by aging [F(2,9)=0.66, p>0.05].
NMDAR function is strongly regulated by phos-
phorylation (Wang and Salter 1994; Yu et al. 1997;
Lu et al. 1999; Chen and Leonard 1996). Indeed,
Norris et al. (1998a, b) suggested that reduced
synaptic strength in aged animals could be due to a

Young Aged Cont

Aged BB

shift in the balance of protein kinase and phosphatase
activities. Therefore, we investigated whether the
blueberry diet could have modified NMDAR function
via effects on phosphorylation. We examined the level
of phosphorylation of NR2B on tyrosine 1472, a site
thought to be important in regulation of receptor
function (Nakazawa et al. 2001). Phosphorylation of
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Fig. 2 a, b Age-related decrease in input/output curve is
rescued by blueberry-enriched diet. a Stimulus intensity vs
fiber potential in CA1 from young (closed circles; n==8), aged
control diet (closed triangles; n=6) and aged blueberry diet
animals (open circles; n=6). The fiber potential from a given
stimulus intensity was reduced in aged animals on control or
blueberry diet compared with young (the slope of the regression
line was 0.134+0.007, 0.073+£0.004, and 0.086+0.004 in
young, aged controls, and aged blueberry diet, respectively,
p<0.001 young vs aged control and aged blueberry). b I/O
curve showing initial slope of the EPSP as a function of the

this site was elevated, though not significantly, in
aged animals compared with young. In aged animals
given the blueberry enriched diet, however, there was
a significant [F(2,9)=4.31, p<0.05] 90% increase in
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fiber potential evoked in young (closed circles; n=8), aged
control diet (closed triangles; n=6) and aged blueberry diet
(open circles; n=6). A linear regression was preformed on each
group. The resulting slopes of the linear portion of the I/O
curves were 2,702+63, 1,223+73 and 2,988+156 for young,
aged control and aged blueberry, respectively. The resulting I/O
curve slopes from the young and aged blueberry diet animals
were significantly different from the aged control diet by one-
way ANOVA with Tukey’s post hoc (p<0.001 young vs aged
control and aged blueberry vs aged control)

Y1472 phosphorylation compared with young ani-
mals (Fig. 4). In addition to the effects on synaptic
strength, the blueberry diet could also contribute to
the rescue of LTP in aged animals via an increase in
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tyrosine phosphorylation of the NMDA receptor,
which enhances function.
Discussion

In the current report, we show that LTP induced by
HFS is reduced in aged animals when VGCCs are

4 Fig. 3 a—c Age-related decreases in NMDAR subunit expres-

sion is not rescued by blueberry-enriched diet as determined by
Western blot. a NR2B subunit expression in young, aged
control and aged blueberry was 1,199+67, 895482 and 790+
80 immunoreactivity units per pg protein, respectively (n=4).
Expression in aged animals was reduced by 25% compared
with young (one-way ANOVA with Tukey’s post-hoc, *»<0.05
young vs aged control and young vs aged blueberry). b NR1
subunit expression in young, aged control and aged blueberry
was 1,243£52, 936478 and 992483, respectively (n=4).
Expression in aged animals was reduced by 25% compared with
young (one-way ANOVA with Tukey’s post-hoc, *p<0.05 young
vs AC). ¢ Expression of GluR2/3 AMPAR subunits in young,
aged control and aged blueberry was 1,577+196, 1360+84 and
1,405+120, respectively (n=4). Expression was not reduced in
aged animals compared with young (one-way ANOVA p>0.05)

blocked, providing further evidence that NMDAR-
dependent LTP is reduced with aging. More impor-
tantly, the LTP deficit can be prevented by addition of
blueberry extract to the diet for 68 weeks. This diet
or other diets such as spinach or spirulina, which are
also enriched in bioflavonoids, have previously been
show to enhance the performance of aged rats in the
Morris water maze (Joseph et al. 1999), enhance
performance on a classical conditioning task (Cartford
et al. 2002), reduce ischemic brain damage (Wang et
al. 2005) and enhance the survival of transplanted
neuronal tissue (Willis et al. 2005). It is well
established that these diets can reduce markers of
oxidative stress and inflammation (Gemma et al.
2002; Joseph et al. 1998). The reduction in oxidative

-
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Fig. 4 Age-related increase in the phosphorylation of tyrosine
1472 on the NR2B subunit. The ratio of phospho-Tyr1472
immunoreactivity to NR2B immunoreactivity was 0.43+0.11,
0.64+0.04, and 0.82+0.11 in young, aged control and aged
blueberry, respectively (n=4; one-way ANOVA with Tukey’s
post-hoc, *p<0.05 young vs aged blueberry)
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damage to proteins, membranes and DNA is likely to
be the mechanisms by which these diets can lead to
functional improvement in several domains. For
example, in the cerebellum a functional improvement
in the (3-adrenergic receptor is linked with the
improvement in classical conditioning, and this is
also associated with decreased oxidative damage
markers and pro-inflammatory (Cartford et al. 2002;
Gemma et al. 2002). Thus, the mechanism underlying
the improvement in LTP may be related to increased
function of receptor signaling involved in NMDAR-
dependent LTP.

NMDAR-dependent LTP in the CA1 region of the
hippocampus is thought to be the cellular mechanism
responsible for spatial memory formation (Barnes
1987). In aged animals, two types of LTP are induced
by high-frequency stimulation: NMDAR-dependent
LTP and VGCC-dependent LTP (Shankar et al. 1998).
NMDAR-dependent LTP is thought to contribute to
memory formation, while VGCC-dependent LTP is
thought to be detrimental to memory formation
(Shankar et al. 1998; Norris et al. 1998b). There is
an age-related decline in NMDAR-dependent LTP
coincident with an increase in VGCC-dependent LTP
(Shankar et al. 1998). Consistent with these changes
in the mechanisms of LTP induction, age-related
alterations in the expression of NMDARs and VGCCs
in the CA1l have been identified. Expression of the
NRI1 and NR2B subunits of the NMDA receptor
decline with age leading to a reduction in NMDAR
function, while expression of the VGCC «;p subunits
increase with age in area CAl (Eckles-Smith et al.
2000; Clayton and Browning 2001; Clayton et al.
2002; Barnes et al. 1997; Potier et al. 2000; Veng et
al. 2003; Veng and Browning 2002). In fact, antisense
knockdown of NR2B expression in young animals
reduced LTP in a manner similar to aging (Clayton et
al. 2002). We have previously reported that lifelong
caloric restriction prevented the age-related deficits in
NMDAR-dependent LTP expression as well as the
reduction in NMDAR expression (Eckles-Smith et al.
2000). In the current study, administration of a
blueberry enriched diet later in life prevented the
deficit in NMDAR-dependent LTP, but did not
prevent the age-related loss of NMDA receptors.
One possibility is that the function of the existing
NMDARs is somehow enhanced following the
blueberry diet. Consistent with this, we report an
increase in the phosphorylation of tyrosine 1472 on
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the NR2B subunit. Tyrosine phosphorylation of
NMDARs has previously been reported to increase
receptor function (Wang and Salter 1994; Chen and
Leonard 1996; Yu et al. 1997; Lu et al. 1999).
Phosphorylation of Y1472 in particular has been
implicated in LTP (Nakazawa et al. 2001). Thus, the
increase in tyrosine phosphorylation of NR2B asso-
ciated with the blueberry diet may result in an
increase in NMDAR function. Such an increase in
function could provide a mechanism to compensate
for the loss of NMDA receptors.

In addition to the age-related decline in LTP, we
and others also found age-related deficiencies in the
I/O curve of the fEPSP (Barnes et al. 1992, 1997; Hsu
et al. 2002; Deupree et al. 1991; Potier et al. 2000).
The changes underlying the loss of synaptic strength
are a matter of some debate. Similar changes in the
dentate gyrus are likely due to a decrease in the
number of synapses; however, in the CA1 there are no
significant age-related losses of principal cells nor are
there reductions in the number of synapses (Rapp and
Gallagher 1996; Rasmussen et al. 1996; Geinisman et
al. 1995, 2004). It has been proposed that the
reduction in synaptic strength is due to a decrease in
functional synapses in older rats (Barnes et al. 1992;
Geinisman 1999). This decrease is not likely due to
presynaptic changes as synaptic proteins involved in
neurotransmitter release, such as synaptophysin,
synaptotagmin, SNAP-25 and synapsin, are not
altered (Nicolle et al. 1999). Likewise, studies from
several laboratories have concluded that there is no
change in paired pulse facilitation ratios with age in
the CA1 (Deupree et al. 1993; Landfield and Lynch
1977, Landfield et al. 1978). Thus, the mechanism for
the age-related decrease in the fEPSP is likely
postsynaptic. We report here that expression of the
AMPAR subunits GluR1 and 2 is not altered in aged
animals, confirming findings from previous studies
(Eckles-Smith et al. 2000; Clayton and Browning
2001; Nicolle et al. 1999). Sensitivity of synaptic
responses to AMPA is reportedly reduced in aged
animals (Barnes et al. 1992). One study found that the
age-related reduction in synaptic strength was due to a
shift in the balance of protein kinase and phosphatase
activities (Norris et al. 1998a). In this study, blockade
of serine/threonine phosphatase activity increased
synaptic strength in aged animals. The function of
AMPA receptors is thought to be enhanced by
phosphorylation (Boehm and Malinow 2005). It is
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possible that the functional expression of AMPARSs in
the synaptic membrane or the conductance of existing
AMPARs is reduced with aging, resulting in a
weakened AMPA current (Geinisman 1999). Further
studies will be needed to determine if this is the case.
In the current study, we found that the age-related
decrease in synaptic strength is prevented by the
blueberry enriched diet, although the mechanism for
this decline remains to be elucidated.

While lifelong caloric restriction may prevent or
delay the onset of the decline in LTP by preventing
the loss of NMDARs, supplementation of the diet
with blueberry extract later in life may provide a
means to offset the decline in NMDAR expression by
enhancing cellular mechanisms which compensate for
the loss. This diet has previously been shown to
reverse age-related declines in cognitive and motor
behavior (Joseph et al. 1999). Here we show that age-
related deficits in NMDAR-dependent LTP, a cellular
substrate for learning and memory, are also prevented
by the blueberry enriched diet. The normalization of
LTP was not due to reversal of NMDAR subunit loss,
but may in fact be due to preventing the loss of
synaptic strength or by producing an increase in
NMDAR function resulting from increases in tyrosine
phosphorylation of the NR2B subunit.
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