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Abstract
We have developed a MATLAB/C toolbox, Brain-SMART (System for Multivariate AutoRegressive
Time series, or BSMART), for spectral analysis of continuous neural time series data recorded
simultaneously from multiple sensors. Available functions include time series data importing/
exporting, preprocessing (normalization and trend removal), AutoRegressive (AR) modeling
(multivariate/bivariate model estimation and validation), spectral quantity estimation (auto power,
coherence and Granger causality spectra), network analysis (including coherence and causality
networks) and visualization (including data, power, coherence and causality views). The tools for
investigating causal network structures are unique functions provided by this toolbox. All
functionality has been integrated into a simple and user-friendly graphical user interface (GUI)
environment designed for easy accessibility. Although we have tested the toolbox only on Windows
and Linux operating systems, BSMART itself is system independent. This toolbox is freely available
(http://www.sahs.uth.tmc.edu/hliang/software.htm) under the GNU public license for open source
development.
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1. Introduction
Recent advances in various technologies for multichannel (multisensor) recording now afford
neuroscientists an expanded capacity for the investigation of neural interdependency during
cognitive processing (Brovelli et al., 2004; Knight, 2007; Le Van Quyen, Amor, & Rudrauf,
2006; Nicolelis et al., 2003; Super & Roelfsema, 2005). Progress has been hindered, however,
because the standard techniques for single channel time series analysis are often insufficient
to detect multichannel interactions, and a tool set designed specifically for multichannel data
analysis has been lacking.
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In view of this, several open source software toolboxes have been published and distributed
for multichannel neural time series analysis, including MEA-Tools (Egert et al., 2002),
EEGLAB (Delorme & Makeig, 2004) and ERPWAVELAB (Morup, Hansen, & Arnfred,
2007). All of them include functions for data format conversion to allow users to retrieve data
from different hardware systems and provide non-experienced MATLAB (The Mathworks, Inc.)
users with graphical user interfaces (GUI) to facilitate access to functional routines. In these
toolboxes, however, the measures for quantifying channel interactions are mainly confined to
the temporal cross-correlation (Egert et al., 2002) and the coherence spectrum (Delorme &
Makeig, 2004; Morup et al., 2007). Questions about causal influence based on the predictability
of activity at one recording site from that at another are not addressed by most existing
toolboxes. Moreover, the time series data involved in the estimation of cross-correlation or
coherence are typically limited to only two channels. It is known that this approach generally
may not provide an entirely correct interpretation of inter-channel interactions, as it ignores
influences from other channels (Blinowska, Kus, & Kaminski, 2004; Kus, Kaminski, &
Blinowska, 2004).

We also have noted that many toolboxes were originally developed to specifically process
neuronal spike activity. Measures of continuous neural population activity, such as the Local
Field Potential (LFP), ElectroCorticoGram (ECoG), ElectroEncephaloGram (EEG), or
MagnetoEncephalogram (MEG), have often not been their primary concern. The Chronux
software package (http://chronux.org) is a widely used open-source Matlab toolbox (included
in Neuroscience Database Gateway, http://ndg.sfn.org) for analyzing neural data. Its target
signal type is either a point process or a continuous time series, as recorded from a single
channel, rather than multichannel neural signals. Moreover, the methods used for spectral
estimation in this toolbox are based on a non-parametric approach (e.g. multitaper spectral
estimation). Generally, non-parametric methods result in lower frequency resolution than do
parametric ones, such as the approach based on AutoRegressive (AR) modeling employed in
our toolbox. Finally, Chronux does not provide measures of directional information to indicate
causal influences between different sources. The Granger causality measure is a unique feature
of the software described in this paper. Recently, a similar method (Seth, 2005) has been
proposed for characterizing the causal connectivity of a neural system from the graph-theoretic
perspective, but is limited to the time domain. Our approach relies on the fundamental concept
of Granger causality (Granger, 1969), but is extended to the frequency domain. As such, we
anticipate that our software package will find widespread use in the field of neuroscience
research and provide insights into the functional dynamics of the brain.

It is the goal of the toolbox, Brain-SMART (System for Multivariate AutoRegressive Time
series analysis, or BSMART), to provide tools for analysis of multichannel neural signals
recorded in cognitive experiments. The set of available core tools may be classified into three
categories, i.e., tools for autoregressive model estimation, spectral quantity analysis, and
network analysis. A unique feature of BSMART is that instead of using the nonparametric
approach to analysis adopted in most previous toolboxes (Delorme & Makeig, 2004; Morup
et al., 2007), it carries out analyses based on a parametric method involving the Adaptive
Multivariate AutoRegressive (AMAR) modeling technique. Previous studies (Brovelli et al.,
2004; Ding, Bressler, Yang, & Liang, 2000) have shown that AMAR modeling can solve two
important problems involved in the analysis of neural time series: (1) spectral analysis of fully
multivariate (multichannel) time series and (2) spectral analysis of time series in a short time
window. The first problem arises from the challenge of understanding the interactions of
different channels belonging to the same integrated system. The second comes from the need
to examine neurocognitive processing in brief time intervals to characterize its rapid temporal
dynamics. The toolbox includes new tools to obtain fully multivariate power and coherence
spectra by taking into account the influences from all channels in the data set. It also provides
the new tools to obtain the Granger causality spectrum (Granger, 1969), a measure of causal
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influence from one channel to another. Moreover, BSMART is equipped with tools for the
analysis of coherence and Granger causality networks, which have not been available, to our
knowledge, in previous toolboxes.

Next, we present the most basic concepts used in BSMART, followed by a detailed description
of the implementation of the toolbox to assist the user to utilize these tools most effectively.
A summary and a discussion of possible future work will be given at the end of the paper.
BSMART can be freely downloaded from http://www.sahs.uth.tmc.edu/hliang/software.htm
under the GNU public license1.

2. Methods
In this section we present a brief introduction to the theoretical background of the methods
used in the toolbox to acquaint a reader new to the field with relevant materials. For interested
readers, we refer to a set of references (Brovelli et al., 2004; Ding et al., 2000; Maciey Kaminski
& Liang, 2005; Liang, Ding, & Bressler, 2000) for more elaborate descriptions.

2.1. Estimation of AMAR model
Let X(t) = [X1(t), X2(t),...,Xk(t)]T be a k-dimensional random process defined in a segment of
windowed time series data, where T stands for matrix transposition. Assuming stationarity of
the process X(t) in each window, one can describe X(t) by a pth-order autoregressive process:

(2.1)

where Am, m = 1, 2,..., p are k × k coefficient matrices and E(t) is a k-dimensional, zero mean,
uncorrelated noise vector. BSMART employs the Levinson, Wiggins, Robinson (LWR)
algorithm (Haykin, 2002) to estimate the Am matrices and the covariance matrix of the noise
vector (V) from the Yule-Walker equations of the model.

To determine the model order, p, BSMART provides functions to calculate the multivariate
Akaike information criterion (AIC) (Box, Jenkins, & Reinsel, 1994) as a function of p,

(2.2)

where |V| denotes the determinant of the noise covariance matrix and Ntotal is the total number
of data points from all the trials. The correct p is usually decided when AIC reaches its first
substantial minimum.

Once a model is estimated, an important step is to examine its suitability for the given data set.
BSMART provides a set of three tools to test the fitness of the model (Ding et al., 2000). (1)
The whiteness test can be used to validate the white noise assumption for the model residuals.
The null hypothesis is that the residual noise is white and has no temporal correlation. This is
tested according to the auto- and cross-correlation coefficients of the residuals. For the null
hypothesis to be true, fewer than 5% of the coefficients will fall outside the interval

 by pure chance. If the percentage is larger than 5%, one will reject the null
hypothesis. (2) The stability test is useful for checking whether a fitted model is stable.
BSMART calculates the stability index (SI) as:

(2.3)

1Version 2 of June 1991. For further details on GNU public license please refer to http://www.gun.org.
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where λ1 is the largest root of the eigen equation of the model (2.1). Negative SI indicates that
the model is stable. (3) The consistency test can be performed to examine which portion of the
correlation structure in the data is captured by the model. Toward this purpose, a set of
simulated data is generated by iterating the equations of the fitted model. Then, auto-
correlations and pairwise cross-correlations of both the real and simulated data are calculated.
The statistical consistency between the two data sets is measured by the percent consistency
(PC):

(2.4)

where Rr and Rs are the correlation vectors of the real and simulated data, respectively. Note
that we can obtain a bivariate model for two time series Xi(t) and Xj(t), and test its validity
according to the procedure above. The bivariate approach will produce  models, where
k is the number of channels.

2.2. Measurement of spectral quantities
Auto Power—Once the model coefficient matrices (Am) and the covariance matrix of the
noise (V) are estimated, all the spectral quantities can be readily derived in the frequency
domain. From the transfer function,

(2.5)

the spectral matrix of the time series data is given by
(2.6)

where ‘*’ denotes matrix transposition and complex conjugation. Subsequently, the auto power
of channel i is given by Si,i(f), which is the ith diagonal element of the spectral matrix.

Ordinary Coherence—The ordinary coherence, defined as:

(2.7)

where Si,j(f) is the (i,j)th element of S(f) , can be used to measure the amount of interdependency
between two channels i and j. The values of coherence range from zero to one, where zero
indicates no interdependence between two channels, while one indicates maximum
interdependence.

Note that both power and coherence spectra can be estimated from either a multivariate model
or a bivariate model. However, the Granger causality spectrum is found through bivariate
autoregressive models only in the current version of BSMART.

Granger Causality—The power and coherence measures do not tell us the direction of
influence among different channels. BSMART offers a method to measure the direction of
causal influence (M. J. Kaminski & Blinowska, 1991; Liang, Ding, & Bressler, 2000) based
on the concept of Granger causality (Granger, 1969). According to Geweke's formulation
(Brovelli et al., 2004; Geweke, 1982), the Granger casual influence from channel j to channel
i is given by:
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(2.8)

where V(f) , H(f) and S(f) are the noise covariance, the transfer function and the spectral matrix
of the bivariate model of Xi(t) and Xj(t), respectively.

2.3. Network analysis
BSMART also provides a useful tool for analyzing network functional connectivity between
channels. After analysis of coherence or Granger causality, a user can manually set a threshold
to select those channel pairs with above-threshold measures. These channel pairs are then
represented in a network graph, from which one can obtain an insight into the dynamic patterns
of information flow and network reorganization during a cognitive process (Brovelli et al.,
2004; Ding et al., 2000). The specific steps to find coherence and Granger causality networks
will be detailed in the next section.

3. Results
3.1. Overview

The toolbox was written for MATLAB version 6.5 and tested up to version 7.4 (R2007a). Although
we have tested it only on Microsoft Windows (XP, Vista) and Linux (Fedora), the toolbox is
expected to be compatible with other operating systems within the framework of MATLAB.

3.1.1. Software Structure—Figure 1 schematically shows the organization of the software
package including a collection of functions for data format conversion, preprocessing, AMAR
data modeling, spectral and network analysis, and visualization, as well as functions for
displaying help/demonstration documentation. A new task of data analysis usually begins with
data format conversion. BSMART can read binary data files into MATLAB space as MAT data
structures (§3.2.1) accessible by other MATLAB routines. Alternatively, the toolbox can write the
MAT data into binary files for usage on other system platforms. The preprocessing procedures
include data normalization and trend removal (§3.2.2). It has been shown (Ding et al., 2000)
that the preprocessing steps are essential for accurate estimation of spectral quantities and the
model stability. The tools for AMAR data modeling (§3.2.3) mainly serve two objectives: one
is model estimation, involving tools for determination of the model order using the AIC
measure and model estimation using the LWR algorithm; the other is model validation,
supported by tools for the whiteness test, stability test and consistency test. After identifying
the AMAR model, one can investigate the spectral properties of the time series (§3.2.4) data
with functions for power, coherence and Granger causality spectra. The pattern of interactions
between channels can also be investigated with the tools of coherence network and Granger
causality network structures (§3.2.5). Signal waveforms and the results of spectral analysis can
be displayed with visualization tools: data, view, coherence and Granger causality views. The
main help documents include a “Users Guide” that explains in detail how to import and process
data in BSMART, and a “Function Reference” that illustrates the syntax and usage of each
MATLAB function.

3.1.2. GUI Menu Structure—More experienced MATLAB users can automate data analysis by
producing batch cripts of function routines in a MATLAB command window (e.g. Table I). For
non-experienced users, BSMART also provides a GUI environment, in which a user is able to
complete data examination without knowing the details of MATLAB syntax.
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The GUI menu structure is split into sections oriented by function type (Figure 2). The first
level consists of six menus, namely, “File”, “Tools”, “Model”, “Analysis”, “Plots” and “Help”.
The “File” menu is mainly responsible for data format conversion. The “Tools” menu includes
shortcuts to call preprocessing routines. An option for calculating the power spectrum by the
conventional fast Fourier transform (FFT) method is available, so that its relative merits can
be explored in a specific data context. Shortcuts to model estimation and validation procedures
have been grouped under the “Model” menu. The “Analysis” menu consists of shortcuts to
spectral quantity estimation and network analysis methods. In the “Plots” menu are options for
displaying signal waveforms, power spectra and coherence spectra. The final menu section
gives access to help documents as well as credits contributions. Figure 3 shows a screen capture
of a BSMART user session with GUI interface running under Windows.

Next, we guide the reader through the main functional blocks by describing the steps of
processing a sample data set. In addition, usage of the visualization tools will be described
within the context of data analysis.

3.2. Functional blocks
To illustrate the utility of BSMART, we employ a small sample data set of event-related LFP
time series, sampled at 200 Hz, from 15 bipolar electrodes distributed in the right cerebral
cortex of a macaque monkey (details in (Bressler, Coppola, & Nakamura, 1993). Each of the
15 electrode recording sites is considered to be a separate data channel. The monkey was trained
to perform a visuomotor pattern discrimination task with GO/NO-GO (motor response/
withhold response) behavior. The data set consists of 137 trials, each lasting 90 ms or 18 time
points, from all 15 channels (15×137 = 2055 time series in total). This sample set is also
included in the software package and available for downloading.

3.2.1. Data Format Conversion—BSMART allows reading of data in binary format. The
function readdata() is responsible for such a conversion. The resulting MATLAB data is a three
dimensional array in a format of “time points×channels×trials”. The converted sample data set,
for example, is an array of 18×15×137. The inverse operation to export MATLAB data into binary
data can be done by the function writedata().

3.2.2. Data Preprocessing—Four types of preprocessing are available in BSMART. The
function pre_sube() subtracts the trial-ensemble mean of each channel from the single-trial
time series of that channel. The function pre_sube_divs() not only subtracts the trial-ensemble
mean, but also normalizes variance by dividing each single-trial time series of each channel
by the trial-ensemble standard deviation of that channel. For each channel, the function
pre_subt() subtracts the temporal mean and the function pre_subt_divs() subtracts the temporal
mean and also divides each trail by the temporal standard deviation. Note that the specific
requirements for data preprocessing are task dependent. For example, the step of variance
normalization (in pre_sube_divs() and pre_subt_divs()) should be avoided in studies where the
comparison of signal powers in different conditions is of primary interest. The four available
functions may be repeated several times, or in different combinations, until the appropriate
preprocessing effects are obtained.

For the sample data set, the preprocessing steps followed the methods proposed in (Ding et al.,
2000), which is shown in the sample scripts of Table I. We will assume that the analysis in the
following description is based on this preprocessed data set.

3.2.3. AMAR Data modeling—To obtain an appropriate order of the model, BSMART
provides the aci_test(), which computes the AIC measure function for model order estimation.
Given a fixed time window length, this function returns the AIC measure (equation (2.2)) as
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a function of model order. The maximum order to be tested is provided by the user as an input
parameter. The actual calculation of the AIC measure is performed by the function opssaic(),
which is implemented in C-code. For the analysis of the sample data, we fixed the sliding time
window length at 60 ms (12 points) and chose order eight as the maximum order. Figure 4
shows the AIC measure at each model order when the time window was centered at 45 ms
(middle of the time series). The curve is almost flat beyond order four. In fact, the shape of the
curve is extremely similar for all time windows in the trial. We then chose a value of four as
the model order since the AIC measure reached the minimum value of −3.20 at this order.

In the next step the model coefficients (Am) and the covariance matrix of noise (V) can be
estimated by one of the four functions in BSMART. The function mov_mul_model() estimates
the AMAR model. The model order, time window length, starting and ending points of the
moving window are provided to the function as input parameters. Actually, the function
mov_mul_model() accomplishes model estimation by calling the C-coded function opssmov
(), which outputs Am and V as two MATLAB variables ‘A’ and ‘Ve’ at each time window position.
The function mov_bi_model() is similar to mov_mul _model() except that it estimates a
bivariate AR model (cf. §2.1). As a special case of the above two functions, the functions
one_mul_model() and one_bi_model() can be used to estimate the multivariate AR model or
bivariate AR model, respectively, in a specified window. As an example of applying the
function mov_mul_model(), we chose a window length of 12 points (sampling at 200 Hz) and
the values of 1 and 18 as the beginning and ending points, respectively (to cover the entire
trial). The estimated coefficients and noise variances of the AR model of order five (based on
the above AIC measure) corresponding to each time window were saved in two files
A_mov.mat and Ve_mov.mat.

For the whiteness test, given the data set, the window length and model order, the function
whiteness_test() returns the percent of correlation coefficients in relation to the residual noise,
after invoking the C-code core function opsswhite(). The stability test can be implemented by
calling function lyap_batch(). This function requires the model coefficients and noise
covariance matrix as the inputs and returns the SI values for each time window. The function
consistencytest() is designed for the consistency test. It returns the measure of PC defined in
equation (2.4). As an example, Figure 5 shows the results of the model validation regarding
the model specified above. It can be seen that in the whiteness test the percent of correlation
coefficients was well below 5%, indicating the whiteness of the residuals. The stability of the
model was verified by the negative SIs. High consistency of the model was observed as the
PCs were near 80%. Therefore, according to the test results above, we concluded that the model
was suited for the sample data set.

It should be noted that, in practice, the procedures of order estimation, time window length
selection, model estimation and validation may be repeated several times in order to tune the
model for the best fit to the data.

3.2.4. Estimation of Spectral Quantities—The auto power spectrum of each channel can
be estimated either from a multivariate AR model by calling the function autopower() or from
a bivariate model by calling the function bi_power(). In both cases, the model coefficients and
noise covariance matrices, the number of frequency bins and the sampling frequency are
required as the input parameters. However, bi_power() identifies the coefficients and matrices
by using the directory pathway, as there are many models produced by the bivariate model
approach. Figure 6 demonstrates the usage of the “Power View” of the power spectra of
channels 9, 10 and 11 in the sample data set by calling the function po_view(). The results can
be shown in the time-frequency plane (the left column) to expose the time-varying
characteristic of the power spectrum. The user can also focus on the spectrum obtained in the
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time window centered at a time of interest (the right column). We note that all channels exhibit
peaks near 20 Hz.

Similar to the methods for finding the power spectrum, the coherence spectrum can be obtained
based on either the multivariate model by calling the function paircoherence() or the bivariate
model by calling the function bi_coherence(). Figure 7 shows the “Coherence View” of the
results via the function co_view().

The function mov_bi_ga() calculates the Granger causalities for a series of time windows, while
the function one_bi_ga() finds the causal measure at a fixed time window. The user can use
BSMART to specify two channels of interest and obtain Granger causality between them. The
specification of a channel pair is done by forming a MATLAB array only including the data from
these two channels. This procedure may be repeated until the causal influence has been obtained
in both directions for all channel pairs. Figure 8 demonstrates the results of the Granger
causality spectra by calling mov_bi_ga(). The results are shown in “Granger Causality View”
via the function ga_view(). The arrangement of the visualization is similar to that shown in
Figure 6 and Figure 7, except that the causal influence is bidirectional and two sets of plots are
required for each channel pair. However, the causality measures from Channel 10 to Channel
9 and from Channel 10 to Channel 11 are not shown, because all values were smaller than an
arbitrarily given threshold (= 0.03). In future version of BSMART, an automatic algorithm for
identifying significant peaks will be included (M. Kaminski, Ding, Truccolo, & Bressler,
2001).

3.2.5. Coherence and Granger Causality Networks—Two network analysis tools are
available in BSMART, “Coherence Network” and “Granger Causality Network”, to facilitate
identification of network patterns. The corresponding BSMART functions are conetwork() and
ganetwork(). Since the usage of these two functions is quite similar, we next describe the tools
in a parallel way.

Information about the channels of interest is provided to the functions as input parameters.
These channels are usually identified as those involved in coordinated interactions. The task
of channel identification can often be done with the above tools for estimating spectral
quantities. For example, the power spectra (Figure 6) of channels 9, 10 and 11 showed peaks
near 20 Hz within the beta frequency (14−30 Hz) band. Their coherence spectra (Figure 7) also
displayed peaks within the beta frequency range. In addition, the Granger causality measures
shown in Figure 8 indicated strong causal influence among these three channels within the
same frequency band. Thus, a user may choose these three channels as the channels of interest.
Both functions of network analysis acquire this information through an input parameter ‘chan’
and two frequency parameters, ‘fre1’ and ‘fre2’, relating to the lower and uper limits of the
frequency range. For analysis of the sample data, these parameters were set as chan = [9,10,11],
fre1 = 14 and fre2 = 30.

The functions also require thresholds to identify significant peaks in the coherence and
causality spectra. In practice, these thresholds can be determined by a variety of ways, such as
baseline statistics (Ding et al., 2000) or permutation testing (Brovelli et al., 2004). In the latter,
for instance, a new data set can be constructed by randomly and independently shuffling the
trial order of the real time series data from each channel, and can then be supplied to BSMART.
Then spectral measures are derived from models fitted to the surrogate data. Carrying out this
procedure many times can yield an empirical distribution for the causal measures, and a
significant peak may thus be identified according to this distribution. For the sample data, we
simply set the thresholds as a fraction of the maximum coherence or causality peak, as described
below. Given a frequency range and the time window location, the significant peaks are
subsequently defined as those measures that are above threshold at a particular time. For
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example, we chose a threshold of thre = 0.160 for identifying significant coherence peaks. The
threshold is close to 1/3 of the maximum coherence found in channels 9, 10 and 11 (Figure 7.
C2). Similarly, we chose a threshold of thre = 0.075 for significant Granger causality peaks,
which is about 1/3 of the maximum Granger causality (Figure 8. D2). Other parameters, such
as the coherence, causality measures and time window positions, are provided as input
arguments to the functions conetwork() and ganetwork() as well.

The output of the function is a plot of a “network” graph, consisting of channel symbols and
lines/arrows connecting them. In a coherence network, a line connecting two channels means
that significant peaks have been identified in a certain frequency range and at a specified time.
In a Granger causality network, an arrow indicates significant causal influence from one
channel to the other. To display graphs, the positions of the channel symbols should be
identified in an input parameter ‘location’. The parameter ‘location’ is a two-dimensional array
defining the x- and y-coordinates of each channel symbol on the graph. A detailed description
of the construction of ‘location’ parameters is provided in the help documentation.

We show the coherence and Granger causality networks among Channels 9, 10 and 11 in Figure
9 at two time instants (30 ms and 55 ms). Note the different patterns of interaction at different
times, and that the causality networks display directional influence information that is not
revealed in the coherence network.

4. Summary and discussion
We have described BSMART, a new open source MATLAB/C toolbox for the spectral analysis of
multichannel neural time series. The uniqueness of the package is the accessibility of Granger
causality analysis at a sub-second time scale. The tools available in the software have been
developed for data format conversion, signal preprocessing, AR data modeling, spectral
quantity estimation, network analysis and visualization. All these functions, as well as the
functions for calling help documents, have been integrated into a simple and user-friendly GUI
environment.

A number of unique challenges exist in the analysis of multichannel neural time series. First,
the multivariate nature of the data requires that individual channels be treated as parts of a
whole, interacting system. Second, it is often necessary to examine neural activity on a brief
time scale on the order of 40−80 ms (or possibly shorter) to capture the rapid dynamics of
behavioral and cognitive function. Third, neural data sets are often event-related, and typically
consist of multiple trials during which a single task is often repeated hundreds, even thousands,
of times. The BSMART software package is specifically developed to meet these challenges.
While the package as currently available is designed to analyze multi-trial event-related data
sets, it could potentially be used for the analysis of a very long single trial data that is not event-
related. In that case, the long time series could be modeled as one realization generated from
an underlying stationary stochastic process, or it could be broken into shorter segments,
corresponding to trials, for which stationarity would be required both within and across
segments, as it is with event-related data.

The technique of AMAR modeling provided in this software is mainly derived from linear
systems theory. Although it is generally accepted that nonlinear effects are abundant in the
nervous system, linear effects have been found to be the most robust when dealing with,
especially, large-scale neurodynamics such as interactions between discrete brain areas (Kelly,
Lenz, Franaszczuk, & Truong, 1997; McIntosh et al., 1994; Sporns, Tononi, & Edelman,
2000). When properly applied, our tools can reveal characteristic information about the patterns
of interactions among different brain regions, which has been demonstrated in a series of studies
concerned with cognitive processes (Brovelli et al., 2004; Ding et al., 2000; Liang, Ding, &
Bressler, 2000; Liang, Ding, Nakamura, & Bressler, 2000). Furthermore, from the view of
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software engineering, the linear approach can generally avoid substantially intensive
computation and mathematical complexity incurred by nonlinear approaches, so as to enhance
overall performance of the code. In addition, Granger causality can be naturally derived from
the AMAR model to evaluate causal influences and directions of driving among multiple neural
signals (Liang, Ding, & Bressler, 2000; Liang, Ding, Nakamura et al., 2000).

The core functionality of the software was implemented with C-code. These functions include
opssfull() for estimating fixed-window multivariate AR models, opssmov() for estimating
moving window multivariate AR models, opssaic() for estimating the AIC measure, and
opsswhite() for testing the whiteness of the residual signal. The original purpose of adopting
this strategy was to take advantage of the efficiency of the C language to increase computational
speed. Moreover, since large data sets are managed by C-code, the problem of insufficient
memory, a problem that occurs often when processing large data structures in MATLAB, should
not be a serious concern in BSMART. Upon the completion of model estimation by C, only a
small set of model coefficients and noise covariance matrix are loaded into MATLAB space. For
k channels and a 100-bin frequency spectrum (1 Hz resolution for 200 Hz sampling rate), for
instance, the size of the spectral matrix for a single time window will be k×k×100, which
amounts to k2×100×8×2 bytes (the 8 due to 64-bit double-precision for a number in Matlab,
and the 2 due to the complex numbers of the spectral matrix). Therefore, analyzing a 128-
channel data set requires about only 26 MB, which can usually be well managed on a PC
equipped with more than 512 MB RAM. We are aware, however, that with the rapid
advancement of computer technology and the release of new versions of MATLAB, the problems
of processing speed and memory limitation will not be a major concern in the future. We are
intending to rewrite the core functionality with MATLAB language in future release of the software,
so as to provide the user with a coherent language environment fully based on the MATLAB

platform.

Providing an open-source framework for this software package, we hope that various functions
developed in other labs working with multichannel neural signals will be contributed and
integrated into this package. Toward this goal, we will build plug-in facilities to allow well-
tested functions or user-customized gadgets appear automatically in BSMART menu. We
intend for these efforts to help facilitate the rapid distribution of advanced tools of time series
analysis in the neuroscience research community.
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Figure 1.
Functional block diagram of BSMART showing the main computational blocks and the
algorithmic options. The core tools are shown in the dash-edged boxes. Different routines of
the tools and help demonstrations can be invoked either from GUI environment or MATLAB

command window.
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Figure 2.
Top (shadowed) and second level menu structure of BSMART. The six main menus were
designed to match different tasks of processing data and for common display functions. The
dotted lines separate functionally different submenus.
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Figure 3.
Screen capture of a sample BSMART session running under Windows. Users call different
functional blocks from the GUI interface (lower left) and input parameters via ‘pop-up’
parameter selection window (upper left). The results can be visualized with different plots such
as waveform plot, time-frequency plot and network map (center and right).
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Figure 4.
The AIC as a function of model order, computed in a 60-ms time window (12 points at the
sampling rate of 200 Hz) centered at 45 ms.
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Figure 5.
Results of model validation for the sample data set: (A) whiteness test; (B) stability test; and
(C) consistency test.
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Figure 6.
Auto power of the sample data set obtained by using the AMAR model. Time-frequency plots
are shown in the left column and single spectra in the right column. The times of the single
spectra in the right column are indicated by asterisks in the time-frequency plots. In panel A,
(A1) shows the time-frequency plot of channel 9, and (A2) shows the spectrum of the time
window centered at 55 ms, where the maximum power peak is found. Panel B shows the time-
frequency plot of channel 10 and the spectrum of the window centered at 35 ms. Panel C shows
the time-frequency plot of channel 11 and the spectrum of the window centered at 50 ms.
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Figure 7.
Ordinary coherence spectra among channels 9, 10 and 11 of the sample data set obtained by
using the AMAR model. Time-frequency plots are shown in the left column and single spectra
in the right column. The times of the single spectra in the right column are indicated by asterisks
in the time-frequency plots. In panel A, the time-frequency coherence plot between channels
9 and 10 is shown in (A1), and (A2) shows the specific coherence spectrum of the window
centered at 50 ms, in which the maximum coherence is reached. Panel B shows the time-
frequency coherence plot between channels 9 and 11 and the coherence spectrum of the window
centered at 55 ms. Panel C show coherence between channels 10 and 11, and the coherence
spectrum of the window centered at 50 ms.
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Figure 8.
Directional influence measured as Granger causality among channels 9, 10 and 11. Time-
frequency plots are shown in the left column and single spectra in the right column. The times
of the single spectra in the right column are indicated by asterisks in the time-frequency plots.
Panel A shows the causality from Channel 9 to Channel 10, where (A1) plots the time-
frequency Granger causality plot and (A2) shows the spectrum in the time window centered
at 50 ms, in which the maximum Granger causality was found. The causality from channel 9
to channel 11 is shown in panel B, where (B2) is the causality spectrum at 55 ms. Panel C and
panel D show the causal influence from channel 11 to channel 9 and channel 11 to channel 10,
respectively. (C2) is the spectrum at 35 ms and (D2) is the spectrum at 40 ms.
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Figure 9.
Coherence and Granger causality networks are shown in panel A and panel B, respectively,
where (A1) and (B1) display the networks for the time window centered at 30 ms, and (A2)
and (B2) for the window centered at 55 ms. Channel symbols circled in solid lines denote the
channels under examination.
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Table I
Sample BSMART processing script. This script is an example of preprocessing steps. The Matlab data ‘dat’ (saved as
‘test71.mat’) contains the sample data set (described in the User's Guide and available for download). Script 1 loads
the saved data set into Matlab working space. Script 2 and Script 3 complete the preprocessing steps proposed by Ding
et al. (Ding et al., 2000). Specifically, function pre_subt_divs() in Script 2 removes the temporal mean from each LFP
trial and divides it by the temporal standard deviation (Step (i) in Ding et al.). Function pre_sube_divs() in Script 3
performs the same action but uses ensemble mean and ensemble standard deviation (Steps (ii) and (iii)). Finally, Script
4 plots the waveforms of the preprocessed data set by calling the sigplot() drawing function with a parameter of sampling
rate ‘fs’. Function sigplot() is modified from eegplot() in EEGLAB toolbox (Delorme & Makeig, 2004). Note the
permutation operation performed before calling sigplot(). This is because sigplot() requires that the format of data be
“channels×points× trials”, but ‘dat’ is in the format of “points×channels×trials”.

1. » load test71.mat
2. » dat1 = pre_subt_divs(dat); % (i) process temporal mean and STD
3. » dat2 = pre_sube_divs(dat1); % (ii), (iii) process ensemble mean and STD
4. » dat3 = permute(dat2,[2 1 3]); fs = 200; sigplot(dat3,‘srate’,fs); % chart view
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