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    Leukemia, lymphoma, and myeloma together 
account for  � 500,000 deaths per year world-
wide ( 1 ). HLA-matched allogeneic stem cell 
transplantation (allo-SCT) is a widely applied 
immunotherapeutic approach for several of these 
hematological malignancies. The therapeutic 
eff ect of allo-SCT is largely mediated by allore-
active donor T cells directed at polymorphic 
peptides presented by HLA molecules on the 
recipient ’ s malignant cells ( 2 ). These polymorphic 
peptides, also known as minor histocompatibil-
ity antigens (mHags), are frequently derived from 
cellular proteins encoded by allelic genes on au-
tosomal chromosomes. Although several mHags 
are expressed ubiquitously, some mHags are ex-
clusively expressed on hematopoietic cells and 
their malignant counterparts ( 2 – 4 ). Hence, tar-

geting donor T cells toward such hematopoietic 
mHags is considered an ideal strategy to establish 
specifi c antitumor eff ects after allo-SCT ( 2, 4 ). 
Because CD8 +  T cells are traditionally considered 
as the eff ector cells of antitumor responses, over 
the past years the major focus was to identify 
hematopoietic mHags presented to CD8 +  CTLs 
( 5 – 12 ). Nonetheless, several reports, including 
ours, indicate that not only CD8 +  CTLs but also 
CD4 +  T cells may possess immunotherapeutic 
potential ( 13 – 15 ). Yet no hematopoietic mHag 
presented by HLA class II has been identifi ed, 
partly because the available techniques are not 
well suited for identifi cation of such antigens. 
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 Some minor histocompatibility antigens (mHags) are expressed exclusively on patient 

hematopoietic and malignant cells, and this unique set of antigens enables specifi c target-

ing of hematological malignancies after human histocompatability leucocyte antigen 

(HLA) – matched allogeneic stem cell transplantation (allo-SCT). We report the fi rst hema-

topoietic mHag presented by HLA class II (HLA-DQA1*05/B1*02) molecules to CD4 +  T cells. 

This antigen is encoded by a single-nucleotide polymorphism (SNP) in the B cell lineage-

specifi c CD19 gene, which is an important target antigen for immunotherapy of most B cell 

malignancies. The CD19 L -encoded antigen was identifi ed using a novel and powerful ge-

netic strategy in which zygosity-genotype correlation scanning was used as the key step for 

fi ne mapping the genetic locus defi ned by pairwise linkage analysis. This strategy was also 

applicable for genome-wide identifi cation of a wide range of mHags. CD19 L -specifi c CD4 +  

T cells provided antigen-specifi c help for maturation of dendritic cells and for expansion of 

CD8 +  mHag-specifi c T cells. They also lysed CD19 L -positive malignant cells, illustrating the 

potential therapeutic advantages of targeting this novel CD19 L -derived HLA class II –

 restricted mHag. The currently available immunotherapy strategies enable the exploitation 

of these therapeutic effects within and beyond allo-SCT settings. 
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after the publication date (see http://www.jem.org/misc/terms.shtml). After six 
months it is available under a Creative Commons License (Attribution–Noncom-
mercial–Share Alike 3.0 Unported license, as described at http://creativecommons
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More importantly, several of the apparently hematopoietic 
mHags recognized by CD4 +  T cells are not derived from 
genuine hematopoietic antigens. For instance, the recently 
identifi ed autosomal mHag presented to CD4 +  T cells is de-
rived from the broadly expressed phosphatidylinositol 4-kinase 
type II  �  gene ( 16 ). 

 We previously isolated an HLA-DQA1*05/B1*02 – re-
stricted mHag-specifi c CD4 +  T cell (clone 21) from the PBMC 
of a multiple myeloma patient after HLA-identical allo-SCT. 
This clone recognized recipient-derived EBV-transformed B 
cells (EBV-transformed lymphoblastoid cell lines [EBV-LCLs]) 
but not the nonhematopoietic fi broblasts and stromal cells, 
suggesting that its target antigen was encoded by a hematopoi-
etic gene (unpublished data). To identify the mHag recognized 
by clone 21, we developed a nonlaborious but powerful ge-
netic strategy in which a zygosity-genotype correlation analysis 
was used for fi ne mapping of the genomic locus mHag identi-
fi ed by classical pair-wise two-point linkage analysis. The new 
gene-mapping method was also genomewide applicable for a 
broad range of mHags. Further investigation on the identifi ed 
locus revealed that the antigen recognized by clone 21 was 
encoded by a single-nucleotide polymorphism (SNP) in the 
B cell lineage-specifi c  CD19  gene, which is a highly important 
target antigen for immunotherapy of almost all B cell malig-
nancies. The CD19 L -specifi c CD4 +  T cells not only mediated 
antigen-specifi c help for the induction and expansion of CD8 +  
mHag-specifi c T cells but also displayed antigen-specifi c and 
HLA-restricted lysis of CD19 L -positive malignant cells, illus-
trating the potential therapeutic advantages of targeting this 
CD19 L -derived HLA class II – restricted mHag. 

  RESULTS  

 Genetic mapping of the mHag recognized by HLA 

class II – restricted T cell clone 21 

 To identify the mHag recognized by clone 21, we started with 
a genetic approach, the pair-wise two-point linkage analysis. 
In this method, the genomic locus of the mHag is identifi ed 

  Figure 1.     Five-step identifi cation of the SNP encoding for the 

mHag recognized by clone 21.  (A) mHag phenotypes of CEPH families 

(indicated with Utah database ID numbers) were determined using meth-

ods described in the Materials and methods section. CEPH family 1362 is 

depicted as an example (male, square; female, circle; mHag + , black; mHag  �  , 

white; undetermined, gray). Phenotypes of families 1331, 1408, and 1416 

are given in Fig. S1 (available at http://www.jem.org/cgi/content/full/

jem.20080713/DC1). (B) Genome-wide pairwise two-point linkage analysis 

using the mHag phenotypes from families 1331, 1362, and 1408. Multiple 

signifi cant lod scores  > 3 (at a recombination fraction of  �  = 0.001) were 

identifi ed on chromosome 16 in the depicted region. (C) Narrowing of the 

mHag locus using haplotype data from family 1416. As depicted, the mHag +  

children 1189 and 2387 inherited the dark gray recombinant haplotype 

from the father, who is also mHag + . Thus the mHag locus was narrowed 

to the 16.8-cM region, which is defi ned by the shared part of the paternal 

allele of children 1189 and 2387. (D) Zygosity-genotype correlation anal-

ysis for fi ne mapping the mHag locus. The r 2  values in the y axis represent 

the correlation between the mHag zygosity of 15 CEPH individuals 

(Table S1) with the genotypes for 4146 HapMap SNPs in this region. Each 

bar represents a single SNP. Two SNPs (rs7184597 and rs3924376) with 

100% correlation (r 2  = 1) are indicated. (E) The location of rs7184597 and 

rs3924376 (both light gray) in the intronic regions of the  RABEP2  gene, 

which is neighbored by the  CD19  gene. Also indicated are the nine non-

synonymous or transcription/translating-altering SNPs in these two 

genes. The mHag phenotypes and zygosities (Pheno./Zyg.) and the SNP 

genotypes for fi ve informative CEPH individuals, the SC donor, and the SC 

recipient are depicted ( � , deletion of the base pair). Only rs2904880 

matched exactly with the phenotypes.   
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According to HapMap, these two SNPs were located within 
the same linkage disequilibrium (LD) block, posing the possi-
bility that the SNP encoding for our mHag could also be 
located in this block. 

 Identifi cation of the CD19 L -derived mHag 

 Within the LD block defi ned by rs7184597 and rs3924376, 
 RABEP2  and  CD19  were the only genes with hematopoi-
etic-restricted expression. Therefore, we explored whether 
 RABEP2  and  CD19  genes contained nonsynonymous or 
transcription/translation-altering SNPs that were linked with 
the SNPs rs7184597 and rs3924376. Genotyping of fi ve rep-
resentative CEPH family members for nine additional SNPs 
in  RABEP2  and  CD19  ( Fig. 1 E ) revealed a single SNP, 
rs2904880, that was fully matching with the LD block defi ned 
by rs7184597 and rs3924376. The substitution of guanine for 
cytosine involved in this SNP causes a change of the valine (V) 
at position 174 into a leucine (L) within the third exon of 
CD19 ( Fig. 2 A ).  The fact that the SC recipient was positive 
for both CD19 L - and CD19 V -encoding alleles, whereas the 
SC-donor lacked the CD19 L -encoding allele ( Fig. 1 E ), sub-
stantiated the idea that the mHag could be derived from the 
CD19 L  allele. Confi rming this possibility, clone 21 showed 
strong reactivity against donor EBV-LCLs transduced with a 
CD19 L -encoding vector but not with an empty vector ( Fig. 
2 B ). Furthermore, clone 21 showed a dose-dependent reactiv-
ity against a 15-meric CD19 L  peptide PEIWEGEPPC L PPRD, 
but not against the allelic counterpart peptide, demonstrating 
the crucial importance of leucine at position 174 for the 
immunogenicity of the CD19 L -derived mHag ( Fig. 2 C ). 
Finally, testing the reactivity of clone 21 against the overlap-
ping 15-mer peptides derived from the polymorphic region 
revealed that only those peptides containing the core sequence 
WEGEPPCLP were recognized ( Fig. 2 D ). Analysis of eight 
other CD4 +  mHag-specifi c T cell clones isolated from the 
same patient revealed the CD19 L  specifi city of three addi-
tional T cell clones (unpublished data). All CD19 L -specifi c 
T cell clones used the same TCR V � 16-CDR3 sequence 
(unpublished data). We could trace this CD19 L -specifi c TCR 
in the patient  � 3 mo after SCT, concomitant with the occur-
rence of an acute graft versus host disease (GvHD) grade III 
and a strong anti-tumor response, resulting in signifi cant re-
duction of serum M protein levels ( Fig. 2 E ). The TCR signal 
disappeared rapidly after starting immunosuppressive treatment 
but reappeared soon after tapering immunosuppression, indi-
cating the long-term persistence of CD19 L -specifi c T cells. Dis-
continuation of immunosuppression led to the development 
of an extensive and steroid-resistant chronic GvHD, despite 
the disappearance of CD19 L -specifi c TCR signal from periph-
ery ( Fig. 2 E ). 

 Genome-wide application of the novel mHag fi ne-

mapping strategy 

 Our novel strategy was highly eff ective to fi ne map the ge-
netic locus of the CD19 L -mHag defi ned on chromosome 16. 
Because it would be more convenient if our strategy could be 

by association of thousands of predefi ned genetic markers 
to mHag phenotypes (mHag +  or mHag  �  ) in large pedigrees 
registered in the Centre d ’ Etude du Polymorphisme Humain 
(CEPH) ( 17 ). The CEPH families are suitable for this ap-
proach because not only have their genomes been screened 
for genetic markers but also EBV-LCLs are available from 
each individual. Upon transduction with the appropriate 
HLA molecules, these cell lines are used as APCs for mHag-
specifi c T cells to determine the mHag phenotype of the 
CEPH individuals. Thus, we fi rst tested the reactivity of clone 
21 against (HLA-DQA1*05/B1*02 transduced) EBV-LCLs 
of several CEPH families ( Fig. 1 A  and Fig. S1, available at 
http://www.jem.org/cgi/content/full/jem.20080713/DC1) 
and performed the pairwise two-point linkage analysis in 
which the mHag phenotype data were correlated with pre-
defi ned genetic markers.  Analysis of the data from three families 
(1331, 1362, and 1408;  Fig. 1 A  and Fig. S1) revealed a sig-
nifi cant linkage between the mHag phenotypes and a large 
cluster of markers on chromosome 16, with multiple lod scores 
 > 3 ( �  = 0.001;  Fig. 1 B ). According to the CEPH database, two 
children (1189 and 2387) in a fourth family (1416) displayed 
a crossing over or recombinant haplotype in this region. As 
depicted in  Fig. 1 C , the mHag in this family was inherited to-
gether with the indicated paternal allele because the mHag  �   
child 1197 inherited the other allele from the mHag +  father. 
Thus, because the two children with recombinant haplotypes 
were mHag + , the mHag gene should be located in the shared 
part of their paternal allele, between markers D16S3093 and 
D16S3034. This area was 16.8 cM on the Marshfi eld Map 
and contained 270 genes according to National Center for 
Biotechnology Information Map Viewer. 

 Development of a novel strategy for fi ne mapping 

of the mHag locus 

 The identifi ed mHag locus in chromosome 16 contained too 
many genes to be analyzed with previously reported strategies 
( 8, 9, 17 ). Therefore, we sought an alternative strategy. Over 
the last decade, millions of SNPs have been genotyped in 
CEPH individuals by the International HapMap Project 
(http://www.hapmap.org/) to facilitate the identifi cation of 
polymorphic genes associated with human diseases ( 18 ). We 
hypothesized that direct correlation of mHag phenotypes 
with the HapMap SNP genotypes might be useful to fi ne 
map the genetic locus of our mHag. From the previous link-
age analyses, we already knew the mHag phenotype of 23 
CEPH individuals included in the HapMap databases. For 15 
of these individuals, we also could deduce the mHag zygosity 
(+/+, +/ � , or  � / � ) from the inheritance pattern of the 
mHag in the pedigrees (Fig. S1 and Table S1). Thus, using a 
specifi c software that can correlate the zygosity information with 
the SNP genotypes, we correlated the mHag zygosity infor-
mation of 15 CEPH individuals with the 4146 HapMap SNPs 
present in the defi ned region. Despite the seemingly too low 
numbers of CEPH individuals entered in the analysis, we found 
a 100% correlation between the mHag zygosities and the geno-
types of two intronic SNPs (rs7184597 and rs3924376;  Fig. 1 D ). 
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the mHag zygosity of eight additional CEPH individuals from a 
recent HapMap release (public release 22), which included the 
genotypes for the CD19 L -encoding SNP. Indeed, by analyz-
ing the data from 23 CEPH individuals we identifi ed the 
precise mHag locus ( Fig. 3 ) without any other false positive 
100% correlations, demonstrating the feasibility of genome-wide 
application of our strategy.  

directly executed on a genome-wide basis, we correlated the 
mHag zygosity of 15 CEPH individuals with the complete 
set of HapMap SNPs from all chromosomes (public release 21a). 
This fi rst attempt revealed, in addition to the correct locus, 
several other 100% false-positive correlations throughout the 
genome (unpublished data), suggesting that mHag zygosity data 
from more individuals was required. Therefore, we extracted 

  Figure 2.     CD19 L  encodes for the mHag recognized by clone 21.  (A) The  CD19  gene with rs2904880 in the third exon encoding a valine (V) to leu-

cine (L) substitution at position 174. (B) IFN- �  response of clone 21 to mHag  �   donor (Do) EBV-LCLs transduced either with an empty vector (mock) or 

with the CD19 L -encoding vector. Response to mHag +  recipient (Rt) EBV-LCLs (LCLs) is depicted as positive control. The mean and SEM of three experi-

ments are depicted. (C and D) IFN- �  response of clone 21 toward serial concentrations of 15-mer peptides derived either from CD19 L  ( � ) or from CD19 V  

( � ; C) or toward CD19 L -derived overlapping 15-mer peptides (D). Donor EBV-LCLs were used as APCs. The core sequence recognized by clone 21 is high-

lighted in gray. Error bars represent the SEM of triplicate cultures. (E) In vivo presence of CD19 L -specifi c clone 21. Genomic DNA isolated from patient 

PBMCs at the indicated days after allo-SCT was used to amplify the TCR of clone 21. V � 16-specifi c PCR was used as positive control. Genomic DNA from 

clone 21 (cl.21) and third-party PBMCs (irrel.) were used as positive and negative controls, respectively. Also indicated are the severity of acute and 

chronic GvHD, the serum M protein levels, and the immunosuppressive prednisone treatment during the monitoring period.   
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ful for mapping of mHags with frequencies between 10 and 
85%. The power beyond these limits decreased signifi cantly. 

 A potential technical problem of genetic analyses is phe-
notyping errors. Therefore, we also questioned whether our 
approach still has any power if the datasets would contain  � 10% 
false-positive phenotypes. Calculations revealed that such er-
rors cause a certain frequency-dependent reduction in the r 2  
values (Fig. S2, available at http://www.jem.org/cgi/content/
full/jem.20080713/DC1). Nonetheless, we evaluated whether 
these calculated r 2  values could be used as threshold to dis-
criminate true and false correlations by reexecuting the anal-
yses with 149 SNPs after introducing 7 – 10% false-positive 
phenotypes in the datasets. These analyses resulted in the suc-
cessful mapping of 96/124 (77%) mHags with frequencies of 
10 – 85% and only 2/10 SNPs with frequencies of 90% ( Fig. 5 B ), 

 The overall power of the novel mHag fi ne-mapping strategy 

 To determine whether our method is able to locate the ge-
nomic locus of other mHags, we fi rst selected six known clini-
cally relevant mHags (Table S2, available at http://www
.jem.org/cgi/content/full/jem.20080713/DC1). After deriv-
ing the zygosity of 14 CEPH trios (father-mother-child) for 
these mHags from the HapMap database, we executed a series 
of correlation analyses by including data from an increasing 
number of trios. The results for the representative example 
mHag HMSD are depicted in  Fig. 4 .  Although the analysis of 
the data from seven trios revealed several loci with 100% corre-
lations, false-positive correlations were eff ectively reduced by 
entering data from more trios. Finally, the correct mHag locus 
was revealed after analyzing the data from 11 trios. Similarly, 
the genomic locus of the other fi ve mHags could be identifi ed 
after analysis of, at most, 14 trios ( Table I ).  These successfully 
mapped mHags displayed frequencies between 35 and 70%. As 
there are not many known mHags beyond these ranges, in fur-
ther evaluation, we analyzed 149 nonsynonymous nonlinked 
HapMap SNPs with frequencies between 5 and 95% (Table S3) 
as if they are encoding for immunogenic mHags. As depicted in 
 Fig. 5 A , we successfully mapped 121/124 mHags with fre-
quencies of 10 – 85%, 4/10 mHags with frequencies of 90%, and 
1/15 mHags with frequencies of 5 or 95% using 11 – 30 trios.  
These analyses illustrated that our approach was highly power-

  Figure 3.     Genome-wide mapping of the CD19 L -mHag locus by 

zygosity-genotype correlation analysis.  The r 2  values on the y axis 

represent the correlation between the mHag zygosities of 23 CEPH indi-

viduals with the genotypes for all HapMap SNPs (public release 21a). 

15 of these CEPH individuals are depicted in Table S1. For eight other indi-

viduals that were also phenotyped by clone 21 recognition, the zygosity 

information was derived from the rs2904880 genotype information in the 

latest HapMap release (public release 22; unpublished data). Each bar 

represents a single SNP; only r 2  values  > 0.5 are shown. Chromosome 16 

was analyzed in more detail (bottom). All r 2  values are depicted.   

  Figure 4.     Retrospective genome-wide mapping of the HMSD-

mHag locus by zygosity-genotype correlation analysis.  The correlation 

analysis of the HMSD mHag, using zygosity data from 7 – 14 CEPH trios, is 

depicted as a representative example. On the y axis, r 2  values  > 0.5 are 

depicted representing the correlation between the HapMap-derived mHag 

zygosities of the CEPH individuals (Table S2, available at http://www.jem

.org/cgi/content/full/jem.20080713/DC1) and the indicated number of 

trios with their genotypes for all HapMap SNPs (public release 23). The 

single r 2  = 1 peak after analysis with 11 trios consisted of seven SNPs 

within the same LD block.   
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tify a wide range of HLA class I –  as well as HLA class II – re-
stricted mHags. 

 What may be the clinical importance of this novel HLA class 
II – restricted mHag? Like CD20, CD19 is a B cell lineage-spe-
cifi c molecule, with constitutive expression in acute and chronic 
B cell lymphoid leukemias, B cell lymphomas, and in a subset 
of acute myeloid leukemias. The expression of CD19 is rarely 
down-regulated in B cell malignancies. Furthermore, CD19 is 
not expressed in pluripotent stem cells ( 24 ). For these reasons, 
CD19 is widely considered to be an ideal target for immuno-
therapy of several B cell malignancies. Immunotherapy strategies 
based on CD19 antibodies (immunotoxins and chimeric TCRs) 
have been developed and have used both CD4 +  and CD8 +  
T cells as eff ector cells ( 25, 26 ). Numerous investigators have 
searched for HLA class I CTL epitopes on the CD19 molecule 
( 27 ). Although these approaches may be very benefi cial, we 
think that in an immunotherapy setting, targeting of CD19 with 
CD4 +  T cells also may provide several additional benefi ts; in our 
assays, the CD19 L -specifi c CD4 +  T cells not only mediated 
potent helper functions to activate DCs and stimulate CD8 +  
CTLs but also directly functioned as eff ector cells to lyse HLA-
matched CD19 L -positive malignant cells. Thus, immunotherapy 
with CD19 L -specifi c CD4 +  CTLs alone or in combination 
with CD8 +  T cells may permit the exploitation of both helper 
and eff ector functions whereby more eff ective and durable anti-
tumor responses may be established. Because CD19 is a B 
cell – specifi c molecule, CD19 L -specifi c therapy may be feasi-
ble not only within but also beyond the allo-SCT settings. The 
CD19 L  allele is expressed in 53% of the Caucasian population, 
and its antigen-presenting molecule HLA-DQA1*05/B1*02 
has a frequency of 15.3% in the Caucasian population. Thus, af-
ter an HLA-matched SCT,  � 2.3% of the donor-recipient pairs 
will be CD19 L  mismatched and eligible for a treatment with 
CD19 L -specifi c CD4 +  T cells or vaccination with peptide-loaded 
or gene-transfected DCs. This percentage can increase up to 8.1% 
(15.3  ×  53%) in an HLA-matched unrelated donor SCT setting 
or when patients are not transplanted. In all settings, adoptive 
immunotherapy with ex vivo – generated CD19 L -specifi c T 
cells may be feasible, in particular after generation of CD19 L -
specifi c T cells using the so-called TCR transfer approach ( 15 ). 

indicating that, despite signifi cant power loss at extreme allele 
frequencies, our approach may still be useful for the genomic 
mapping of mHags with frequencies between 10 and 85%, 
even if the datasets contain 10% false-positive phenotypes. 

 The immunotherapeutic potential of CD19 L -specifi c T cells 

 Finally, we explored the possible immunotherapeutic advan-
tages of targeting the CD19 L -encoded HLA class II – restricted 
antigen by testing the helper and eff ector functions of clone 
21. In a coculture system, antigen-specifi c activation of clone 
21 with the synthetic peptide or with mHag +  APCs facili-
tated antigen-dependent proliferation of a CD8 +  T cell clone 
specifi c for the mHag LRH-1 ( 9 ) ( Fig. 6 A ).  In another assay, 
clone 21 induced CD19 L  peptide-dependent maturation of 
HLA-DQ – matched DCs and polarized them to produce sig-
nifi cant levels of IL-12 ( Fig. 6 B ), which is considered essen-
tial for licensing DCs to induce CTL responses ( 23 ). Clone 
21 also maturated the DCs that were loaded with apoptotic 
CD19 L -positive EBV-LCLs ( Fig. 6 C ). In evaluation of its 
eff ector functions, clone 21 appeared to secrete high levels of 
granzyme-B and displayed antigen-specifi c cytotoxic activity 
against recipient-derived but not against donor-derived EBV-
LCLs ( Fig. 7, A and B ).  Furthermore, when tested against 
malignant cells derived from various B cell chronic lymphoid 
leukemia (B-CLL) patients, clone 21 produced signifi cant levels 
of IFN- �  ( Fig. 7 C ) and displayed signifi cant antigen-specifi c 
cytotoxic activity only toward HLA-matched and CD19 L -
positive malignant cells ( Fig. 7 D ). Collectively, these results 
indicated that upon adoptive transfer, CD19 L -mHag – specifi c 
CD4 +  T cells may not only provide eff ective help to other ef-
fector cells but may also directly contribute to an antitumor 
eff ect by lysing CD19 L -positive tumor cells. 

  DISCUSSION  

 In this paper, we describe the fi rst genuine hematopoietic mHag 
presented by HLA class II (HLA-DQA1*05/B1*02) mole-
cules to CD4 +  T cells. This antigen is encoded by a SNP in the 
B cell lineage-specifi c  CD19  gene. To identify the CD19 L -
encoded mHag, we developed a powerful genetic strategy, 
which is nonlaborious and genome-wide applicable to iden-

  Table I.    Retrospective genome-wide mapping of known mHag loci by zygosity-genotype correlation analysis 

mHag SNP Frequency 

 (literature)

Frequency 

 (in 14 trios)

Number of trios Useful number of 

individuals

Locus: number 

 of r 2  = 1 SNPs

Source

 %  % 

HMSD rs9945924 35.6 31 11 30 7 reference  12 

ACC-1 Y rs1138357 46.5* 47.6 10 23 8 reference  8 

ACC-2 rs3826007 44.5* 47.6 10 23 8 reference  8 

ADIR rs2296377 37 42.9 13 27 8 reference  20 

HA-8 rs2173904 70.2* 64.3 10 16 11 reference  21 

HB-1 Y rs161557 46.3* 14.3 14 41 1 reference  22 

Results of the correlation analyses for six mHags. Published phenotype frequencies are derived from Spierings et al. ( 19 ; *) or from the indicated reference. Analyses were 

performed as described in  Fig. 4 . Depicted is the minimal number of trios (Number of trios) resulting in only a single genome locus with 100% correlation, together with the 

number of CEPH individuals for whom zygosity data was available (Useful number of individuals). Also depicted is the number of SNPs with 100% correlation that was found 

at this genome locus (Locus: number of r 2  = 1 SNPs).
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phenotype frequencies of 10 – 85%. The basic idea behind our 
strategy is similar to a recently introduced method, which 
utilizes genome association scans after performing SNP array 
analysis on DNA samples pooled from mHag +  and mHag  �   in-
dividuals ( 28 ). A major advantage of our strategy is that it cov-
ers more SNPs. Although the other method can only analyze 
65% of the HapMap SNPs after performing 500,000 SNP ar-
rays, we analyze millions of HapMap SNPs covering the whole 
genome without even performing an SNP array. Furthermore, 
our strategy is less laborious. In our analyses, the genome-wide 

 What may be the impact of our mHag identifi cation strat-
egy? Our novel genetic approach involves a correlation anal-
ysis between mHag zygosities and HapMap SNP genotypes to 
locate the genetic locus of the mHag. Our results demonstrate 
that this approach is genome-wide applicable and able to pre-
cisely map the genetic locus of a wide range of mHags with 

  Figure 5.     Retrospective genome-wide mapping of nonsynonymous 

SNPs with various allele frequencies by zygosity-genotype correlation 

analysis.  Summary of correlation analyses for 149 HapMap SNPs (Table 

S3, available at http://www.jem.org/cgi/content/full/jem.20080713/DC1). 

From each SNP one of the alleles was designated to encode for a fi ctive 

mHag. For each 5% mHag frequency interval between 5 and 95%, and 

10, 5, or 4 mHags were analyzed. The analyses were executed for a data-

set without phenotyping errors (A) or with 7 – 10% false-positive pheno-

types (B). The false-positive phenotypes were introduced in the 

corresponding datasets by randomly changing  � / �  typings into +/ � , 

avoiding Mendelian segregation errors. The criterion for positive iden-

tification is r 2  = 1 at the genomic locus of the analyzed mHag without 

any r 2  = 1 false-positive hits at other genomic loci (A), or the criterion is 

r 2  is above the theoretical r 2  (Fig. S2, available at http://www.jem.org/cgi/

content/full/jem.20080713/DC1) at the mHag genomic locus without any 

false-positive r 2  above this value at irrelevant genomic loci (B). The tables 

show the number of mHags analyzed for each frequency indicated below 

in the fi gures, as well as the number of successfully identifi ed mHags. The 

fi gures show the number of used trios for only the successfully 

mapped mHags.   

  Figure 6.     The helper activity of CD19 L -specifi c clone 21.  (A) The 

LRH-1 – specifi c HLA-B7 – restricted CD8 +  clone cocultured with CD19 L -

negative or -positive HLA-B7/DQA1*05/B1*02 EBV-LCLs (LCLs) in the pres-

ence of its own epitope. Different dilutions of irradiated clone 21 were 

added in the cultures and in some conditions were supplemented with 

the 15-mer CD19 L  peptide. The proliferation of the LRH-1 – specifi c CD8 +  

clone after 48 h is depicted. Error bars represent the SEM of triplicate 

cultures. The proliferation in the presence of CD19 L -positive EBV-LCLs 

was signifi cantly higher than CD19 L - negative EBV-LCLs (*, P  <  0.05). 

(B and C) Immature DCs generated from HLA-DQ2 – matched monocytes 

loaded with 15-mer CD19 L  peptide PEIWEGEPPCLPPRD or irrelevant 

peptide LPPRDSLNQSLSQDL (irr.pept.; B) or with apoptotic CD19 L -negative 

EBV-LCLs (apCD19 Lneg -LCL) transduced with CD19 L  (apCD19 Lpos -LCL; C) 

were cultured with clone 21 (cl.21). Apoptosis was induced by incubation 

of EBV-LCLs with FasL. The CD4 +  mHag-specifi c T cell clone 3AB11 (irr.cl.) 

or CD40L-expressing fi broblasts were used as negative and positive con-

trols, respectively. DC maturation was assessed as described in Materials 

and methods.   
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 78% in the HLA-matched sibling setting or beyond 11 – 89% in 
the HLA-matched unrelated donor setting. Because the num-
ber of eligible patients will also be limited by HLA restriction, 
mHag frequencies beyond these limits are of little practical 
value for clinical application. Thus, our strategy, with suffi  cient 
power to identify mHags with frequencies of 10 – 85%, is actu-
ally very suitable for the identifi cation of a vast majority of 
mHags that are of high value for immunotherapy. 

 A frequent problem in genetic linkage analyses is pheno-
typing errors. In our approach, we devoted an extreme atten-
tion to avoid such errors because our analyses are executed with 
a very limited set of CEPH individuals. As phenotype errors 
will result in the reduction of correlation coeffi  cient, our stan-
dard criterion of r 2  = 1 to discriminate true-positive hits from 
false-positive ones cannot be applied for datasets containing 
phenotype errors. Yet our analyses with datasets containing 
10% false-positive phenotypes revealed that the reduction in 
correlation coeffi  cient can be calculated (Fig. S2) and that 
these calculated values could be used as threshold values to 
eliminate false hits without dramatically reducing the power 
of the analyses. Thus, our approach, with theoretically adjusted 
threshold values, may still be useful for identifi cation of clini-
cally relevant mHags even when phenotyping errors cannot 
be excluded. Nonetheless, as the power decreases signifi cantly 
we still think that the best strategy for success is to use all 
means to avoid phenotype errors. 

 Finally, we think that our strategy is universally applicable 
because there are fi ve ethnic panels with trios genotyped in the 
Phase III HapMap. Using one of these panels may be suffi  cient 
for analysis of a wide range of mHag-specifi c T cell clones, 
even if they are obtained from a diff erent population. In fact, 
using the Caucasoid CEPH panel, we have been able to map 
the genomic locus of HMSD, ACC-1 Y , and ACC-2, mHags 
which were originally described in the Japanese population. 
Nonetheless, not all HapMap panels consist of trios, which are 
required for deducing the zygosity information. Because this 
may still be a potential limitation for identifi cation of mHags in 
some ethnic populations, we are currently evaluating the pos-
sibility of using unrelated HapMap individuals in our strategy. 
In conclusion, the fi rst HLA class II – restricted hematopoietic 
mHag as well as the powerful mHag identifi cation strategy 
described here can signifi cantly facilitate the application of 
mHag-based immunotherapy in a broader clinical setting. 

 MATERIALS AND METHODS 
 Cells.   The HLA-DQA1*05/B1*02-restricted CD4 +  T cell clone 21 and 

the HLA-DP4 – restricted CD4 +  control clone 3AB11 were previously iso-

lated from a multiple myeloma patient during the development of acute 

GvHD grade III and a strong GvT response after allo-SCT from his HLA-

identical brother ( 29 ). In brief, after SCT, PBMCs of the recipient were 

stimulated with irradiated pre-SCT PBMCs for 3 wk and thereafter ex-

panded with EBV-LCLs derived from pre-SCT PBMCs. T cell clones were 

obtained by limiting dilution. The HLA-B7 – restricted CD8 +  T cell clone 

specifi c for the mHag LRH-1 was described elsewhere ( 9 ). T cell clones 

were expanded using a feeder cell – cytokine mixture as previously described ( 15 ). 

EBV-LCLs were cultured in RPMI-1640, 10% FBS (Integro), and anti-

biotics. The Phoenix packaging line ( � -NX-A) and the CD40L-expressing 

fi broblasts were cultured in DMEM (Invitrogen), 10% FBS, and antibiotics. 

identifi cation of the precise LD block of six known mHags 
required the mHag phenotyping of 27 – 42 CEPH individuals, 
whereas the other approach had to phenotype at least 100 
individuals to identify the locus of these mHags ( 28 ). Thus, our 
method can dramatically reduce the work load and the time 
required to identify mHags, which are the two most important 
drawbacks of all current mHag identifi cation strategies. The 
only apparent limitation of our strategy may be its diffi  culty in 
identifying mHags with allele frequencies beyond 10 – 85%. 
Nonetheless, it should be emphasized that mHags with very 
low or high phenotype frequencies are of limited immuno-
therapeutic value. As illustrated in Fig. S3 (available at http://
www.jem.org/cgi/content/full/jem.20080713/DC1), the 
chance of an mHag mismatch between the recipient and do-
nor is  < 10%, if the mHag phenotype frequency is beyond 26 –

  Figure 7.     The effector function of CD19 L -mHag – specifi c clone 21.  

(A) Granzyme B production of clone 21 in response to recipient (Rt) or 

donor (Do) EBV-LCLs (LCLs). (B) The lysis of recipient EBV-LCLs or donor 

EBV-LCLs by clone 21 in the absence or presence of 15-mer CD19 L -pep-

tide at an effector/target ratio of 50:1. The error bars represent the SEM 

of duplicate cultures. (C) IFN- �  response of clone 21 toward CD19 +  malig-

nant cells from 18 B-CLL patients. The mHag genotypes of the patients 

were determined by partial sequencing of the chromosomal DNA extracted 

from PBMCs. The mean and SEM are shown for the indicated number of 

patient samples. The difference between the HLA-matched CD19 L -positive 

patients and the others was statistically signifi cant (*, P  <  0.05). (D) The 

lysis of HLA-DQB1*02 and CD19 L -positive ( n  = 3) and CD19 L -negative 

( n  = 2) B-CLL samples by clone 21 at different effector/target ratios. Error 

bars indicate the SEM of the different B-CLL samples.   
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HapMap SNP genotypes were downloaded from the HapMap website 

(http://www.hapmap.org/). The input fi le for ssSNPer was assembled by 

inserting the deduced mHag zygosities of CEPH individuals as a fi ctive SNP 

in the downloaded HapMap fi le. 

 SNP and TCR sequencing.   60 ng of genomic DNA isolated from PBMCs 

or EBV-LCLs was amplifi ed at 94 ° C for 5 min for 35 cycles (94 ° C for 30 s, 

55 ° C for 30 s, and 72 ° C for 30 s) and 72 ° C for 10 min using primers (Table S4, 

available at http://www.jem.org/cgi/content/full/jem.20080713/DC1) and 

directly sequenced using BigDye Terminator kit (v3.1; Applied Biosystems) 

in an automated ABI PRISM 3100 sequencer (Applied Biosystems). 

 Monitoring of the CD19 L -specifi c TCR.   The TCR- �  chain of clone 21 

was amplifi ed from genomic DNA isolated from PBMCs collected periodi-

cally after allo-SCT using a TCR-specifi c primer set (Table S4). The speci-

fi city of the PCR was controlled using genomic DNA of clone 21 (positive 

control) and of several irrelevant PBMCs (negative control). 

 T cell help for expansion of CD8 +  mHag-specifi c T cells.   LRH-1 –

 specifi c CD8 +  T cell clone ( 9 ) was stimulated with HLA-matched CD19 L -

mHag – negative or  – positive EBV-LCLs at a ratio of 1:2.5 in the presence of 

5  μ M LRH-1 peptide. 30 Gray – irradiated clone 21 was added with or with-

out 0.6  μ M of the 15-mer CD19 L -peptide.  3 H-Thymidine incorporation 

was determined after 48 h. 

 DC maturation assay.   Immature DCs, generated from HLA-matched 

monocytes culturing with GM-CSF and IL-4, were maturated by coculture 

with T cell clones at a DC/T cell ratio of 1:2.5 in the presence of 6  μ M 

of either the CD19 L  peptide PEIWEGEPPCLPPRD or irrelevant peptide 

LPPRDSLNQSLSQDL. In some assays, apoptotic CD19 L -positive EBV-LCLs 

(apoptosis was induced by incubation with 500 ng/ml FasL for 24 h) were 

added as the source of CD19 L  antigen (DC/EBV-LCL ratio, 1:20). As posi-

tive control, DCs were cocultured with CD40L-expressing fi broblasts in a 

DC/fi broblast ratio of 1:1. After 72 h, DC maturation was assessed by deter-

mining the percentage of CD80 +  and CD83 +  cells, the mean fl uorescence 

intensity of CD86, HLA-DR, and/or CD40 on the cells, and the content of 

IL-12 in the culture supernatants. 

 FACS-based cytotoxicity assays.   The capacity of clone 21 to lyse various 

mHag +  or mHag  �   targets (EBV-LCLs or B-CLL cells) was measured in 

FACS-based 48-h cytotoxicity assays as previously described ( 15 ). The SEM 

of duplicate cultures never exceeded 15%. 

 Statistical analyses.   Where indicated, diff erences between groups were 

analyzed in two tailed Student ’ s  t  tests with Prism software (GraphPad Soft-

ware, Inc.). P-values  <  0.05 were considered signifi cant. 

 Online supplemental material.   Fig. S1 shows the mHag phenotypes for the 

individuals of CEPH families 1408, 1416, and 1331. Fig. S2 shows the reduction 

in correlation coeffi  cient in datasets containing 10% false-positive phenotypes. 

Fig. S3 shows the chance of mHag mismatch between recipient/donor pairs (sib-

ling or unrelated). Table S1 shows detailed phenotypes and zygosities of 15 CEPH 

individuals and Table S2 shows the input phenotype/zygosity data for retrospec-

tive genome-wide analysis. Table S3 shows the 149 SNPs used in the power 

analyses. Table S4 displays the used PCR primer sets. Online supplemental mate-

rial is available at http://www.jem.org/cgi/content/full/jem.20080713/DC1. 
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PBMCs containing 84 – 99% CD5 +  malignant B cells (partly provided by 

R. van Gent, University Medical Center Utrecht, Utrecht, Netherlands) were 

obtained from 18 B-CLL patients after written informed consent. Experi-

ments with these human materials were approved by local medical ethical 

committee of the University Medical Center Utrecht. 

 Immunophenotyping.   Cells labeled with fl uorochrome-conjugated anti-

bodies (all obtained from BD, except the anti –  � NGF-R [culture superna-

tant of clone 20.4]) were analyzed with a FACSCalibur fl ow cytometer (BD). 

FACS data were analyzed with CellQuest software (BD). 

 CD19-derived peptides.   Commercially synthesized and purifi ed (Pep-

scan) 15-mer peptides were dissolved in DMSO to 100 mM and diluted in 

PBS to 6 mM to use in functional assays. 

 Retroviral vectors.   The LZRS-based retroviral vectors containing HLA-

DQA1*0501-IRES-GFP or HLA-DQB1*0201-IRES- � NGF-R were 

provided by F. Koning (Leiden University Medical Center, Leiden, Nether-

lands). The pMX-CD19 174L -IRES-GFP vector was generated by cloning 

the  CD19 L   gene derived from an expression vector (OriGene Technologies). 

Generation of retroviral supernatants and retroviral transduction of EBV-

LCLs were described elsewhere ( 15 ). 

 mHag phenotyping of CEPH families.   To determine the mHag pheno-

type (mHag +  or mHag  �  ) of the CEPH individuals, their HLA-DQA1*05/

B1*02 – positive (naturally positive or positive after retroviral transduction) 

EBV-LCLs were used as APCs for the mHag-specifi c clone 21 at a 1:1 ratio, 

in a fi nal volume of 200  μ l in U-bottomed 96-well plates. After 18 h of incu-

bation, supernatants were collected and tested for the presence of IFN- �  us-

ing standard ELISA kits. EBV-LCLs were judged mHag +  if the mean OD 

value at 450 nm of triplicate cultures was  > 0.250, about four times the back-

ground OD value. For  < 10% of the CEPH individuals, the OD value was 

between 0.1 and 0.25. In these cases, assays were repeated at least four times 

to exactly determine the mHag phenotype of the CEPH individual. Individ-

uals remaining doubtful after fi ve attempts were excluded from the analyses. 

 ELISA.   Cytokine content of cell-free supernatants was determined using 

commercial ELISA kits according to the manufacturer ’ s instructions (IFN- � , 

Invitrogen; granzyme-B, Sanquin [provided by P de Koning, University 

Medical Center Utrecht, Utrecht, Netherlands]; IL-12-p70, eBioscience). 

The SEM of triplicate measurements never exceeded 10%. 

 Two-point pairwise linkage analysis.   The mHag phenotypes of the 

CEPH individuals and 533 markers genotyped on CEPH families 1331, 

1362, and 1408 were used as input to perform a genome-wide two-point 

linkage analysis using the subroutine MLINK of the FASTLINK program as 

previously described ( 8, 9, 17, 30, 31 ). 

 Recombinant haplotype analysis.   Genotype data for chromosome 16 

were extracted from the CEPH database (version 10; http://www.cephb.fr/

cephdb/) to determine recombinant haplotypes in the CEPH families ( 32, 33 ). 

Candidate genes and SNPs were derived from Map Viewer (http://www

.ncbi.nih.gov/mapview/) and Ensembl (release 45; http://www.ensembl

.org/), respectively. 

 Correlation of mHag zygosities with HapMap SNP genotypes.   The 

software ssSNPer (provided by D. Nyholt, Queensland Institute of Medical 

Research, Brisbane, Australia), a program for identifying genetically indistin-

guishable SNPs ( 34 ), was used to analyze the correlation between the mHag 

zygosities and individual HapMap SNPs. For genome-wide analyses, ssSN-

Per was slightly modifi ed. We have shared this modifi ed ssSNPer at http://

www.umcutrecht.nl/subsite/dcch/Research/Hemato-Oncology/Identifi -

cation-of-novel-GvT-associated-minor-H-antigens.htm. mHag zygosities 

(+/+, +/ � , and  � / � ) of CEPH individuals were deduced from the Men-

delian segregation pattern of the mHag phenotypes in their pedigrees. The 
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