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Metal catalyzed allylic alkylations increase in importance as a synthetic method as the ability
to expand their scope increases. A major feature of this method is its applicability for formation
of a broad array of bond types including carbon-carbon and carbon-heteroatom bonds. The
importance of nitrogen containing bioactive molecules1 directs special attention to the
formation of carbon-nitrogen bonds.2 The recent revelation of bromopyrroles as a growing
family of bioactive natural products represented by the manzacidines, axinellamine A,
dibromophakellstatin, and palau’amine, typically derived from marine organisms3, led us to
consider the use of pyrroles as nucleophiles in AAA (asymmetric allylic alkylation) reactions.
The agelastatins (1), a family of four tetracyclic compounds (see Fig. 1), possess nanomolar
activity against several cancer cell lines.4 Furthermore, agelastatin A inhibits glycogen
synthase kinase-3β (GSK-3β), a behavior that may provide an approach for the treatment of
Alzheimer’s disease.4a In this paper, we report the use of pyrroles as nucleophiles in the Pd
AAA and the use of such a process for a facile asymmetric synthesis of agelastatin A.

Initial studies examined the reaction between the Boc-activated cyclopentene-1,4-diol 2 and
methyl 5-bromo-pyrrole-2-carboxylate 3 (eq.1). After a general screening, Cs2CO3 and DCM
proved to be the base and best solvent combination.

(1)

The yield and enantioselectivity were optimized by varying the palladium source and loading,
base loading, and concentration (Table 1). From these studies emerged the most practical set
of conditions as shown in entry 6 which gives the N-alkyl pyrrole 5 in 83% yield and 92% ee.
Direct transformation of the carboxylate ester 5 to the N-methoxyamide 6 failed,5 but a two-
step process (hydrolysis, condensation) gave a high yield (Scheme 1). Although the chiral
ligand was not necessary for cyclization to piperazinone 7, the intramolecular Pd catalyzed
AAA with the N-methoxy amide as the nucleophile gave a higher yield when (R, R)-4 was used
as a ligand (91%) compared to dppp (70%). At this point the absolute configuration was
assigned by analogy to other reactions of substrate 2.
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With success of both the pyrrole and the N-methoxyamide as nucleophiles respectively and
considering that the nitrogen on the N-methoxyamide is more nucleophilic than the one on the
pyrrole, we designed a cascade reaction to further extend this methodology. Theoretically,
piperazinone 9 could be synthesized in one-pot from successive alkylations with the N-
methoxyamide 86 as nucleophile. Surprisingly, almost no reaction occurred when base was
present (see Table 2). We hypothesized that after

(2)

deprotonation, 8 could act as a good bidentate ligand for palladium, and the first ionization
might be inhibited. Based on this hypothesis, 10 mol% HOAc was added to the reaction. To
our delight, piperazinone 9 was obtained in 51% yield when Pd2(dba)3CHCl3 was used as the
palladium source. After optimization, piperazinone 9 could be obtained in up to 82% yield,
97.5% ee (entry 9). Thus, by proper choice of pyrrole nucleophiles in the Pd catalyzed AAA,
access to either piperazinone regioisomer is possible.

For agelastatin A4, 7 (Scheme 2) starting with piperazinone 7, we envisioned aziridination of
the double bond followed by transformation to the required urea. The aziridination which we
anticipated to be difficult led us to explore the N-heterocyclic carbene complex 1 48 which, to
our knowledge, has not previously been explored for aziridination. Indeed, this catalyst
performed well for this difficult rather electron deficient cyclopentene. Hydrolytic ring opening
of 10 occurs best upon heating in a microwave. Dess-Martin oxidation then gives α-amino
ketone 1 2. A more efficient direct oxidative opening with DMSO, for which few cases
previously existed,9 was explored. While following the previously reported thermal protocol
proved inefficient, heating N-tosyl aziridine 10 in the presence of 0.7 eq. In(OTf)3

10 in DMSO
at 80 °C provides the α-amino ketone 12 in excellent yield. Finally, addition of methyl
isocyanate to 12, followed by SmI2 mediated cleavage of N-OMe and N-Ts, completed the
total synthesis of (+)-agelastatin A (1).11 This completion also established the absolute
configuration of the Pd AAA as shown in Scheme 1.

Access to the natural (−)-enantiomer simply requires use of the S,S- ligand in eq. 1.
Alternatively, the product of the one pot annulation 9 could also provide access to the (−)-
enantiomer based upon the work of Weinreb.7a To explore this prospect, piperazinone 9 was
subjected to allylic amination12 as shown in eq. 3. A single regio– and diastereomer was
obtained which, by analogy to other reactions of this reagent, is assigned as 15. Given
Weinreb’s synthesis, it is reasonable to propose that (−)-1 could be accessed from 15.

(3)

In conclusion, we have developed new classes of nucleophiles, pyrroles and N-alkoxyamides,
for palladium-catalyzed AAA reactions. By varying the functional groups at the 2-position of
pyrroles, we can efficiently and enantioselectively access either regioisomer of the
piperazinones. Using one regioisomer, we completed the total synthesis of (+)-agelastatin A
in a short and concise way (10 steps total), during the course of which we developed a new
copper catalyst for aziridination, and an In(OTf)3-DMSO system to oxidatively open an N-
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tosyl aziridine. We further show the prospect to access (−)-agelastatin A using the same
enantiomer of the chiral catalyst in the Pd AAA by using the other piperazinone regioisomer.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Agelastatins
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Scheme 1.
Piperazinone synthesis
a) LiOH (1N), THF/water = 3/1, 48hr, rt; b) oxalyl chloride, cat. DMF in THF then,
NH2Ome·HCl, K2CO3, and H2O, rt.
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Scheme 2.
Total synthesis of (+)-agelastatin A
a) catalyst 14 (0.5 eq.), PhI=NTs (5 eq.), 4Å M.S., benzene, 0 °C to rt; b) TFA (10 eq.),
microwave, dioxane/water = 3/2, 150 °C, 2.5 hr; c) DMP, DCM, rt; d) In(OTf)3 (0.7 eq.),
DMSO, 80 °C, 6h; e) CH3NCO(1.2 eq.), Cs2CO3 (0.2 eq.), DCM, 0 °C to rt; f) SmI2 (10 eq.),
THF, 0 °C to rt.
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