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Abstract
The peroxisome proliferator activated receptor gamma (PPARγ) is essential for the formation and
function of adipocytes. PPARγ is also involved in regulating insulin sensitivity and is the functional
target of the thiazolidinedione (TZDs) class of insulin sensitizing drugs. While TZDs activate
PPARγ and decrease PPARγ protein levels, genetic models indicate decreased expression of
PPARγ is also associated with increased insulin sensitivity. In this study, we show that resveratrol
modulates PPARγ protein levels in 3T3-L1 adipocytes via inhibition of PPARγ gene expression
coupled with increased ubiquitin-proteasome dependent degradation of PPARγ proteins.
Resveratrol-mediated decreases in PPARγ expression are associated with repression of PPARγ
transcriptional activity when assayed using a panel of PPARγ target genes in adipocytes. Finally, we
demonstrate that resveratrol inhibits insulin-dependent changes in glucose uptake and glycogen
levels and decreases IRS-1 and GLUT4 protein levels, indicating resveratrol represses insulin
sensitivity in adipocytes. These results indicate resveratrol-mediated effects in adipocytes involve
regulation of PPARγ expression and transcriptional activity along with decreased responsiveness to
insulin.
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Introduction
A remarkable range of health benefits are ascribed to resveratrol, a bioactive plant polyphenol
found in grapes, peanuts, and berries. Recent studies show that resveratrol treatment protects
against diet-induced insulin resistance in rodents (1;2) and leads to decreased lipid
accumulation in murine adipocytes (3). Resveratrol is a potent activator of SIRT1 (silencing
information regulator-1) (4), a histone deacetylase that mediates the effects of resveratrol in
mice (1). SIRT1 is also reported to inhibit the formation of adipocytes via repression of the
peroxisome proliferator activated receptor gamma (PPARγ) transcriptional activity (3).
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Regulation of PPARγ activity in adipocytes provides a direct link between nutritional status,
lipid metabolism, and adipocyte gene expression (5). Adipose PPARγ is also required for the
maintenance of insulin sensitivity (6) yet mice heterozygous for PPARγ deficiency remain
more insulin sensitive than wild-type mice when fed a high fat diet (7–9). The reduced
PPARγ gene expression in the PPARγ −/+ mice correlates with decreased PPARγ protein
(10), suggesting modulation of PPARγ activity and protein levels can play a role in regulating
insulin sensitivity.

Activation of SIRT1 by resveratrol suggests a potential link between regulation of PPARγ
activity, decreased PPARγ protein levels, and insulin sensitivity via resveratrol-mediated
effects and points to a role for resveratrol in modulating insulin action associated with obesity
and type 2 diabetic states. In the current study, we show that resveratrol treatment in 3T3-L1
adipocytes represses the endogenous gene expression of transcriptional targets of PPARγ such
as aP2, Lpl and Pepck. In addition, resveratrol decreases PPARg gene expression while
increasing targeting of PPARγ protein to the ubiquitin-proteasome system for degradation, a
novel mechanism of resveratrol-mediated effects in adipocytes. We also show that resveratrol
treatment in 3T3-L1 adipocytes reduces insulin sensitivity as measured by decreased insulin-
dependent glucose uptake and glycogen content along with decreased protein content of IRS-1
and GLUT4. Thus, our data indicates resveratrol may function as a nutritional regulator of
PPARγ activity, expression and stability while also decreasing insulin sensitivity in adipocytes.

Materials and Methods
Cell Culture

Murine 3T3-L1 preadipocytes were plated and grown to 2 days post confluence in DMEM
high glucose with 10% bovine serum and penicillin/streptomycin. The cells were induced to
differentiate using a standard induction cocktail of 3-isobutyl-1-methylxanthine,
dexamethasone, insulin (MDI) as previously described (11). The 3T3-L1 preadipocytes and
fully differentiated adipocytes were maintained in a humidified chamber at 37°C.

Preparation of Whole Cell Extracts
Cell monolayers were rinsed with phosphate-buffered saline (PBS) and harvested in a non-
denaturing buffer as previously described (12). Samples were extracted for 30 minutes on ice
and centrifuged at 15,521 × g at 4°C for 15 minutes. Supernatants containing whole cell extracts
were analyzed for protein concentrations using a BCA kit (Pierce) according to the
manufacturer’s instructions.

TZD and Resveratrol Treatment of 3T3-L1 Adipocytes
5.0 μM rosiglitazone (TZD) and 50 μM resveratrol (Sigma-Aldrich) were added to fully
differentiated 3T3-L1 adipocytes at the indicated times. Resveratrol was added in the indicated
concentrations when glucose uptake was assayed in the presence of increasing concentrations
of resveratrol. DMSO was used as a solvent for both rosiglitazone and resveratrol.

Gel Electrophoresis and Immunoblotting
Proteins were separated in polyacrylamide (National Diagnostics) gels containing sodium
dodecyl sulfate (SDS) according to Laemmli (13) and transferred to nitrocellulose. Following
transfer, the membrane was blocked in 4% non-fat dry milk suspended in phosphate buffered
saline, pH 7.4 with 0.1% Tween 20 (PBS-T) for 1 hour at room temperature. The membranes
were incubated with mouse monoclonal anti-PPARγ or antibodies against IRS-1, IRS-2, PI3K,
AKT, phospho-AKT, PTP-1B, AMPKα1, AMPKα2, β-actin, anti-insulin receptor β subunit,
GLUT1, and GLUT4 as indicated for 1–2 hours. Following extensive washes with PBS-T, the
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results were visualized with horseradish peroxidase (HRP)-conjugated secondary antibodies
and enhanced chemiluminescence (Pierce).

Real-time RT-PCR
Total RNA was purified from cultured cells using TriReagent (Molecular Research Center)
according to the manufacturer’s instructions. Real-time RT-PCR was performed via two-step
RT-PCR (High Capacity cDNA Archive Kit, Applied Biosystems) followed by PCR using
TaqMan primer/probe pairs consisting of two sequence-specific PCR primers and a TaqMan
assay-FAM™ dye-labeled MGB probe (Applied Biosystems, Taqman Gene Expression Assay)
for each gene of interest. The genes of interest were fatty acid binding protein 4 (aP2),
lipoprotein lipase (Lpl), and cytosolic phosphoenolpyruvate kinase (Pepck). PCR was
performed using the 7900 Real-Time PCR system (Applied Biosystems) under universal
cycling conditions. All results were normalized to a cyclophilin B expression control and
reported as the mean or the fold change relative to baseline −/+ standard deviation.

Ubiquitin Conjugation Assay
3T3-L1 adipocytes were preincubated with 10 μM MG132 and 1 μM epoxomicin for 1 hour
prior to adding 50 μM resveratrol, 5.0 μM rosiglitazone or an equal volume of DMSO as a
vehicle control. The cells were harvested after 30 minutes and lysed on ice in PBS containing
1% Triton X-100, 10 mM N-ethylmaleimide, 1 mM EDTA, 1 mM PMSF, 1 μM pepstatin and
10 μM leupeptin. Whole cell extracts were incubated with protein A-sepharose (RepliGen) and
the unbound supernatant was collected for immunoprecipitation using a polyclonal anti-
PPARγ followed by incubation with protein A-sepharose. PPARγ-ubiquitin conjugates were
detected by western blotting using monoclonal anti-PPARγ and polyclonal anti-ubiquitin
antibodies.

Determination of 2-[3H] deoxyglucose Uptake
Fully differentiated 3T3-L1 adipocytes at day 6–7 post induction were incubated in the
presence of resveratrol, rosiglitazone or DMSO for 6 hours. Four hours prior to measuring
glucose uptake, the cells were serum-deprived in DMEM containing 6.25 mM glucose and
0.3% bovine serum albumin. At the end of each treatment, 2-[3H] deoxyglucose uptake
measurements were performed in triplicate and the results were corrected for nonspecific
uptake, which was measured in the presence of 5 μM cytochalasin B (14). The protein
concentration of each lysate was determined using a BCA kit according to the manufacturer’s
instructions.

Glycogen Content
The adipocytes were treated with rosiglitazone (5 μM) or resveratrol (50 μM) for 15 hours with
serum derivation during the final 2 hours of treatment. The cells were then incubated with 30
mM glucose in the absence or presence of 100 nM insulin. At the end of 2 hours, the cells were
washed three times with cold phosphate buffered saline (PBS), pH 7.4 and whole cell extracts
were harvested in 200 μl of 0.2 M sodium acetate, pH 4.8, followed by sonication. After
removal of 50 μl aliquots for protein concentration determination, glycogen content was
measured according to the method of Gomez-lechon (15).

RESULTS
Resveratrol treatment increases proteasome-dependent PPARγ degradation and decreases
PPARγ gene expression

Over-expression of SIRT1 is associated with decreased PPARγ protein levels in 3T3-L1
adipocytes (3), suggesting a link between activation of SIRT1 via resveratrol and regulation
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of PPARγ protein levels. To determine the effect of resveratrol on PPARγ protein levels, we
assayed the steady-state levels of PPARγ proteins in fully differentiated 3T3-L1 adipocytes.
As shown in Figure 1A, a six hour treatment with either rosiglitazone or resveratrol decreases
the steady-state levels of PPARγ proteins in adipocytes. We and others previously
demonstrated that activation of PPARγ is linked to the ubiquitin-proteasome dependent
degradation of PPARγ (12;16). Therefore, we asked if resveratrol-mediated decreases in
PPARγ protein levels were also associated with direct targeting of PPARγ for ubiquitin
conjugation and degradation by the proteasome. As shown in Figure 1A, a one hour
pretreatment of the adipocytes with the 20S proteasome inhibitors MG132 and epoxomicin
partially reverses the effect of either rosiglitazone or resveratrol, but does not return PPARγ
protein levels to those observed under control conditions in the presence of proteasome
inhibition. The observed decreases in PPARγ protein levels are associated with increased
targeting of PPARγ for ubiquitin-dependent degradation as shown by the increase in PPARγ-
ubiquitin conjugate formation in the presence of resveratrol (Figure 1B). The incomplete
restoration of PPARγ protein levels in the presence of proteasome inhibition indicates that
increased targeting for ubiquitin-proteasome dependent degradation is insufficient to account
for the resveratrol-mediated changes in PPARγ protein levels. As shown in Figure 1C, both
resveratrol and rosiglitazone also decrease Pparg gene expression.

Resveratrol treatment represses expression of endogenous genes regulated by PPARγ
activity

The parallel effects of resveratrol and rosiglitazone on PPARγ protein degradation and gene
expression prompted us to ask if resveratrol affects PPARγ transcriptional activity. To
determine if resveratrol affects PPARγ activity, we used real-time RT-PCR to assay expression
of PPARγ target genes in fully differentiated adipocytes rather than a luciferase-based assay
of PPARγ transactivation. Previous studies have shown that resveratrol activates PPARγ in a
variety of tissues (17–19), including macrophages (17) when measured using transactivation
reporter assays. However, studies of other transcription factors such as Elk-1 and c-Fos (20)
or control of T cell receptor β expression (21) have demonstrated discrepancies between
luciferase-based transactivation assays and regulation of endogenous targets of transcription
factor activity. These studies point to the pitfalls of measuring gene expression outside the
usual chromatin structure as is the case with luciferase reporter assays. This consideration is
particularly relevant since resveratrol action involves activation of SIRT1, a histone
deacetylase. To circumvent this problem, we chose a small set of genes in adipocytes that are
involved in lipid metabolism and insulin sensitivity and whose expression is well-described as
PPARγ dependent: lipoprotein lipase (Lpl) (22;23), the fatty acid binding protein (aP2) (24),
and the cytosolic phosphoenolpyruvate carboxykinase (Pepck) (25–27). We assayed gene
expression under control conditions or in the presence of resveratrol or rosiglitazone (TZD)
for six or fifteen hours. As shown in Figure 2A, a six hour treatment with resveratrol represses
aP2 and Lpl expression without affecting Pepck expression. Rosiglitazone (TZD) activation
of PPARγ corresponds to increased expression of aP2 and Pepck in both cases with no increase
in Lpl expression. However, a fifteen hour treatment (Figure 2B) with resveratrol shows
repression of all three PPARγ target genes while rosiglitazone treatment continues to be
associated with increased expression of aP2 and Pepck.

Resveratrol decreases insulin-dependent glucose uptake in adipocytes
Modulation of PPARγ activity and gene expression is associated with improved insulin
sensitivity when assayed as plasma glucose and insulin levels (7–9). In addition, resveratrol
treatment is associated with improved insulin sensitivity in murine models (1;2). To determine
if resveratrol affects insulin sensitivity in adipocytes, we measured the effect of resveratrol on
glucose transport. The results in Figure 3A demonstrate that resveratrol decreases insulin-
stimulated glucose uptake in adipocytes when compared to control or TZD-treated conditions.
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In addition to triglyceride synthesis, insulin-stimulated glucose uptake in adipocytes leads to
an increase in glycogen content via stimulation of glycogen synthase activity (28;29).
Therefore, we assayed the glycogen content of the 3T3-L1 adipocytes under control,
rosiglitazone, or resveratrol-treated conditions in the absence or presence of insulin. As shown
in Figure 3B, resveratrol treatment is associated with decreased glycogen content under basal
and insulin stimulated conditions. This is consistent with the observed resveratrol-mediated
decreases in glucose uptake, indicating resveratrol reduces insulin sensitivity in adipocytes.

In our experiments, we used resveratrol at a concentration previously shown to affect lipid
accumulation in 3T3-L1 adipocytes (3). In addition, resveratrol at 50 μM has been shown to
increase SIRT1 activity 3–4 fold (4). To determine if the observed resveratrol-mediated
decreases in insulin sensitivity were dose-related, we carried out glucose uptake assays in the
presence of increasing concentrations of resveratrol (Figure 3C). Insulin-stimulated glucose
uptake is unaffected by treatment with resveratrol at 1–10 μM although basal levels of glucose
uptake trend upward. Insulin-stimulated glucose uptake is inhibited in the presence of higher
concentrations (30–100 μM) of resveratrol.

Changes in insulin signaling pathway components in the presence of resveratrol
The resveratrol-mediated decreased glucose uptake suggests resveratrol affects components of
the insulin signaling pathway in adipocytes. As shown in Figure 4, we assessed the content of
proteins involved in the insulin signaling pathway. Resveratrol treatment decreased the basal
levels of IRS-1 and the phosphorylated form of protein kinase B (AKT-P), and resulted in a
small increase in insulin-stimulated AKT-P (Figure 4A). In addition, total GLUT4 levels were
decreased with resveratrol treatment (Figure 4B). The observed changes in insulin sensitivity
in the presence of resveratrol are consistent with decreased IRS-1 and GLUT4 protein levels,
although contrary to the slight increase in insulin-stimulated AKT phosphorylation.

DISCUSSION
Since PPARγ was identified as the functional receptor for the thiazolidinedione (TZD) class
of insulin sensitizing drugs (30), efforts to improve treatment of type 2 diabetes have included
understanding the regulation of PPARγ in adipocytes. Although activation of PPARγ by the
TZDs increases insulin sensitivity, studies of mice heterozygous for PPARγ show that reduced
gene expression of wild-type PPARγ also improves insulin sensitivity (7;9). The improvement
in insulin sensitivity was observed with aging (8) and may include resistance to changes in
insulin sensitivity that accompany a high fat diet (7;8). This is in contrast to the effect of a
dominant negative PPARγ mutation (P465L) in leptin deficient mice (P465L/ob) that results
in insulin resistance in a setting of positive energy balance (31). The wild-type PPARγ −/+
genetic model indicates modulation of wild-type PPARγ expression could offer an alternative
approach in the treatment of type 2 diabetes (32).

The present studies demonstrate that PPARγ transcriptional activity and protein levels are
modulated in adipocytes by resveratrol, a bioactive plant polyphenol. The decreased levels of
PPARγ proteins in 3T3-L1 adipocytes in response to resveratrol are mediated by decreased
Pparg gene expression coupled with increased ubiquitin-proteasome-dependent degradation
of PPARγ proteins, paralleling the effect of TZDs. Earlier evidence indicated PPARγ is targeted
for destruction via the ubiquitin-proteasome system under basal or activated conditions, (14;
16;33), supporting a model in which PPARγ degradation serves to limit PPARγ transcriptional
activity. Therefore, downregulation of PPARγ in the presence of resveratrol describes a novel
mechanism of action for resveratrol that consistent with the overall scheme of limiting
PPARγ activity via ubiquitin-proteasome dependent degradation.
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Resveratrol-mediated reductions in PPARγ gene expression and PPARγ proteins correlate with
decreased cellular effects of insulin and insulin signaling proteins in adipocytes as assayed by
decreases in protein content for IRS-1 and GLUT4 in addition to glucose uptake and glycogen
content. Assessment of functional aspects of GLUT4 properties such as translocation to the
plasma membrane was outside the scope of the current study. Although resveratrol treatment
(2) and reduction in PPARγ expression (7–9) are associated with generally improved insulin
sensitivity in murine models, the observed effect of resveratrol in adipocytes is consistent with
studies on longevity demonstrating calorie restriction is associated with inhibition of insulin
signaling (34). In particular, selective loss of the insulin receptor in murine adipocytes (FIRCO
mice) protects against developing age and obesity-related insulin resistance (35). The reduction
in insulin sensitivity in adipocytes in response to resveratrol may mimic the overall insulin
sensitizing effects of calorie restriction, where the predominant feature is a loss of fat mass as
a result of decreased lipid storage and increased lipolysis in adipocytes (36). Clearly, any
generalized improvement in insulin sensitivity coincident with decreased glucose uptake in
adipocytes will involve the interaction of adipocytes with other tissues that are glucose
responsive, such as skeletal muscle and the liver as well as independent effects of resveratrol
on those tissues (1;2). While the current studies are not designed to determine if the resveratrol-
mediated changes in insulin sensitivity are due to down-regulation of PPARγ activity and
expression in adipocytes, our results are consistent with a recent finding from Liao et al (37)
showing direct attenuation of PPARγ expression decreases glucose uptake in 3T3-L1
adipocytes. Thus, resveratrol may serve as a pharmacological tool to explore the effects of
reducing PPARγ protein and gene expression in adipocytes.
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Figure 1. Resveratrol decreases PPARγ gene and protein expression in 3T3-L1 adipocytes
Fully differentiated 3T3-L1 adipocytes were incubated for 6 hours under control (DMSO only)
conditions or in the presence of rosiglitazone (5 μM, TZD) or resveratrol (50 μM). (A) The
adipocytes were pretreated for 1 hour in the presence (+) or absence (−) of MG132 (10 μM)
and epoxomicin (1 μM) as indicated. Whole cell extracts were harvested and separated by SDS-
PAGE followed by western blot analysis. (B) The adipocytes were preincubated with 10 μM
MG132 and 1 μM epoxomicin for 1 hour prior to adding 50 μM resveratrol (R), 5.0 μM
rosiglitazone (T) or an equal volume of DMSO as a vehicle control (C). Whole cell extracts
were harvested after 30 minutes and subjected to immunoprecipitation using a polyclonal anti-
PPARγ antibody. The immunoprecipitated proteins were analyzed by western blotting using
anti-ubiquitin and anti-PPARγ antibodies as indicated. (C) Total RNA was purified and real-
time RT-PCR was carried using TaqMan chemistry (Applied Biosystems). PPARγ expression
is reported as the ratio of PPARγ expression to cyclophilin B gene expression. Each experiment
was carried out in triplicate and reported as the average −/+ standard deviation. Statistical
significance was determined using an unpaired Student’s t test. *P<0.05 compared to control.
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Figure 2. Resveratrol regulates PPARγ transcriptional activity
Fully differentiated 3T3-L1 adipocytes were incubated for (A) 6 hours or (B) 15 hours under
control (DMSO) conditions or in the presence of rosiglitazone (5 μM) or resveratrol (50 μM).
Total RNA was purified and real-time-PCR was carried using TaqMan chemistry. The levels
of aP2, Pepck, and Lpl were calculated as the ratio of the gene to cyclophilin B expression.
Each experiment was carried out in triplicate and reported as the average −/+ standard
deviation. Statistical significance was determined using an unpaired Student’s t test. *P<0.05,
** P<0.005 (compared to control)
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Figure 3. Resveratrol decreases glucose uptake and glycogen content in adipocytes
Fully differentiated adipocytes were treated with DMSO (control), rosiglitazone (5 μM) or
resveratrol (50 μM) for 15 hours and serum-deprived for 2 hours prior to adding vehicle control
(10 mM HCl) (■, basal) or 100 nM insulin (□, insulin). (A) Glucose uptake and (B) Glycogen
content were measured as described in Materials and Methods. (C) Glucose uptake was
measured in the 3T3-L1 adipocytes after treatment with the indicated concentration of
resveratrol for 15 hours. Glucose uptake and glycogen content are reported as fold increase
over basal control levels.
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Figure 4. Resveratrol-mediated changes in insulin signaling components in 3T3-L1 adipocytes
Fully differentiated adipocytes were incubated in the presence of 5 μM rosiglitazone (TZD),
50 μM resveratrol or DMSO (control) for 14 hours in the absence or presence of 400 nM insulin.
Whole cell lysates were harvested and analyzed by SDS-PAGE followed by detection using
chemiluminence (Pierce). β-actin is included as a loading control.
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