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Abstract
We hypothesized that there are clinically relevant differences in eosinophil integrin expression and
activation in patients with asthma. To evaluate this, surface densities and activation states of integrins
on eosinophils in blood and bronchoalveolar lavage (BAL) of 19 asthmatic subjects were studied
before and 48 h after segmental Ag challenge. At 48 h, there was increased expression of αD and the
N29 epitope of activated β1 integrins on blood eosinophils and of αM, β2, and the mAb24 epitope of
activated β2 integrins on airway eosinophils. Changes correlated with the late-phase fall in forced
expiratory volume in 1 s (FEV1) after whole-lung inhalation of the Ag that was subsequently used
in segmental challenge and were greater in subjects defined as dual responders. Increased surface
densities of αM and β2 and activation of β2 on airway eosinophils correlated with the concentration
of IL-5 in BAL fluid. Activation of β1 and β2 on airway eosinophils correlated with eosinophil
percentage in BAL. Thus, eosinophils respond to an allergic stimulus by activation of integrins in a
sequence that likely promotes eosinophilic inflammation of the airway. Before challenge, β1 and
β2 integrins of circulating eosinophils are in low-activation conformations, and αDβ2 surface
expression is low. After Ag challenge, circulating eosinophils adopt a phenotype with activated β1
integrins and upregulated αDβ2, changes that are predicted to facilitate eosinophil arrest on VCAM-1
in bronchial vessels. Finally, eosinophils present in IL-5-rich airway fluid have a hyperadhesive
phenotype associated with increased surface expression of αMβ2 and activation of β2 integrins.
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Introduction
The contribution of eosinophils to certain aspects of asthma, such as airway
hyperreponsiveness, remains controversial; but nevertheless there is evidence that eosinophil
recruitment to the airway contributes to asthma exacerbations and the chronic character of
asthma, by regulating airway inflammation and remodeling (1–15). Thus, the study of how
eosinophils traffic from blood to airway is of considerable importance. Integrins, which are
versatile cellular adhesion receptors (16,17), are likely determinants of how eosinophils roll
and arrest on lung endothelium; extravasate and migrate through endothelium, underlying
basement membrane and tissue to the airway wall; and traverse the bronchial epithelium to the
airway lumen (18–20).

Human eosinophils express seven integrin heterodimers, α4β1 (CD49d/CD29), α6β1 (CD49f/
CD29), αLβ2 (CD11a/CD18), αMβ2 (CD11b/CD18), αXβ2 (CD11c/CD18), αDβ2 (CD11d/
CD18), and α4β7 (CD49d/β7)(13,21,22). Each integrin heterodimer interacts with its own set
of ligands, which are counter-receptors on other cells or extracellular matrix (ECM)
components (17,23). The functions of an integrin on a given cell is regulated by expression
level and activation state (24–26).

We hypothesized that there are clinically relevant differences in eosinophil integrin expression
levels and activation state in patients with asthma. The purpose of the present study was to
define changes in the expression levels and activation states of blood and airway eosinophil
integrins 48 h following segmental allergen challenge in asthmatic subjects, thus reflecting the
development of allergic inflammation. Segmental Ag challenge induces a strong local
recruitment of eosinophils (27). We found characteristic integrin changes on blood and airway
eosinophils; differences between single and dual responder asthmatics; and associations among
integrin changes, magnitude of eosinophil recruitment to airway, and IL-5 concentration in
bronchoalveolar lavage (BAL)3 fluid. We propose a scenario in which 1) Ag challenge leads
to activation of β1 integrins and increased surface expression of αDβ2 on blood eosinophils, 2)
such activated eosinophils are more prone to arrest on VCAM-1 (CD106)-bearing endothelium
in challenged segments, and 3) IL-5 and other cytokines trigger activation of β2 integrins,
contributing to the hyperadhesive phenotype of airway eosinophils.

Materials and Methods
Subjects and screening

Nineteen subjects with mild asthma as diagnosed by an allergist were studied (Table I). These
subjects had a history of asthma exacerbation to aeroallergen, PC20 (provocative concentration
of methacholine producing a 20% fall in forced expiratory volume in 1 s [FEV1]) < 8 mg/ml,
and/or reversibility to β-agonist > 12%. Subjects were screened as described previously with
allergen skin prick tests, determination of airway hyperresponsiveness, and spirometry (28).
All subjects had a positive skin prick test to one or more aeroallergens, were nonsmokers, did
not have a respiratory infection within 30 days of study, and had not received anti-histamines
within seven days or corticosteroids within 30 days of study enrollment. The studies were
reviewed and approved by the University of Wisconsin-Madison Health Sciences Human
Subjects Committee. Informed written consent was obtained from each subject before
participation.

3Abbreviations used in this paper: AgPD20, provocative dose of Ag producing a 20% fall in FEV1; BAL, bronchoalveolar lavage; CBU,
cumulative breath unit; CD, cat dander; ECM, extracellular matrix; F, female; FEV1, forced expiratory volume in 1 s; gMCF, geometric
mean channel fluorescence; H, homogeneous (distribution); HDM, house dust mite; ICS, inhaled corticosteroid; M, male; PC20,
provocative concentration of methacholine producing a 20% fall in FEV1; rs, Spearman rank correlation coefficient; RW, ragweed; T,
total; % pos., percentage of positive cells; % pred., percentage of predicted value.
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Determination of provocative allergen dose and early- and late-phase response to whole-
lung allergen challenge

At least four weeks before bronchoscopy, a graded whole-lung inhaled Ag challenge was
performed as described (28) to determine the provocative dose of Ag producing a 20% fall in
FEV1 (AgPD20) and the magnitude of early- and late-phase responses. Briefly, baseline
spirometry was performed and repeated after five breaths of saline diluent. If FEV1 remained
within 10% of baseline, five breaths of allergen were inhaled and spirometry was repeated 10
min later. Consecutively greater concentrations of allergen were given until FEV1 fell by ≥
20% from baseline. The maximum immediate or early-phase (within 15–30 min) fall in
FEV1 was determined, and subjects were then monitored every 15 min until FEV1 returned to
within 10% of baseline. Thereafter, the subjects were monitored at 1 h intervals for 8 h to
determine whether a late-phase response was present (28,29). Subjects having a FEV1 fall ≥
15% 3–8 h after the whole-lung Ag challenge were considered to have a dual response
phenotype; the other subjects were considered single responders (28).

Segmental bronchoprovocation with allergen and BAL
Bronchoscopy, segmental bronchoprovocation with allergen, and subsequent BAL were
performed in two different bronchopulmonary segments as described (27,28,30). Baseline
BAL at 0 h immediately before segmental bronchoprovocation was performed in two segments.
Then, a total dose of 30% of the subject’s AgPD20 was administered incrementally to enhance
subject safety: 10% of the AgPD20 in the first segment and, when this dose was well tolerated,
20% in the second segment. Forty-eight hours later, a second bronchoscopy was performed by
instilling 160 ml of sterile 0.9% NaCl warmed to 37ºC in each segment. BAL fluid recovered
from the two segments was pooled for analysis, and the volume of recovered fluid measured.

Antibodies for flow cytometry and ELISA, and recombinant protein standards
Anti-αD integrin mAb 240I (31) was obtained as a gift from ICOS (Bothell, WA). Activation-
sensitive β2 integrin mAb24 (32,33) was a gift from Nancy Hogg (Cancer Research UK London
Research Institute, London, UK). Anti-β1 mAb MAR4; anti-β2 L130, anti-β7 Fib504; anti-α4
9F10; anti-α6 GoH3; anti-αL AI111; anti-αX Bly6; PE-conjugated goat anti-mouse and anti-
rat IgG; FITC-conjugated anti-CD14 and anti-CD16; isotype controls mouse IgG1, κ (clone
A112-2) and rat IgG2a, κ (A110–2); and unlabeled and biotinylated anti-IL-3, anti-IL-5, and
anti-IFN-γ mAbs and corresponding recombinant protein standards for ELISA were from BD
Biosciences (San Diego, CA). Anti-αM LM11 and activation-sensitive anti-β1 N29 (34) were
from Chemicon (Temecula, CA). Unlabeled and biotinylated anti-GM-CSF mAb and
recombinant protein standard for ELISA were from R&D Systems (Minneapolis, MN).

Flow cytometry of blood and BAL cell samples
Because purification of blood eosinophils has been found to cause activation of β1 (35), flow
cytometry was done on unfractionated blood and BAL cells. Surface expressions of αM, αL,
αX, αD, α4, α6, β1, β2, β7, activated β1, and activated β2 were determined. Blood was drawn
routinely into lavender-top standard tubes (giving a final EDTA concentration of 1.8 mg/ml)
(BD Vacutainer Systems, Franklin Lake, NJ). For determination of mAb24 reactivity, blood
was drawn into green-top tubes (giving a final heparin concentration of 14 USP units/ml).
Control experiments revealed that the anticoagulant had no effect on the results, except, as
reported, for mAb24, whose epitope is not exposed in the presence of EDTA (32). Not all
samples were subjected to complete analysis, due to changes in the mAb panel that were made
based on ongoing analysis of results from this study and other studies. Originally, we focused
on differences between blood and BAL fluid 48 h after segmental challenge. Blood from before
segmental challenge was included as a routine later, when we had indications of interesting
differences between blood after versus before challenge. Similarly, we originally focused on
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subunits of the integrins known to be able to bind VCAM-1, α4β1, α4β7, and αDβ2 (13,21), and
added αM later when we had evidence that αMβ2 is involved in the adhesion of purified airway
eosinophils to VCAM-1 and other ligands (22,36). BAL fluid cells were recovered, cytospun,
and stained for differential counts as described (29,30).

EDTA-treated blood (100 μl) was incubated with 0.5 μg primary antibody or isotype control
in 100 μl FACS buffer (PBS with 2% BSA and 0.2% NaN3) for 30 min. For mAb24 (and its
isotype control), heparin-treated blood was used, since the mAb24 epitope is not exposed in
EDTA (32), and was incubated with primary antibody in RPMI 1640 with 10% FBS at 37ºC
following the protocol especially designed for mAb24 (37). After primary antibody incubation,
samples were washed with 1 ml PBS, washed with 250 μl FACS buffer, and resuspended in
250 μl FACS buffer containing PE-conjugated goat anti-mouse or anti-rat IgG (2 μg/ml). After
incubation for 30 min, samples were washed again with PBS, resuspended in 100 μl FACS
buffer with a mixture of FITC-conjugated anti-CD14 (0.125 μg) and anti-CD16 (0.625 μg) and
incubated for 30 min. Red blood cells were lysed by incubation with 2 ml FACS lysing solution
(BD Biosciences) for 10 min, followed by centrifugation. Incubations were at room
temperature until after red blood cell lysis and then at 4ºC. Samples were washed with 500 μl
FACS buffer, resuspended in 250 μl FACS fixative (1% paraformaldehyde, 67.5 mM sodium
cacodylate, 113 mM NaCl, pH 7.2), stored at 4ºC in the dark, and washed with 1 ml PBS and
resuspended in 250 μl FACS buffer just prior to data collection. Fixation did not decrease
signals (not shown). Data were collected from 30,000 - 170,000 events, using a FACS Calibur
(BD Biosciences; available through the Flow Cytometry Facility, Comprehensive Cancer
Center, University of Wisconsin-Madison) and Cellquest software (BD Biosciences). Rainbow
calibration fluorescent beads (Spherotech, Libertyville, IL) were run each day to calibrate and
check the performance of the instrument and channels. Data were analyzed using Cellquest
and FlowJo (TreeStar, Ashland, OR). Eosinophils were gated based both on scattering (high
side scatter) and lack of staining with anti-CD14 and anti-CD16 (30,35). Thus, the cells that
were analyzed for PE signal fit two criteria for eosinophils by being gated inside both
characteristic regions in a plot of side scatter versus FITC staining and a plot of side versus
forward scatter. When cells gated on side versus forward scatter were collected by cell sorting
followed by cytospin, ≥96% stained for the eosinophil marker eosinophil major basic protein.
To analyze circulating neutrophils and monocytes in the same data sets, these leukocyte types
were gated inside characteristic regions in the two plots, neutrophils having intermediate side
scatter and FITC positivity and monocytes having relatively low side scatter and FITC
positivity. Data are expressed as specific geometric mean channel fluorescence (gMCF;
specific gMCF = gMCF with a specific integrin mAb – gMCF with isotype control) and as
percentage of positive cells (isotype control set with a marker to 2% positive cells) as before
(35). For unfractionated BAL cells, flow cytometry was performed with 2 × 105 cells (in 100
μl) and the protocol was as described for blood samples, except that all incubations were at
4ºC and the erythrocyte lysis step was omitted and replaced by a wash with 1 ml PBS.

ELISA for cytokines in BAL fluid
To measure cytokine concentrations, BAL fluid was concentrated ten-fold at 4ºC using a low
protein-binding Centriprep® centrifugal filter unit (Millipore, Billerica, MA) with a molecular
weight cut-off limit of 3 kDa. A sensitive two-step sandwich ELISA was used as described
(38). The assay sensitivities were below 3 pg/ml for IL-5 and GM-CSF, 12 pg/ml for IL-3, and
25 pg/ml for IFN-γ. Values are presented as the concentration in recovered BAL fluid prior to
the concentration step.
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Statistics
The Mann-Whitney U test was used to compare data between groups. The Spearman rank
correlation test was used to analyze correlations. A level of p ≤ 0.05 was considered significant.
Analyses were performed using Prism 3.0 (GraphPad, San Diego, CA).

Results
Response to whole-lung allergen challenge

All subjects responded to whole-lung inhaled Ag challenge with a drop in FEV1 within 15–30
min to a median value of 31% early FEV1 fall (Table I). Nine of the 19 subjects had a late-
phase response (39), as defined by a FEV1 fall ≥ 15% from baseline 3–8 h after challenge
(Table I). Using this criterion (28), the nine subjects were classified as having a dual response
phenotype. The other ten subjects were considered single responders (Table I). There were no
significant differences between the single and dual responders in regards to age, sex, airway
responsiveness to methacholine, FEV1 at the screening visit, or early-phase fall in response to
whole-lung Ag challenge (Table I). FEV1 48 h after segmental Ag challenge was decreased
minimally compared to before segmental Ag challenge and was not significantly different
between single and dual responders (medians 98% and 96% of the value before segmental
challenge in single and dual responders, respectively).

Median number of BAL eosinophils after segmental challenge was > tenfold higher in the dual
responders than in the single responders (Table I). Median numbers of BAL neutrophils and
macrophages, in contrast, were about twofold higher and not significantly different in dual
versus single responders (medians in single and dual responders were 3.1 × 106 and 7.5 ×
106 neutrophils, and 43 × 106 and 93 × 106 macrophages; respectively). Neutrophil percentage
was not significantly different and macrophage percentage was significantly lower in dual
responders, due to the increased proportion of eosinophils (medians in single and dual
responders were 2.3% and 3.0% neutrophils, and 47% and 22% macrophages; respectively).

Integrin expression on blood and BAL eosinophils after segmental allergen challenge
Sample flow cytometry histograms for eosinophil expression of total β1 (A), the activation-
sensitive β1 epitope for mAb N29 (B–D), total β2 (E), the activation-sensitive β2 epitope for
mAb24 (F), αM (G), and αD (H) are shown in Fig. 1. Expression distributions were
homogeneous in some samples (Fig. 1A,B,F) and heterogeneous and asymmetric with one or
more “shoulders” in others (Fig. 1C,D,G,H). β1 distributions were mostly heterogeneous on
blood eosinophils and uniformly homogeneous on BAL eosinophils (Fig. 1A, Table II). N29
reactivity of blood eosinophils was variable (Fig. 1B–D, Table II). Some samples had two peaks
(Fig. 1C) or a “shoulder” of reactivity (Fig. 1D). N29 reactivity of BAL eosinophils was
uniformly homogeneous (Fig. 1B–D, Table II). β2 was heterogeneous on blood eosinophils,
often with two or several distinct populations; whereas the peak of BAL eosinophils was mostly
homogeneous and shifted to the right with higher fluorescence intensity compared to the most
positive blood eosinophil population (Fig. 1E, Table II). MAb24 reactivity was homogeneous
and low on blood eosinophils and mostly homogeneous and shifted to the right on BAL
eosinophils (Fig. 1F, Table II). αM was mostly heterogeneous on blood eosinophils and
homogeneous and shifted to the right on BAL eosinophils (Fig. 1G, Table II). αD was mostly
heterogeneous on blood eosinophils and mostly homogeneous on BAL eosinophils (Fig. 1H,
Table II). Thus, distributions on BAL eosinophils were typically homogeneous; whereas
distributions of β1, β2, αM, and αD on blood eosinophils were mostly heterogeneous.

Expression data were scored either as percentage positive cells or as expression level (specific
geometric mean channel fluorescence [gMCF])(Table II, Fig. 2). Fig. 3 shows a comparison
between the results with these two scoring methods on blood eosinophils for N29 (Fig. 3A)
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and αD (Fig. 3B). At lower fluorescence intensity, percentage positive cells and expression
level correlate; whereas at higher intensity the percentage positive cells plateaus (Fig. 3A,B).
Because of its greater dynamic range, specific gMCF was chosen as the more informative
measure of integrin expression and activation (Fig. 2). It should be emphasized that for the
samples displaying heterogeneous bimodal or multimodal distributions of the β2 integrin
subunits, neither gMCF nor percentage positive cells fully captures the complexity of the
distributions.

At 48 h after segmental Ag challenge, on circulating eosinophils of dual responders the
expression level of the epitope for activation-sensitive anti-β1 mAb N29 (34,40,41) was higher
48 h after segmental challenge as compared to before challenge (Fig. 2B). Circulating
eosinophils also had significantly higher expression of the αD integrin subunit compared to
before segmental challenge (Fig. 2F). αD and N29 epitope expression on blood eosinophils 48
h after segmental challenge correlated with each other (rs [Spearman rank correlation
coefficient] = 0.73, p = 0.002). Thus, the results demonstrate that segmental Ag challenge
causes significantly increased surface expression of the αD subunit of β2 integrins and, in dual
responders, activation of β1 integrins at 48 h on blood eosinophils.

Eosinophils in BAL 48 h after segmental Ag challenge had significantly higher β2 and αM
subunit expression than eosinophils in blood obtained before or 48 h after segmental challenge
(Fig. 2C,E). The expression of the epitope for the activation-sensitive anti-β2 mAb24 (32,33)
was significantly increased on BAL eosinophils; binding of mAb24 to blood eosinophils was
low in blood both before and after segmental challenge (Fig. 2D). αD expression was
significantly increased on BAL eosinophils compared to blood eosinophils before challenge
but not compared to blood also sampled at 48 h (Fig. 2F). In dual responders, BAL eosinophils
had significantly more total and activated β1 (as ascertained by N29) than blood eosinophils
before challenge (Fig. 2A,B). α6 expression was lower on BAL eosinophils than on blood
eosinophils after challenge (specific gMCF = 560 ± 140 [mean ± SEM] versus 920 ± 110, p ≤
0.05)(not shown). No differences were found in expression of αL, αX, α4, or β7 (not shown).
Overall, the results indicate that αMβ2 is upregulated on BAL eosinophils and BAL eosinophil
β2 integrins are in a conformationally altered and activated state compared to on blood
eosinophils.

To examine the specificity of the changes on blood eosinophils, circulating neutrophils and
monocytes were also analyzed. Before segmental challenge, neutrophils had higher N29
reactivity than eosinophils and monocytes even higher (Figs. 4B and 5B, compare to Fig. 2B).
At 48 h after segmental Ag challenge, circulating neutrophils and monocytes, like eosinophils,
had significantly higher αD expression compared to before challenge (Figs. 4F and 5F).
Monocytes from dual responders had higher αD after segmental challenge than those from
single responders (Fig. 5F). N29 reactivity of neutrophils (as with eosinophils) increased
significantly in dual responders upon segmental challenge, although to a lesser degree (1.4-
fold for neutrophils, 1.7-fold for eosinophils)(Fig. 4B, compare to Fig. 2B); whereas N29
reactivity of monocytes did not increase significantly (Fig. 5B). Further, αM on blood
neutrophils and monocytes and β2 on blood monocytes increased significantly upon segmental
challenge (Figs. 4E and 5C,E); in contrast to blood eosinophil αM and β2, which did not (Fig.
2C,E).

Thus, 1) αD is upregulated on all three leukocyte populations, not just eosiniophils; 2) β1 at
baseline is more activated on neutrophils and monocytes compared to eosinophils; 3) in dual
responders we found increased activation state of β1 on neutrophils despite the high baseline
activation state; and 4) surface expression of αM is upregulated on monocytes and neutrophils,
but not on blood eosinophils.
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Correlations between integrin expression and eosinophil numbers in BAL after segmental
allergen challenge

As with the variability in eosinophil numbers in BAL after segmental Ag challenge in the 19
subjects (Table I), there was considerable variability in integrin activation or expression on
BAL eosinophils (Fig. 2). BAL eosinophils from dual responders had significantly higher N29
epitope and total α2 expression than BAL eosinophils from single responders (Figs. 2 and 6).
Grouping all subjects together, reactivity of BAL eosinophils with the activation-sensitive
mAbs, N29 against β1 and mAb24 against β2, correlated significantly with percentage of
eosinophils in BAL (Fig. 7). Surface expression of other integrin subunits on BAL eosinophils
did not correlate with BAL eosinophil percentage (not shown). These results indicate that
activation of both β1 and β2 integrins are associated with eosinophil recruitment to the airway.

Correlations between integrin expression after segmental allergen challenge and the
magnitude of the late-phase fall in FEV1 after whole-lung allergen challenge

We also analyzed for possible correlations between eosinophil integrins after segmental
challenge and the magnitude of the maximum fall in FEV1 3–8 h after whole-lung allergen
challenge (late-phase fall). αD expression and reactivity with N29 of blood eosinophils 48 h
after segmental challenge each correlated with the magnitude of the late-phase fall in FEV1
after whole-lung challenge (Fig. 8A,B). β2 expression and reactivity with mAb24 of BAL
eosinophils 48 h after segmental challenge also correlated with the magnitude of the late-phase
FEV1 fall (Fig. 8C,D), as did αM expression of BAL eosinophils (rs = 0.83, p = 0.008)(not
shown). In addition, the late-phase FEV1 fall correlated with the percentage of eosinophils in
BAL 48 h after segmental challenge (rs = 0.70, p = 0.001)(not shown). Thus, the results indicate
that greater αD upregulation and β1 activation on blood eosinophils and greater αMβ2
upregulation and β2 activation on BAL eosinophils after segmental challenge in a subject are
associated with a greater late-phase FEV1 fall in response to whole-lung challenge.

Correlations between integrin expression and cytokine concentrations in BAL fluid after
segmental allergen challenge

To identify factor(s) possibly responsible for the changes in integrins observed following
segmental Ag challenge, the concentrations of IL-5, GM-CSF, IL-3, and IFN-γ in BAL fluid
were measured (Fig. 9). The concentration of all four cytokines was significantly higher 48 h
after segmental challenge than in samples obtained immediately before segmental challenge
(Fig. 9). There was a highly significant difference in BAL fluid IL-5 after segmental challenge
between single and dual responders; median IL-5 concentration in BAL fluid from dual
responders was about 40-fold greater than from single responders (Fig. 9). Also IL-3 and IFN-
γ were significantly different between single and dual responders; medians from dual
responders were about ten- and three-fold those from single responders for IL-3 and IFN-γ,
respectively (Fig. 9). GM-CSF was not different between single and dual responders (Fig. 9).

The concentration of BAL fluid IL-5, but not that of the other cytokines, correlated significantly
and strongly with the percentage of eosinophils in BAL 48 h after segmental Ag challenge
(rs = 0.69, p = 0.001 for IL-5; rs = 0.23, p = 0.36 for GM-CSF; rs = 0.32, p = 0.19 for IL-3;
and rs = 0.39, p = 0.11 for IFN-γ). It is possible that one or both of the other IL-5 family
cytokines would correlate with BAL eosinophil percentage if a higher number of subjects were
studied. IL-5 also correlated inversely with the percentage of macrophages (not shown),
reflecting the decreased macrophage percentage as eosinophil percentage increases. Further,
BAL fluid IL-5 after segmental challenge correlated strongly with the magnitude of the late-
phase fall in FEV1 after whole-lung challenge (rs = 0.79, p < 0.0001). IL-3 also correlated with
late-phase FEV1 fall but less well (rs = 0.51, p = 0.03). GM-CSF (rs = 0.37, p = 0.12) and IFN-
γ (rs = 0.36, p = 0.13) did not correlate with late-phase FEV1 fall.
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Levels of β2 and reactivity with mAb24 of BAL eosinophils correlated significantly with the
concentration of IL-5 in BAL fluid 48 h after segmental Ag challenge (Fig. 10), as did level
of αM (rs = 0.70, p = 0.04)(not shown). These integrins did not correlate with concentrations
of the other cytokines (not shown). There was no correlation with BAL fluid IL-5 before
segmental challenge (not shown). Integrins of blood eosinophils did not correlate with cytokine
concentrations in BAL fluid 48 h after segmental Ag challenge (not shown). Thus, a greater
IL-5 concentration in BAL fluid in a subject is associated with greater αMβ2 upregulation and
β2 activation on BAL eosinophils after segmental challenge.

Discussion
We observed changes in integrins on eosinophils in blood and airway of 19 subjects with mild
allergic asthma after segmental bronchial allergen challenge that were related to the reactivities
of subjects in the whole Ag challenge protocol. Eosinophils in blood 48 h after challenge had
increased expression of the αD integrin subunit and, in asthmatics with a dual response
phenotype, increased reactivity with activation-sensitive anti-β1 integrin mAb N29 compared
to before challenge. Eosinophils in BAL obtained 48 h after challenge had increased expression
of β2 and αM integrin subunits and increased reactivity of activation-sensitive anti-β2 integrin
mAb24 compared to eosinophils in blood. β2, αM, and mAb24 epitope expression on BAL
eosinophils correlated with the concentration of IL-5 in BAL fluid obtained 48 h after segmental
Ag challenge. In addition, αD expression and, in dual responders, N29 reactivity were higher
on BAL eosinophils than on blood eosinophils before challenge. Integrin expression patterns
on BAL eosinophils were more homogeneous and symmetric than on blood eosinophils. The
observations of N29 epitope and αD expression are compatible with a scenario whereby
extravasated eosinophils appearing in the airway are derived from a subpopulation of the total,
more heterogeneous population of circulating eosinophils. However, the observations of
αMβ2 expression, β2 activation state, and IL-5 levels in BAL fluid indicate that after leaving
the circulation eosinophils undergo IL-5-triggered activation of β2 and upregulation of αMβ2.

Analysis of neutrophils and monocytes in the same blood samples revealed that αD expression
increased on all three leukocyte types upon segmental challenge; thus, αD upregulation may
occur through a common mechanism. At baseline, N29 reactivity was higher on neutrophils
than on eosinophils and even higher on monocytes. N29 reactivity increased significantly on
neutrophils in dual responders upon challenge, but to a relatively lesser degree than on
eosinophils; whereas it did not change significantly on monocytes. The mechanisms
responsible for maintaining the baseline β1 activation levels on the different leukocytes and
responsible for the elevation of activation state upon challenge are unknown. Finally,
neutrophil and monocyte αM and monocyte β2 were upregulated upon challenge, in contrast
to eosinophil αM and β2, which were upregulated in BAL but not blood. Thus, circulating
eosinophils are less sensitive than neutrophils or monocytes to increased surface expression of
αMβ2.

β1 activation on blood eosinophils, assessed by reactivity with N29, has been shown to correlate
inversely with FEV1 in an inhaled corticosteroid (ICS) withdrawal study (35). The present
results complement the steroid withdrawal study by demonstrating persistent β1 activation in
dual responders with more eosinophilic inflammation in the airway. Blood eosinophils from
dual responders, but not from single responders, have also been shown to have enhanced
activation of FcγRII (CD32), as assessed with the phage mAb A17, 6 h after challenge (42).
Whether activation of β1 integrin and CD32 on circulating eosinophils are triggered by the
same or different stimuli and signaling pathways is an interesting question that remains to be
investigated.
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The changes observed here in BAL eosinophils reproduce observations in the literature, mostly
on isolated eosinophils, that BAL eosinophils have higher αM and β2 than blood eosinophils
(43–46); activated αMβ2, as monitored by anti-active αM mAb CBRM1/5 (22,36); and
increased αMβ2-inhibitable adhesion to diverse ligands (22,36). Our finding that dual
responders have higher total numbers of cells and eosinophils and higher proportion of
eosinophils in BAL after segmental Ag challenge than single responders also is in accord with
prior reports (47–50). We also found that β1 activation state and β2 surface expression were
significantly higher on BAL eosinophils from dual responders than on those from single
responders. Activation of β1 and β2 integrins, as assessed with the activation-sensitive mAbs
N29 and mAb24, respectively, on BAL eosinophils correlated with eosinophil percentage in
BAL, indicating that activation of both these subfamilies of integrins is important for eosinophil
recruitment. This idea is consistent with in vivo studies supporting the involvement of α4β1 in
eosinophil appearance in the airway and in vitro studies showing involvement of both β1 and
β2 integrins in eosinophil transendothelial migration (22,51–56). The evidence for involvement
of both α4β1 and β2 integrins in eosinophil migration in vivo is further strengthened by a recent
report that eosinophil recruitment to airway after Ag challenge was severely attenuated in both
a conditional α4 integrin knockout mouse and a β2-deficient mouse (57). Finally, αD expression
and β1 activation on blood eosinophils as well as β2 and αM expression and β2 activation on
BAL eosinophils after segmental Ag challenge all correlated with the magnitude of the late-
phase fall in FEV1 in response to whole-lung Ag challenge.

A number of mediators are increased in airway after challenge (28,29,49,58,59). Of these, the
most likely candidates to account for upregulation and activation of αMβ2 are the IL-5 family
cytokines (36,60,61). Concentrations of IL-5, GM-CSF, IL-3, and IFN-γ in BAL fluid
recovered 48 h after segmental Ag challenge were all increased significantly compared to in
BAL fluid recovered before challenge. IL-5 correlated with BAL eosinophil αM and β2
expression and β2 activation 48 h after segmental challenge. The median concentration of IL-5
in BAL fluid from dual responders after segmental challenge was about 600 pg/ml, which was
more than 20-fold the median concentration of the other cytokines. Further, the IL-5
concentration in the five BAL samples containing eosinophils with the most highly activated
β2 was 100 to > 1000 pg/ml. During recovery of BAL the volume of the fluid lining the airway
epithelium in vivo is estimated to become diluted 100-fold (62). Thus, the levels of IL-5 in the
epithelial lining fluid of these subjects (all of whom were dual responders) is estimated to be
about 10–100 ng/ml. Treatment of blood eosinophils in vitro with IL-5 at concentrations in
this range is known to saturate the IL-5 receptor (63–68) and lead to αMβ2 upregulation and
activation and induction of adhesion to ICAM-1 and other substrates (36,60,61), priming and
enhanced response to chemoattractants (69), enhanced viability (70), degranulation and
granule protein release (30), IL-5 receptor α downregulation (71), and enhanced expression of
certain genes (72). In contrast, median concentrations of the other IL-5 family cytokines prior
to dilution are estimated to be about 1–3 ng/ml. Thus, the concentration of IL-5 in the lining
fluid in vivo, assuming that a significant portion of the IL-5 measured represents active IL-5,
is estimated to be sufficient to cause αMβ2 upregulation and activation of β2 integrins. These
results are in accord with the earlier observation that the IL-5 receptor is downregulated
specifically compared to the GM-CSF receptor on eosinophils recovered by BAL 48 h after
segmental Ag challenge (30). We also found that BAL fluid IL-5 correlated with the percentage
of eosinophils in BAL and with the magnitude of the late-phase fall in FEV1. A correlation
between BAL fluid IL-5 and eosinophil recruitment to the airway after segmental Ag challenge
has been reported before (38,73–76) and is consistent with the observation that anti-IL-5
therapy causes a significant decrease in sputum eosinophils (1).

Our study has several limitations. The data sets were incomplete in that all integrins were not
assayed from all samples. Sampling of blood and BAL were performed only at one time point
(48 h) after segmental Ag challenge. Future experiments with blood sampling at various time
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points after segmental and/or whole-lung Ag challenge are required to record the time-course
of αD and N29 expression on blood eosinophils in dual and single responders and learn when
the values diverge. Further, the importance of the integrin expression heterogeneity observed
on blood eosinophils, particularly regarding β2 and αM, is not known. Such heterogeneity, to
our knowledge, has not been described or discussed before. Of note, we subjected whole blood
to primary antibody incubation without previous cell isolation or centrifugation. Earlier studies
on blood eosinophil integrin expression have been performed on a buffy coat preparation or
purified eosinophils (43–45). Dextran sedimentation during buffy coat preparation has been
shown to cause upregulation of αM on blood eosinophils (and neutrophils) compared to in
whole, unfractionated blood (77). Eosinophils are likely similar to neutrophils, which are
known to store a large proportion of αM in granules, wherefrom it is translocated to the plasma
membrane after cell stimulation (78). Remarkably, eosinophils in BAL had strong
homogeneous labeling for β2 and αM. One possibility is that higher reacting subpopulations of
circulating leukocytes represent cells that have undergone “retrograde” migration back to the
blood from tissues, as has been demonstrated for zebrafish neutrophils in vivo (79) and human
neutrophils in vitro (80). Blood sampling at various time points after Ag challenge, including
times beyond 48 h, may shed further light on circulating eosinophil subpopulations.

Our results and the literature are compatible with the schematic of eosinophil recruitment after
segmental Ag challenge that is depicted in Fig. 11. At baseline, β1 and β2 integrins on a
circulating eosinophil are in a low activation state, the level of eosinophil surface αD is low,
and VCAM-1 is absent from endothelial surfaces of the bronchial circulation. Yet-to-be-
identified stimuli resulting from Ag challenge cause enhanced activation of β1 integrins and
increased surface expression of αD on circulating eosinophils. Because increased expression
of the β1 activation epitope occurs on most eosinophils, the activation likely takes place in the
pulmonary circulation through which the eosinophils constantly pass or in response to release
of an activating substance into the circulation (Fig. 11). Such activation contrasts with the
model for recruitment of leukocytes (16), including eosinophils (20), in which integrin
activation is assumed to occur locally and concurrently with rolling and tethering on
endothelium. Interestingly, bone marrow-derived progenitor cells or circulating eosinophils of
asthmatics have been shown to be activated upon Ag challenge also as measured by
upregulation of IL-5 receptor α and CCR3, activation of CD32, and greater responsiveness to
chemoattractants (42,81–83). Further, eosinophils from allergic asthmatics have been shown
to have a greater capacity to adhere to and transmigrate through endothelium than eosinophils
from normal donors (51,84).

The question then arises as to how activated circulating eosinophils localize to the parts of the
lung subjected to Ag challenge in preference to neutrophils and monocytes. As a parallel
response to Ag challenge, mediators, including IL-4 and IL-13, are elaborated and activate
bronchial endothelium to specifically synthesize and express VCAM-1. VCAM-1 has been
shown to be preferentially expressed in the asthmatic lung or after Ag challenge (85,86).
Further, VCAM-1 can support adhesion of eosinophils but not neutrophils (9,18,22,87–91).
Circulating eosinophils with activated β1 and upregulated αD are presumed to have a higher
probability of arresting on VCAM-1 on activated endothelium of the bronchial circulation (Fig.
11), since adhesion of purified blood eosinophils to VCAM-1 is mediated by α4β1 (22,92),
with a possible contribution by αDβ2 (22,31).

αM and β2 are shown as being upregulated and β2 integrins as being activated by IL-5, also
elaborated in response to allergen. Eosinophils appearing in the airway lumen have a
hyperadhesive phenotype that is marked by activated β1 integrins, upregulated αDβ2, activated
β2 integrins, and upregulated αMβ2 (Fig. 11). Eosinophils, particularly after priming by IL-5
(69), responds to chemoattractants, such as eotaxin (9,13)(Fig. 11). αMβ2 is believed to be
important for eosinophil migration (22,51,53,93–95). Thus, the scenario has migrating
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eosinophils using activated αMβ2 and possibly other integrins to interact with multiple
substrates (22,36,92), including VCAM-1, ICAM-1 and ECM proteins, on endothelial cells,
in connective tissue, and on epithelium of the bronchial wall.
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FIGURE 1. Integrin expression on blood and BAL eosinophils before and after segmental Ag
challenge
Representative flow cytometry histograms of expression of total β1 integrin (A), activation-
sensitive β1 integrin mAb N29 epitope (B–D), total β2 integrin (E), activation-sensitive β2
integrin mAb24 epitope (F), αM integrin (G), or αD integrin (H) on blood eosinophils before
segmental Ag challenge (green), blood eosinophils 48 h after segmental Ag challenge
(blue), or BAL eosinophils 48 h after segmental Ag challenge (red); or isotype control
(brown). For N29 epitope expression three examples are shown: B; one homogeneous,
symmetric peak on blood eosinophils before and after challenge, and higher mean expression
level after challenge than before. C; one peak on blood eosinophils before challenge and two
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peaks after challenge, and higher mean expression level after challenge. D; an asymmetric peak
with a “shoulder” to the right on blood eosinophils before and after challenge, and decrease in
the size of the “shoulder” and lower mean expression level after challenge. Numbers of
individuals with the various patterns are summarized in Table II.
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FIGURE 2. Integrin expression on blood and BAL eosinophils before and 48 h after segmental Ag
challenge
Expression of total β1 integrin (A), activation-sensitive β1 integrin mAb N29 epitope (B), total
β2 integrin (C), activation-sensitive β2 integrin mAb24 epitope (D), αM integrin (E), and αD
integrin (F) on blood eosinophils before segmental Ag challenge (light gray), blood eosinophils
48 h after segmental Ag challenge (medium gray), and BAL eosinophils 48 h after segmental
Ag challenge (dark gray) in all tested subjects, single responders, and dual responders. Values
shown are specific mean channel fluorescence (gMCF)(mean ± SEM). For n values and
expression given as percentage of positive cells, see Table II). *p ≤ 0.05, **p ≤ 0.01, ***p ≤
0.001 versus blood eosinophils before segmental challenge; †p ≤ 0.05, †††p ≤ 0.001 versus
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blood eosinophils after segmental challenge; ‡p ≤ 0.05 versus single responders. BAL,
bronchoalveolar lavage.
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FIGURE 3. Integrin expression on blood eosinophils as percentage of positive cells and expression
level
Blood eosinophil expression of activation-sensitive β1 integrin mAb N29 epitope (A) or αD
integrin (B) before (empty symbols) and 48 h after (filled symbols) segmental Ag challenge,
expressed as percentage of positive cells (y axes) or as expression level (specific geometric
mean channel fluorescence [gMCF])(x axes).
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FIGURE 4. Integrin expression on blood neutrophils before and 48 h after segmental Ag challenge
Expression of total β1 integrin (A), activation-sensitive β1 integrin mAb N29 epitope (B), total
β2 integrin (C), activation-sensitive β2 integrin mAb24 epitope (D), αM integrin (E), and αD
integrin (F) on blood neutrophils before segmental Ag challenge (light gray) and 48 h after
segmental Ag challenge (medium gray) in all tested subjects, single responders, and dual
responders. Values shown are specific mean channel fluorescence (gMCF)(mean ± SEM).
*p ≤ 0.05 versus before segmental challenge.
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FIGURE 5. Integrin expression on blood monocytes before and 48 h after segmental Ag challenge
Expression of total β1 integrin (A), activation-sensitive β1 integrin mAb N29 epitope (B), total
β2 integrin (C), activation-sensitive β2 integrin mAb24 epitope (D), αM integrin (E), and αD
integrin (F) on blood monocytes before segmental Ag challenge (light gray) and 48 h after
segmental Ag challenge (medium gray) in all tested subjects, single responders, and dual
responders. Values shown are specific mean channel fluorescence (gMCF)(mean ± SEM).
*p ≤ 0.05, **p ≤ 0.01 versus before segmental challenge; ‡p ≤ 0.05, ‡‡p ≤ 0.01 versus single
responders.
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FIGURE 6. Differences in integrin activation and expression on BAL eosinophils between single
and dual responders
BAL eosinophil expression 48 h after segmental Ag challenge of activation-sensitive β1
integrin mAb N29 epitope (A) or total β2 integrin (B) in single and dual responders. Bar =
mean, *p ≤ 0.05 versus single responders. BAL, bronchoalveolar lavage; gMCF, geometric
mean channel fluorescence.
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FIGURE 7. Correlations between integrin activation on BAL eosinophils and BAL eosinophil
percentage
Correlations between BAL eosinophil expression of activation-sensitive β1 integrin mAb N29
epitope (A) or activation-sensitive β2 integrin mAb24 epitope (B) and percentage of eosinophils
in BAL 48 h after segmental Ag challenge. BAL, bronchoalveolar lavage; gMCF, geometric
mean channel fluorescence. rs, Spearman rank correlation coefficient.
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FIGURE 8. Correlations between integrin activation and expression on blood and BAL eosinophils
and the magnitude of the fall in FEV1 3-8 h after whole-lung Ag challenge
Correlations between blood eosinophil expression of activation-sensitive β1 integrin mAb N29
epitope (A) or αD integrin (B) or BAL eosinophil expression of total β2 integrin (C) or
activation-sensitive β2 integrin mAb24 epitope (D) 48 h after segmental Ag challenge and the
magnitude of the late-phase fall in FEV1 3–8 h after whole-lung Ag challenge. BAL,
bronchoalveolar lavage; FEV1, forced expiratory volume in 1 s; gMCF, geometric mean
channel fluorescence. rs, Spearman rank correlation coefficient.
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FIGURE 9. Cytokine concentrations in BAL fluid before and 48 h after segmental Ag challenge
Concentrations of IL-5 (A), GM-CSF (B), IL-3 (C), and IFN-γ (D) in BAL fluid before (light
gray bars) and 48 h after (medium gray bars) segmental Ag challenge from all tested subjects
(n = 19), single responders (n = 10), or dual responders (n = 9). Values shown are medians
with 25th and 75th percentiles of concentrations in recovered, unconcentrated BAL fluid. *p ≤
0.05, **p ≤ 0.01, ***p ≤ 0.001 versus before segmental challenge; ‡p ≤ 0.05, ‡‡‡p ≤ 0.001
versus single responders. BAL, bronchoalveolar lavage.
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FIGURE 10. Correlations between integrin activation and expression on BAL eosinophils and IL-5
in BAL fluid
Correlations between blood eosinophil expression of total β2 integrin (A) or activation-
sensitive β2 integrin mAb24 epitope (B) and the concentration of IL-5 in BAL fluid 48 h after
segmental Ag challenge. BAL, bronchoalveolar lavage; gMCF, geometric mean channel
fluorescence. rs, Spearman rank correlation coefficient.
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FIGURE 11. Sequential upregulation and activation of eosinophil integrins during recruitment to
airway after exposure to allergen
Schematic relating activation of β1 and β2 integrins to eosinophil trafficking during and after
segmental Ag challenge. Left, An eosinophil (oval) with unactivated β1 integrins and low
surface expression of αD is shown entering the pulmonary circulation of a segment subjected
to Ag challenge. A yet-to-be-identified stimulus or stimuli (X) cause(s) activation of β1
integrins and increased surface expression of αD during transit of the eosinophil (rectangle)
through the vessel. Right, Concurrently, IL-4 and other mediators are released and specifically
induce surface expression of VCAM-1 (discontinuous black line) on the endothelial cells of a
bronchial blood vessel in the challenged segment. An eosinophil with activated β1 and
upregulated αD (rectangle) is shown entering the bronchial circulation. The eosinophil arrests
and adheres (elongated rectangle) to VCAM-1. After exposure to IL-5 the eosinophil becomes
responsive to chemotactic factors, migrates (arrow) and assumes a hyperadhesive airway
phenotype (hexagon) in the lumen. The airway eosinophil displays activated β1, upregulated
αD, activated β2, ανδ υπρεγυλατεδ αM and β2.
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