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Abstract
Macrophages play an important role in the biological response to wear particles, which can result in
periprosthetic osteolysis and implant loosening. In this study, we demonstrate that polymer particles
induce systemic trafficking of macrophages by non-invasive in vivo imaging and
immunohistochemistry. The distal femora of nude mice were injected with 10% (weight/volume)
Simplex bone cement (BC) suspensions or saline (PBS). Reporter RAW264.7 macrophages which
stably expressed the bioluminescent reporter gene fluc, and the fluorescence reporter gene gfp, were
injected intravenously. Bioluminescence imaging was performed immediately and periodically at 2-
day intervals until day 14. Compared to the non-operated contralateral femora, the bioluminescent
signal of femora injected with BC suspension increased 4.7±1.6 and 7.8 ± 2.9 fold at day 6 and 8,
respectively. The same values for PBS group were 1.2±0.2 and 1.4±0.5, respectively. The increase
of bioluminescence of the BC group was significantly greater than the PBS group at day 8 (p < 0.05)
and day 6 (p<0.1). Histological study confirmed the presence of reporter macrophages within the
medullary canal of mice that received cement particles. Modulation of the signaling mechanisms that
regulate systemic macrophage trafficking may provide a new strategy for mitigating the chronic
inflammatory response and osteolysis associated with wear debris.

1. Introduction
Excessive production of wear particles from joint replacements is associated with
periprosthetic osteolysis, which can lead to implant loosening [1-7]. Phagocytic cells engulf
particulate debris and become activated; releasing proinflammatory cytokines, chemokines,
degradative enzymes, reactive oxygen radicals and other substances which stimulate
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osteoclasts to undermine the prosthetic bed [8-14]. The key cell in the foreign body and chronic
inflammatory response to wear particles is the macrophage [15-17]. Cells of the monocyte/
macrophage lineage differentiate and maturate into phagocytic macrophages, foreign body
giant cells and osteoclast precursors. These cells (in communication with stromal cells and
other cell types) are primarily responsible for the cascade of events culminating in
periprosthetic osteolysis. Despite ongoing research into the cellular and molecular processes
associated with periprosthetic osteolysis, no in vivo studies have elucidated whether remote
macrophages are stimulated to migrate to wear particles, or whether these events are a local
phenomenon only. If macrophage recruitment to particles is a systemic phenomenon then novel
strategies to mitigate these events may be potential targets for treatment.

We hypothesized that exogenous reporter macrophages introduced from a distant site would
migrate and concentrate to an area in which phagocytosable polymer particles have been
implanted. To examine this hypothesis, we use a model of femoral intramedullary polymer
particle placement [18] in nude mice, a murine macrophage cell line transfected with a
bioluminescent reporter gene, and sequential non-invasive imaging in-vivo using
bioluminescence.

2. Materials and Methods
2.1 Animals and Cells

Eight to eleven week old adult male nude mice (Charles River Laboratories, Inc., MA) were
housed and fed in our institution's animal facility. The murine macrophage cell line RAW264.7
was transfected with the lentiviral vector to express the bioluminescent optical reporter gene,
firefly luciferase (fluc), and a fluorescence reporter gene, green fluorescent protein (gfp)
[19].

2.2 Bone Cement Particles
Simplex® P bone cement (BC) powder (Howmedica Osteonics, Allendale, NJ) was used in
the study. The BC powder is composed of 15% polymethyl methacrylate (PMMA), 10%
barium sulphate, and 75% methylmethacrylate styrene copolymer. The particles vary from less
than 1 μm in diameter to approximately 100 μm according to the manufacturer. The particles
tested negative for endotoxin using a Limulus Amebocyte Lysate kit (BioWhittaker,
Walkersville, MD). 10% (weight/volume) BC suspension was prepared in phosphate buffered
saline (PBS, pH 7.4).

2.3 Surgical procedure
Institutional guidelines for the care and use of laboratory animals were strictly followed. All
the operations were done using general anesthesia using a mask (3% isoflurane in 100%
oxygen). We used the transpatellar tendon approach for distal femoral medullary cavity
injection [20]. Briefly, the patellar tendon was exposed through a 5 mm lateral skin incision,
and then the lateral aspect of the femoral shaft was exposed by another 5 mm incision over the
distal quadriceps. The intramedullary injection (10 μl) was performed through the patellar
tendon into the inter-condylar region of the femur with a 5 mm insertion of the needle guided
by palpation of the lateral femoral shaft. The quadriceps-patellar complex was repaired with
suture after injection. The incisions on the skin were closed by surgical adhesive glue and
suture. Buprenorphine (Ben Venue Laboratories, Bedford, OH) at 0.1 mg/kg was given
subcutaneously immediately and 4 hours later post-operatively for pain control.

In addition to the BC suspension treatments, additional mouse limbs were used as negative
controls (no injection, or injection of PBS only) and positive controls (injection of
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lipopolysaccharide from Escherichia coli O127:B8 at a concentration of 1 μg/gram bodyweight
in PBS, purchased from Sigma, Saint Louis, MO,).

2.4 Bioluminescence imaging
For in vivo surveillance of the trafficking of macrophages, seven days post operation,
macrophages (5 × 105 cell) suspended in 0.1 ml Hanks' balanced salt solution (HBSS,
Invitrogen, Carlsbad, CA) were injected intravenously via a syringe and needle (25 gage) into
the lateral tail vein of mice. Fifteen minutes after intraperitoneal administration of D-luciferin
(3 mg/mouse, Biosynth International), 5-minute images were taken with an in vivo imaging
system (IVIS) employing a cooled charge-coupled device camera (Caliper LifeSciences,
Hopkinton, MA). Prone and lateral images were obtained from each animal at each time point
to better determine the origin of photon emission. Animals were imaged at 2-day intervals post-
macrophage injection. Bioluminescence images were quantified by drawing uniformly sized
regions of interest (ROIs) throughout the whole experiment, over the thigh on the lateral images
of the mice, and the data were collected as to photon/cm2/sec/steradian.

2.5 Histology and immunohistology
Femora were collected at day 0 immediately after particle injection (6 femora) and 3 weeks
after completion of the imaging experiment (38 femora). Frozen sections were cut using a
cryostat (Cambridge Instruments, Buffalo, NY). Polarized light microscope (Nikon E1000M,
Japan) was used to confirm the existence of BC particles in the femoral medullary canal.

Mouse anti-GFP monoclonal antibody (Chemicon International, Temecula, CA) was used to
detect exogenous macrophages tagged with GFP. Rat anti mouse macrophage/monocyte
monoclonal antibody (MOMA-2, Chemicon International, Temecula, CA) was used to detect
macrophages. The secondary antibody used was Alexa Fluor 488 (or 594) conjugated goat
anti-mouse (or rat) IgG (Invitrogen, Carlsbad, CA). Briefly, neutral buffered formaldehyde
(10%, pH7.4) fixed frozen sections were blocked by Image-iT FX signal Enhancer (Molecular
Probes, Eugene, OR). Mouse anti-GFP monoclonal antibody and rat anti-MOMA2 monoclonal
antibody were incubated at room temperature for 3 hours, respectively. Then the sections were
incubated with Alexa Fluor 488/594 conjugated goat anti-mouse/rat IgG (Invitrogen, Carlsbad,
CA) for 1 hour at room temperature in the dark. DAPI containing ProLong Gold antifade
reagent (Molecular Probes, Eugene, OR) was used for nuclear staining and slide mounting.

2.6 Statistical Methods
The non-parametric Mann-Whitney U test was used for statistical analyses between groups
and the signed rank test was used to compare right and left limbs in the same animals.

3. Results
3.1 Polarized light microscopy of frozen section of femora

To demonstrate the presence of the BC particles in the femoral medullary canal of experimental
animals, femora of selected mice were harvested immediately after injection. Frozen sections
were stained with hematoxylin and eosin (H&E). The adopted histological protocol utilized
reagents that precluded particle disruption and dissolution during preparation of the slides.
Polarized light microscopy was used to observe the birefringence of the BC particles. As shown
in Figure 1, bright white spots indicated the presence of cement particles within the medullary
space of the femur, indicating successful particle injection.
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3.2 Imaging and bioluminescent signals of nude mice in BC and control group
We injected lipopolysaccharide (LPS) into the femoral medullary cavities of nude mice (n=10)
to ensure that there was a positive response of the tagged macrophages to endotoxin. Compared
to PBS injected femora, LPS injected femora had a stronger bioluminescent signal on day 6
onwards, as shown in Figure 2. This demonstrated the tagged macrophages could be induced
to migrate and proliferate to an area containing endotoxin in vivo in this animal model.

Femora of twelve nude mice were injected with a 10% (w/v) BC suspension unilaterally and
eight nude mice were injected with the carrier PBS alone. The pulmonary bioluminescent signal
immediately after injection indicated a successful intravenous injection of tagged macrophages
(Figure 3, day 0). One of the twelve mice in the BC group was excluded because of the lack
of a pulmonary signal. As shown in Figure 3 in a typical experimental animal, a strong signal
was seen in the lungs on day 0. From day 6 onwards, a strong bioluminescent signal was
detected in the operated left femur receiving BC particles. Weaker signals could be seen in the
vicinity of the kidney, spine and skull, as the tagged macrophages distributed throughout the
body. In Figure 2, the bioluminescent signals for the ratios of operated divided by non-operated
femora for the BC particle and PBS treatments are shown. From day 0 to day 4 post-injection
of macrophages, there were few differences between the operated and non-operated femora in
both groups (the ratios of day 0 to day 4 were 1.0, 1.0, and 1.6, respectively). However from
day 6 onwards, there were higher bioluminescent signals detected from femora receiving
cement particles compared to those receiving the carrier PBS alone. The ratios of the
bioluminescence of BC injected femora versus non-operated femora in the experimental group
were 4.7 ± 1.6 and 7.8 ± 2.9 at day 6 and day 8, whereas the values for the control group were
1.2 ± 0.2 and 1.4 ± 0.5, respectively. The increased bioluminescent signals of the BC group
were significantly higher than those from the PBS group at day 8 (p < 0.05) and a trend was
seen at day 6 (p < 0.1). The average bioluminescent signal at day 8 from the BC particle group
was higher (3.7 ± 2.1 × 106 p/s/cm2/sr) than the PBS group (3.00 ± 0.8 × 103 p/sec/cm2/sr).
The signals from the contralateral non-operated limbs in the BC particle and PBS groups were
6.0 ± 3.6 × 105 p/s/cm2/sr and 3.1 ± 0.9 × 103 p/s/cm2/sr, respectively.

3.3 Immunohistology
After completion of all of the imaging experiments, animals were euthanized and femora were
collected for histological analysis. Double-fluorescence was used to detect both the
macrophage marker MOMA2 and the GFP marker expressed by the macrophages. As shown
in Figure 4 (A and B), both reporter gene GFP and macrophage antigen could be detected in
the femoral canals of BC particle injected femora. If the images of the two macrophage markers
are overlapped using Adobe Photoshop, the staining was similar for both markers (Figure 4 A,
B, C). In contrast, there were very few reporter macrophages found in the PBS injected or non-
operated femora.

4. Discussion
Wear particles, periprosthetic osteolysis and implant loosening jeopardize the longevity of joint
replacements. Macrophages play an important role in these biological processes [8,15,17,
21-25]. Macrophages release pro-inflammatory cytokines, chemokines and other factors, and
can differentiate into osteoclasts that resorb bone [8,15,17,21-27]. The precursor cells for
activated macrophages, foreign body giant cells and osteoclasts are monocytes/macrophages.
Systemic trafficking of mature macrophages to remote sites that contain orthopaedic particles
has not been previously demonstrated using advanced imaging techniques in vivo.

In this study, we used sequential in vivo imaging using bioluminescence, and
immunohistochemistry to clearly demonstrate systemic trafficking of intravenously injected
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mouse macrophages, in which fluc and gfp reporter genes are expressed, to BC particles
implanted in the femoral canal of nude mice. Simplex bone cement particles were chosen for
these studies because they are easily acquired, relatively inexpensive, of known size and shape,
are packaged sterilely, and are easily injected into the mouse femur. Nude mice were used for
two reasons. First, these mice are immunodeficient and therefore could not mount an immune
response against the foreign RAW264.7 macrophages; thus this design permitted the
undeterred migration and behavior of the exogenous macrophages. Second, these mice are
hairless and lack skin pigment, which facilitates propagation of the light emission from optical
reporters and imaging of the bioluminescent signal [28,29]. Intravenous injection of
macrophages was performed 7 days post particle injection to avoid the immediate inflammatory
phase associated with the surgical trauma.

The tagged macrophage cell line RAW264.7 used in this experiment is immortal. We used data
collected for 14 days post-macrophage infusion to minimize the potential longer-term adverse
effects of systemic growth of a macrophage tumor cell line. Thus with the protocol outlined
above, imaging for prolonged periods is not recommended if the animals manifest weight loss
or other systemic signs of malignancy.

As shown in Figure 3, at day 0 the strongest signals were located at the lung; this pulmonary
signal was used as an indicator of successful intravenous injection of reporter cells [30-34].
Intravenous tail vein injections go to the lung via the inferior vena cava and pulmonary artery.
The labeled cells could be detected in the lung as early as 5 minutes post-injection, and start
to leave the lung and migrate systemically to liver, spleen, and kidney etc. at approximately 2
hours post-injection. Cells might remain in the lung for a prolonged time at the first stage of
distribution due to the size of the cells relative to the pulmonary capillaries, which have an
average diameter of 14 μm [35]. At day 2, the majority of injected cells are widely distributed
throughout the body and the signal from these cells was not strong enough to be detected in
our studies (Figure 3). As seen in the images in Figure 3, there are also bioluminescent signals
localized in the vicinity of the kidney, spine, and skull area. In general, the distribution of
intravenous administered cells to the long bones is much lower than with viscera such as liver,
lung, kidney, and spleen in normal rodents [30-34]. Based on the distribution of infused
macrophages using bioluminescence, the femora containing BC particles in our study
stimulated a robust systemic migratory response.

There is an unexpected high bioluminescence signal from the non-operated femora in 3 of the
11 animals in the BC group, much higher than those from the other 8 animals in this group.
However, the femora that contained bone cement particles in those same three animals had, on
average, 7.3±2.3 times higher signal than the non-operated contralateral limbs. Furthermore,
the average ratio of bioluminescence for operated divided by non-operated limbs in the other
8 animals for this BC particle group was 8.0±3.7. The reason for the high amount of
bioluminescent signal in the non-operated femora of these three animals is unclear, but this
phenomenon has been observed in other inflammatory animal models and human conditions,
such as rheumatoid arthritis [36-38]. Kumagai et al. [39] also reported the systemic migration
of GFP-labeled osteogenic connective tissue progenitor cells to the uninjured femur of the
wild-type partner using a murine parabiotic model.

The presence of BC particles in the femoral medullary canal was confirmed histologically and
by birefringence using polarized light. Furthermore, analysis using immunohistochemistry
confirmed that systemic macrophages had migrated to the BC particles. Co-localization of the
two macrophage markers was observed, indicating that the exogenous macrophages recruited
to the particles exhibited the bioluminescent signal. In contrast, no such immunostaining was
found in femora in which the saline carrier had been placed, or in non-operated femora. Thus,
the results from in vivo imaging and immunohistochemistry support our hypothesis that the
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exogenous tagged macrophages introduced from a distant site were recruited to the area in
which the cement particles had been implanted.

5. Conclusion
This study employing the techniques of sequential in vivo imaging using bioluminescence, and
immunohistochemistry clearly demonstrates that exogenous reporter macrophages injected
into the tail vein of nude mice are systemically recruited to a distant site, the femur that contains
bone cement particles. Modulation of the signaling mechanisms that regulate systemic
macrophage recruitment and homing may provide a new strategy for mitigating the chronic
inflammatory response associated with wear debris.
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Figure 1.
Polarized light microscopy of an H&E stained section of a mouse femur injected with 10% BC
particles at day 0, and sacrificed immediately post-operatively. The irregular bright white spots
(arrows) are areas of birefringent BC particles, which are in the medullary injection area. The
multi-colored birefringent strands are cortical and trabecular fragments containing collagen
fibers. The scale bar equals to 50 μm.
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Figure 2.
The ratio of bioluminescence of 10% (w/v) BC suspension femora, LPS, and PBS injected
femora versus bioluminescence of the corresponding non-operated contralateral femur from
day 0 to 14 post-injection of macrophages. The Y-axis is a normalized ratio of bioluminescence
(unit: p/s/cm2/sr) from the operated femur versus non-operated femur in each animal. The
values are mean ± SE. Number of animals in BC and saline injected groups are 11 and 8,
respectively. # and *: indicates BC treatment group compared with PBS injected group at the
same time point is statistically significant, p < 0.1 and p < 0.05, respectively;
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Figure 3.
In vivo imaging of 10% BC particles injected in the left femur of nude mice from day 0 to day
10. Images were analyzed with a standardized protocol as explained in the text. Note the
positive blue-purple (pseudocolor) signal in the left femur containing BC, indicating
accumulation of macrophages. Images at day 12 and 14 were not included in this figure since
they have higher signals at operated left femora but also with higher background signals from
the kidney and skull. Except for day 0 and day 2 (their scale bar Max = 50,000), the other scale
bar have a Max = 1.0 × 106 p/sec/cm2/sr as shown in the right of the figure.
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Figure 4.
Immunofluorescent staining of macrophages in the marrow of a femur injected with 10% BC
particles. (A) Mouse anti-GFP monoclonal antibody is the primary antibody and Alexa Fluor
488 conjugated goat anti-mouse IgG is the secondary antibody; (B) Rat anti-MOMA
monoclonal antibody is the primary antibody and Alexa Fluor 594 conjugated goat anti-rat IgG
is the secondary antibody; (C) Image A overlaped with image B using Adobe Photoshop. Note
the co-localization of the two antibodies. Arrows indicate the spots with only MOMA-2
immunostaining signal. (D) DAPI was used for nuclear staining. All three images were taken
from the same field of vision. Scale bar is 10 microns.
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