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SUMMARY
Joint analysis of longitudinal measurements and survival data has received much attention in recent
years. However, previous work has primarily focused on a single failure type for the event time. In
this paper we consider joint modelling of repeated measurements and competing risks failure time
data to allow for more than one distinct failure type in the survival endpoint which occurs frequently
in clinical trials. Our model uses latent random variables and common covariates to link together the
sub-models for the longitudinal measurements and competing risks failure time data, respectively.
An EM-based algorithm is derived to obtain the parameter estimates, and a profile likelihood method
is proposed to estimate their standard errors. Our method enables one to make joint inference on
multiple outcomes which is often necessary in analyses of clinical trials. Furthermore, joint analysis
has several advantages compared with separate analysis of either the longitudinal data or competing
risks survival data. By modelling the event time, the analysis of longitudinal measurements is adjusted
to allow for non-ignorable missing data due to informative dropout, which cannot be appropriately
handled by the standard linear mixed effects models alone. In addition, the joint model utilizes
information from both outcomes, and could be substantially more efficient than the separate analysis
of the competing risk survival data as shown in our simulation study. The performance of our method
is evaluated and compared with separate analyses using both simulated data and a clinical trial for
the scleroderma lung disease.
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1. INTRODUCTION
In clinical trials and other follow-up studies, it is common that a response variable (e.g. a
biomarker) is repeatedly measured during follow-up and the occurrence of some key event,
which could cause non-ignorable missing data for the biomarker, is also monitored. Often, the
occurrence of the event is censored by some competing risks such as disease-related dropout.
A typical example is the scleroderma lung study (SLS) [1] which has motivated this research.
The SLS is a double-blinded, randomized controlled study on 162 patients, with 81 in each
group. The goal of the SLS is to evaluate the effectiveness of oral cyclophosphamide (CYC)
versus placebo in the treatment of active, symptomatic lung disease due to scleroderma. One
outcome variable is forced vital capacity (FVC, as per cent predicted), a measure of lung
function determined longitudinally at 3-month intervals. Another important measure is a
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clinical outcome variable—the time to treatment failure or death. Here a treatment failure
occurs when %FVC of a patient in either group falls by ≥15 per cent after 6 months in the
study. In addition, there are also considerable disease-related dropouts during the follow-up.
Note that both death and dropout would cause non-ignorable missing data for the longitudinal
measurements of %FVC.

Separate analysis for each of these endpoints has been studied extensively. For the time to
event data, Cox’s [2] proportional hazards model is popular, while mixed effects models and
the GEE method are widely used for longitudinal measurements [3–6]. However, joint analysis
of both outcomes is often needed. This is the case for the SLS for two primary reasons. First,
we are interested in evaluating the effects of CYC treatment on the two endpoints, %FVC and
the time to treatment failure or death, simultaneously, since CYC is considered effective if it
can either improve the %FVC of the patients in the study or lower the risk of treatment failure
or death. Thus, it is necessary to build a more inclusive model which links the two aspects
together. Secondly, the procedure of estimating the effects of CYC on the longitudinal outcome
%FVC can be complicated by the disease-related dropout process or death, in which patients
with worse scleroderma lung disease prognoses tend to withdraw from the study early or die,
and hence are lost to follow up. Such non-ignorable missing data may lead to biased inferences
if a separate analysis is performed on the longitudinal data using the mixed effects model or
the GEE method [7,8].

Joint modelling of the two different types of endpoints simultaneously has received
considerable attention in recent years [9–20]. Tsiatis and Davidian provided a nice overview
of joint models [21]. A joint model enables one to evaluate effects of factors of interest on both
endpoints at the same time [9,10], and also, it can be used to adjust inferences about longitudinal
data for outcome-dependent missing values, of which the assumption of missing data
mechanism can be non-ignorable non-response (NINR) [11–13]. In addition, we expect to gain
more efficiency in statistical inferences with a joint model since information from both
endpoints is utilized. A fourth advantage of joint modelling stems from scientific investigations
such as AIDS studies, in which the interest is to characterize the relationship between CD4
count and the time to AIDS. One common procedure is that the true underlying trajectory of
the CD4 count can be first modelled, and then be incorporated into a Cox model for the time
to AIDS [14,15], or into an accelerated failure time model in other applications if the
proportional hazards assumption fails [16]. Non-likelihood-based approaches include the work
of Robins and his colleagues [22–24] who used augmented inverse probability of censoring
weighted estimating equations. The approach was supplemented by a sensitivity analysis for
the parameter associated with longitudinal measurements in the non-response model.

However, previous joint models only deal with a single failure type with non-informative
censorship for the time to event, and thus are not applicable to survival data with competing
risks or informative censoring. In our SLS data, disease-related dropout should be taken into
account along with treatment failure or death in a joint analysis with %FVC for two reasons.
First, disease-related dropout is regarded as informative censoring for treatment failure or
death, since it is recognized that both events are related to patient disease condition. Secondly,
disease-related dropout generates non-ignorable missing values in %FVC. One possible way
of handling such a complicated situation is to treat disease-related dropout as a competing risk
for treatment failure or death.

This paper extends the work of Henderson et al. [9] by considering simultaneous analysis of
longitudinal measurements and competing risks failure times to allow for more than one distinct
failure type. Our model enables one to handle informative censoring by treating it as a
competing risk. It also allows non-ignorable missingness after event times. We adopt a linear
mixed effects sub-model for the longitudinal measurements and a mixture sub-model for

Elashoff et al. Page 2

Stat Med. Author manuscript; available in PMC 2008 November 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



competing risks survival data which is similar to that of Larson and Dinse [25] and Ng and
McLachlan [26]. The mixture model for competing risks enables one to evaluate the effects of
some factors on both the marginal probabilities of occurrence of the risks and the conditional
cause-specific hazards. One major difference of our mixture model from their approach is that
we introduce frailties which are linear in the random effects for the longitudinal measurements.
Therefore, conditional on common covariates, the correlation between the two endpoints is
characterized by latent random effects. An EM-based algorithm is derived to estimate the
parameters in both sub-models, and inverse of the empirical Fisher information from the profile
likelihood is used to approximate the variance–covariance matrix of the estimators. It is worth
noting that the estimation procedure for joint analysis of longitudinal measurements and
competing risks failure time data is more complicated than that for longitudinal measurements
and survival data with a single failure type. With the two-step mixture sub-model for competing
risks event times, we must introduce additional hidden variables to simplify the EM algorithm.
Another commonly used model for competing risks is the cause-specific hazards proposed by
Prentice et al. [27,28]. Joint modelling of longitudinal data and competing risks using cause-
specific hazards will be studied in a sequel paper.

This article is organized as follows. The model and the estimation procedure are described in
Section 2. In Section 3, a real data application is illustrated by the SLS clinical trial. In Section
4, the performance of the joint model is examined by simulation studies, and the joint model
is compared to separate analyses in terms of the bias, the empirical standard error, the estimated
standard error, and the power of the tests for factors of interest. We also examined the estimates
from the joint model with a single failure type in the presence of informative censoring. Some
concluding remarks and possible future directions are given in Section 5.

2. MODEL AND ESTIMATION
2.1. The joint model

Suppose there are n subjects in the study. Let Yi(t) be the measurement of a response variable
for subject i at time t, where i =1, 2, …, n. During follow-up, each subject may experience one
of g distinct failure types or could be right censored. Let Ci =(Ti, Di) be the competing risks
data on subject i, where Ti is the failure time or censoring time, and Di takes value from {0, 1,
…, g}, with Di = 0 indicating a censored event and Di = k showing that subject i fails from the
kth type of failure, where k = 1, …, g. Throughout, the censoring mechanism is assumed to be
non-informative. As stated before, informative censoring can be treated as one of the g types
of failures. We also assume that each subject in the study will eventually fail from one of the
g possible failure types.

Our joint model for Y (t) and C consists of the following three components:

(1)

(2)

(3)

where we denote . Sub-model (1) is
the linear mixed effects model for the longitudinal outcome Yi (t), and sub-model (2)–(3)

specifies the distribution of the competing risks survival data with  being the
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marginal probability of subject i failing from risk k, and  the conditional cause-
specific hazard for risk k, also referred to as the component hazard [25,26], in which λ0k (t) is
a completely unspecified baseline hazard function for risk k, where k =1, …, g.

To be more specific, in sub-model (1),  is a vector of covariates associated with the
longitudinal trajectory Yi(t) and is allowed to change over time, β1 represents the fixed effects

of  U0i is a random intercept, U1i is subject-specific effects of  a vector of

covariates which may or may not be the same as  and εi (t) ~ N(0, σ2) for all t ≥ 0 is the

measurement error. We assume that  and is independent of εi (t). We

further assume that εi (t1) is independent of εi (t2) for any t1 ≠ t2.We write  In sub-

model (2)–(3)),  are vectors of covariates associated with the marginal
probability and the conditional cause-specific hazards, respectively, and α and γ are the
corresponding unknown coefficients. The sub-model incorporates random effects Wki and
Vki, and the Vki′s are usually referred to as frailties in regression models for survival data. It is
reasonable to assume that Ui, Wki, and Vki for the same i are correlated. The simplest form is

 with θk and νk being unknown parameters. We use this type of
formulation in our joint model. Therefore, we need to rewrite

 as  where

 Sub-model (2)–(3) is an extension of the mixture
model for competing risks survival data described by Larson and Dinse [25] and Ng and
McLachlan [26] which consists of a logistic model for the marginal distribution of failure types
and a proportional hazards model for the conditional cause-specific hazard without any random
effects. At last, we assume that the longitudinal measurements are independent of the
competing risks survival data, conditional on all the covariates and random effects. Through
(1)–(3), we adopt the most generic notation for the covariates which are used in different parts

of the model. In practice, the vectors  may have components in
common. In the SLS data example as illustrated in Section 3, the three vectors are identical,
containing the baseline %FVC, the degree of fibrosis in the lung, the treatment CYC, and an
interaction between fibrosis and CYC.

We have the following remarks on our joint model.

Remark 1—We note that the characteristics of the study subjects are represented by two
aspects: the observable covariates X and the hidden subject-specific effects U. Both X and U
are responsible for characterizing the sub-models and introducing dependence between Y and
C, if there are common covariates in (1)–(3). The parameters θ and ν measure the latent
association from the random effects.

Remark 2—Our joint model belongs to the class of random-effects selection models, which
assume the missing data in longitudinal measurements after dropout are non-ignorable [12].
This type of missing data in longitudinal measurements cannot be correctly analysed using
usual linear mixed effectsmodels that require missingness to be missing at random (MAR)
when some assumptions are satisfied [29,30]. Let Y(o) and Y(m) denote the observed and missing
components, respectively, for the longitudinal response variable Y, and let M denote the missing
data indicator vector for Y. According to Little and Rubin [29], missing completely at random
(MCAR) occurs when f (M|Y,ϕ) = f (M|ϕ) for all Y and ϕ, where ϕ is an unknown parameter.
Missing at random (MAR) occurs when f (M|Y,ϕ)= f (M|Y(o),ϕ). A missing mechanism is said
to be ignorable if it is MCAR or MAR; and non-ignorable otherwise. In the study of longitudinal
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data with informative dropout, the time to dropout T has direct correspondence with M if there
are no missing data before dropout. Under random-effects selection models, T is assumed to
be independent of Y given random effects U. Therefore,

(4)

Each density f here should be indexed by some unknown parameters which have been left out
for simplicity. The above equation indicates that the conditional distribution of T given Y
depends on both Y(o) and Y(m), which indicates that the missing mechanism is non-ignorable.
However, for the missing data in longitudinal measurements before dropout, we need to assume
the missing mechanism is MAR. If the informative dropout is one of the competing risks in
the follow-up, and it is related to both the longitudinal outcome and the time to event of interest,
a competing risks framework should be considered. It is necessary to take into account the
correlation between the informative dropout and the event of interest, and more importantly,
to adjust the inference on longitudinal measurements for non-ignorable missing values after
the informative dropout.

2.2. Parameter estimation
Let Ψ=(β, Σ, σ2, α, θ, γ, ν, λ01(t), …, λ0g(t)) be the vector containing all the unknown parameters
from (1) to (3). Suppose the longitudinal outcome Yi(t) is observed at time points ti j for j = 1,
…, ni, and is denoted as Yi = (Yi1, …, Yini ). Note that the set (ti1, …, tini) can be different
among subjects, due to different dropout times and the fact that some patients may miss one
or more visits. We assume that the missing values in the longitudinal measurements caused by
reasons other than occurrence of events are MAR. Recall that the competing risks endpoint on
subject i is Ci = (Ti, Di). It is important to note that the joint distribution of (Y,C) is completely
determined by f (Y|U), f (C|U), and f(U), which are specified in models (1)–(3). The full
likelihood function for Ψ, conditional on the observed data (Yi, Ci) for i = 1, …, n and the
covariates, is thus

(5)

where the second equality follows from the assumption that Y and C are independent
conditional on all the covariates and random effects. In the above expression, for a censored
subject with censoring time Ti, we have

(6)
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Here, Sk(t) and fk(t) are the conditional cause-specific survival and density functions for risk

k, respectively, derived from λk(t) in (3), and .

To maximize the above likelihood, the cumulative baseline hazard functions are assumed to
be step functions with jumps at observed event times. It is obvious that the observed-data
likelihood is difficult to maximize in the presence of integration. We may treat random effects
U as missing data and use the EM algorithm to maximize the conditional likelihood in which
the functions of U are replaced by their expectations given the observed data. However, for

censored subjects, the term  becomes non-linear in
the logarithm of the conditional likelihood. To further simplify the estimation procedure, we
introduce a latent vector τi = (τi1, …, τig)T for subject i if censoring occurs, where τik is 1 or 0
indicating whether or not the ith subject would have eventually failed from cause k if the follow-
up time is sufficiently long, where k = 1, …, g. This is similar to what Ng and McLachlan
[26] postulated. The posterior distribution of τi given Yi, Ci, and Ui is multinomial with
probability τik = 1 equal to

(7)

Given U and τ, the complete-data likelihood is

(8)

It is clear that the complete-data log-likelihood is linear in the components πk, fk, and Sk, so
that the parameters α and θ can be well separated from γ and ν.

The maximum likelihood estimate of Ψ is obtained via an EM-based algorithm, which involves
iterations between an E-step and an M-step. In the E-step of the (m + 1)th iteration, we need
to evaluate the expectation of the complete-data log-likelihood conditional on the observed
data (Y,C) and the current parameter estimate, say Ψ(m). This is equivalent to calculating the
expected values of all the functions of U and τ that appear in the complete-data log-likelihood.
We write l(Ψ;U, τ)= log L(Ψ; Y,C,U, τ) with L as defined in (8), where we drop Y and C to
simplify the notation. We have

(9)

The second equality holds because l(Ψ;U, τ) is a linear function of τ. Therefore, the only hidden
variable in l(Ψ;U, Eτ|U,Y,C,Ψ

(m) (τ)) is U, and computation of the conditional expectation of
complete-date log-likelihood is reduced to evaluating the expectation of all the functions of
U, say, h(U) in l(Ψ;U, Eτ|U,Y,C,Ψ

(m) (τ)) conditional on (Y,C,Ψ(m)), and we can write

(10)
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In the M-step, EU,τ|Y,C,Ψ
(m) [l(Ψ;U, τ)] is maximized with respect to Ψ, so that we can update

the estimate of Ψ to get Ψ(m+1). We write Q(Ψ; Ψ(m)) = EU,τ|Y,C,Ψ
(m) [l(Ψ; U, τ)] and have

(11)

Recall that Ψ=(β,Σ, σ2, α, θ, γ, ν, λ01(t), …, λ0g(t)). In Appendix A we show that β, Σ, σ2, and
the cumulative baseline hazard functions H0k(t) can be updated with closed forms (A5)–(A8),
where H0k(t) is a step function with jumps at observed event times due to risk k, k = 1, …, g.
No closed-form solutions exist for α, θ, γ, and ν, which need to be updated using a one-step
Newton–Raphson algorithm in each iteration as given in (A13)–(A24). Then Ψ(m+1) will be
the input for the E-step in the next iteration. The algorithm stops when the convergence criteria
are satisfied. Technical details of the algorithm are deferred to Appendix A.

2.3. Standard error estimation
Louis [31] proposed a method for computing the observed information matrix together with
the EM algorithm. However, this method is computationally unattractive and time-consuming
for our model in which the non-parametric baseline hazards are involved. Here we develop a
method similar to that of Lin et al. [32]. We split the parameter vector Ψ into two components,
the parametric component Ω = (β,Σ, σ2, α, θ, γ, ν) and the collection of non-parametric baseline
hazard functions Λ=(λ01(t), …, λ0g(t)). Since we are only interested in making inference on
Ω, calculating the entire information matrix with the baseline functions is unnecessary. The
variance–covariance matrix of Ω can be approximated by the inverse of the empirical Fisher
information obtained from the profile likelihood where the baseline hazards functions have
been profiled out. Let l(i) (Ω ̂; Y, C) denote the observed score vector from the profile likelihood
on the ith subject evaluated at Ω̂. The observed information matrix of Ω can be approximated
by

(12)

Wald’s test can then be performed based on the estimated variance–covariance matrix (12).

3. THE SCLERODERMA LUNG STUDY
The proposed joint model for longitudinal measurements and competing risks failure time data
is illustrated with the SLS clinical trial. We are interested in evaluating if treatment CYC is
effective on at least one of the two endpoints, that is, if the treatment can either improve the
%FVC level of a patient or decrease the risk of treatment failure or death. Initially patients
were only given a partial dose, and the dose was gradually increased to the target level within
the first 6 months. The treatment was given for 12 months from the baseline and there was an
additional year of follow-up. The primary analysis has been based on the first 12 months data.
In addition to treatment failure or death, there are considerable dropouts during the follow-up.
Specifically, as summarized in Table I, we have observed the following during the 24 months
follow-up: (1) 16 treatment failures or deaths; (2) 32 informative dropouts due to adverse event
(AE), serious adverse event (SAE), or worsening disease; (3) 10 non-informative dropouts with
no evidence showing that the dropouts were related to the disease. For example, the patient
may have moved out of the city before completion of the study. The informative dropout not
only causes non-ignorable missing data in %FVC which indicates linear mixed effects models
are not applicable, but also introduces informatively censored events for treatment failure or
death. Therefore, we have to take into account this type of events when evaluating the treatment
effects on %FVC outcome and the risk of treatment failure or death.
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Figure 1 shows the longitudinal profile of %FVC over time for the CYC group versus the
placebo. We observe a large variation in the baseline %FVC. There is no apparent time trend
for both groups. Figure 2 shows the average, the lower quartile, and the upper quartile of %
FVC within each group at months 0, 3, 6, 9, and 12. These quantities were calculated on those
who had not dropped out by the time. It is observed that the average %FVC initially decreases
in the CYC group. One explanation may be that prior to month 6 patients were only given
partial doses, not allowing sufficient time or dosing for the treatment to take effect. To account
for this, we only used data from month 6 and thereafter in the subsequent analysis. There were
10 patients with follow up ≤3 months, so they were not included in the analysis. The figure
also shows that the CYC group tends to have a higher %FVC on average than the placebo
group from month 9. However, no significant between-group difference is identified by the t-
test at each visit (results not shown), and the figure indicates that the two groups have about
the same interquartile ranges. We should note that both curves could be biased due to non-
ignorable missing data in %FVC. Since patients with lower %FVC are more likely to dropout
due to AE, SAE, worsening disease, or death, the observed curves for %FVC would be higher
than the true population mean.

For illustrative purposes, we considered two confounding factors in our model when assessing
CYC treatment effects: baseline %FVC and degree of fibrosis in the lung. These elements were
stated for the primary analysis in the recorded manual of operations. No statistical selection
procedure was used. We also considered the interaction between treatment CYC and fibrosis,
which was indicated to be significant for %FVC measurements in preliminary analyses. Thus,
we applied the joint model to the SLS data with three covariates: baseline %FVC, fibrosis, and
the treatment group indicator, as well as the interaction between CYC and fibrosis. In the sub-
model for %FVC, we fitted a linear mixed effects model with a random intercept and fixed
effects for the three factors along with the interaction between CYC and fibrosis, and these
terms were also considered in the mixture sub-model for the competing risks event times. Two
competing risks, treatment failure or death and disease-related dropout, were analysed together
with %FVC using the following joint model. In the sub-model for %FVC, we assume, for
subject i at visit j

(13)

where FVC0i is the baseline %FVC, FIBi is the degree of fibrosis in the lung, CYCi is 1 or 0
as a group indicator for the CYC treatment or placebo, Ui is the random intercept with a mean
zero normal distribution, and the εij ’s are the mutually independent normal measurement
errors. The normality assumption seems to be reasonable for this data set by diagnostics of
residuals. For the competing risks survival data, we formulate the probability of treatment
failure or death by the following:

(14)

and the conditional cause-specific hazards for treatment failure or death (risk 1) and disease-
related dropout (risk 2) are specified as

(15)

(16)

respectively.
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The results of such a joint analysis are summarized in Table II, together with those from a
linear random intercept model for the longitudinal outcome %FVC alone, and those from a
mixture model for the competing risks failure time data. In the joint analysis, the interaction
between CYC treatment and fibrosis is 1.79 with p-value 0.006, which suggests that the
treatment CYC is more effective for the patient with a higher degree of fibrosis in the lung.
However, the linear mixed effects model for %FVC alone failed to detect this effect. The test
for the overall effects of treatment CYC can be done by jointly testing the two terms, the main
effect and the interaction with fibrosis. The test gives p-value 0.0010 and 0.13 in the joint model
and the separate analysis, respectively. In the joint model the inference for the effect of CYC
has been adjusted for the non-ignorable missing data in %FVC, but we fail to do so in the
analysis for %FVC alone. Finally, no treatment effects are identified for the competing risks
failure time data, either with the joint model or the separate analysis. Possible reasons include
the facts that the follow-up time is not long enough to detect any difference between the two
groups and that the number of treatment failure or death is small.

4. SIMULATION STUDY
We examined the finite sample performance of our joint model and the proposed estimation
procedure using simulated data. We primarily looked at three aspects: first, we investigated
for the joint model the simulated coverage probability of the 95 per cent confidence intervals
which were obtained based on the estimated standard errors using the method described in
Section 2.3; second, the joint model was compared to the separate analysis of either the
longitudinal data or the competing risks survival data in terms of the bias, the empirical standard
error, the estimated standard error, and the power of the tests for the effects of some factors;
third, we examined the parameter estimates from a joint model with a single failure type in the
presence of informative censoring, and the results were compared to our joint model which
treated the informative censoring as a competing risk.

The longitudinal measurements were simulated from the following random slope model:
(17)

where ti j = 0, 0.5, 1, …, 5 represents the scheduled visiting times and X2i ~ Bernoulli(0.5) acts
as a treatment group indicator in randomized trials. The random intercept Ui ~ N(0, 0.5) was
independent of the measurement error εi j, which was distributed as N(0, 0.25). We simulated
two competing risks for event times, say risk 1 and risk 2, with the marginal probability for
risk 1 specified as

(18)

and the following conditional hazards for the two risks:
(19)

(20)

where X1i ~ N(2, 0.1). The baseline hazards were held constant at 0.1 and 0.2 for risk 1 and 2,
respectively, so that the time to each risk forms an exponential distribution. The censoring time
was set to an exponential random variable with mean 15, to obtain average censoring rate at
about 17 per cent, the events of risk 1 at about 33 per cent, and the events of risk 2 at about 50
per cent. The longitudinal outcome was missing after the observed or censored event times.
The proportions of subjects with 1, 2, 3, …, 11 measurements are, respectively, 0.28, 0.20,
0.13, 0.10, 0.07, 0.05, 0.04, 0.03, 0.02, 0.02, and 0.06. Table III shows the simulated coverage
probability of the 95 per cent confidence intervals from such a joint model at two sample sizes,
200 and 500, with 500 Monte Carlo samples for each. In the table we write  for the variance
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of the random intercept Ui. It is shown that the simulated coverage probability of confidence
intervals is close to the nominal value 0.95.

Next we compared the joint model to the separate analysis of either endpoint on the following
items: the bias of the point estimates, the empirical standard error, the estimated standard error,
and the mean square error. The Monte Carlo samples were simulated from model (17)–(20)
and analysed in two ways: the joint model as specified in (17)–(20), and the separate analysis
of the two endpoints. The separate analysis was done by fitting a random slope linear model
(17) for the longitudinal outcome and a mixture model for the competing risks failure time data
with random effect Ũi as follows:

(21)

(22)

(23)

where Ũi was assumed to be a zero-mean Gaussian random variable with variance  It is
worth noting that for the separate competing risks model (21)–(23), there is no longer a
coefficient θ1 for the random effect Ũi in (21) to ensure identifiability. It is easy to see that

 ν1 and ν2 are the parameters associated
with Ui in the competing risk data component (19)–(20) of the joint model. In this simulation,
θ1 was set to 1, and thus  We used a similar approach as proposed
in Section 2.3 to compute the variance–covariance matrix for the parameters in (21)–(23). The
simulation was based on 500 Monte Carlo samples, and two sample sizes were considered (n
=200 and 500; see Tables IV(A) and (B). We label the empirical standard error as SE, the
median of estimated standard error as Est. SE, and the mean square error as MSEJ and
MSES for the joint model and the separate analysis, respectively.

The results can be summarized as follows. First of all, the time trend β1 of the longitudinal
measurements is severely underestimated in the separate analysis for both sample sizes. The
variance of the time trend,  is also negatively biased. This is the consequence of the
informative dropout process in which with positive coefficients ν1 and ν2, we observe a higher
risk of dropout for those subjects with greater than average increasing rates over time in the
longitudinal out-come. The resultant non-ignorable missing values after dropout cannot be
accounted for in the linear mixed effects model alone and thus biases in the estimated time
trend and its variance are observed. However, we are able to obtain almost unbiased estimates
for these quantities in the joint analysis, where the informative dropout process has been
modelled together with the longitudinal measurements. Our results are consistent with the
findings of Henderson et al. [9]. Second, it is observed that the joint model provides much
more accurate estimates for ν1 and ν2, the coefficients of the random effects in the hazards,
than those from the mixture model alone which produces even worse estimates when the sample
size is not that large (say, 200). This finding indicates that we can improve the efficiency of
frailty estimation in the survival endpoint by combining the information of the longitudinal
outcome, if the latter is correlated with the frailty and the correlation is correctly modelled.
This is analogous to frailty models for multivariate survival data, in which frailty measures
association among multiple event times. The frailty is easier to estimate and identify in
multivariate survival analysis than in univariate survival analysis for heterogeneity [33]. Third,
in the separate analysis for the competing risks survival data, the standard errors are
overestimated for all the parameters compared to the empirical ones, especially for ν1 and ν2.
In contrast, we can obtain more accurate standard error estimates from the joint model. Overall,
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the joint model performs better than the separate analysis with smaller MSE for most
parameters. We note that for parameters α10, α11 and  at the competing risks endpoint, the
biases and/or variances are larger for the joint model than the separate at the current sample
sizes (n =200 and 500). However, in our simulation with n =1000, smaller biases and variances
are observed for the joint model compared to the separate.

We did further simulations to compare the power of detecting treatment effects on the
competing risks failure time data between the joint model and the separate analysis. Here we
did not compare the power for the longitudinal measurements since in the separate analysis,
the linear mixed effects model is not valid in the presence of non-ignorable missing values.
For simplicity, the longitudinal measurements were simulated from a random intercept linear
model

(24)

and the competing risks failure times were simulated from model (18)–(20). The binary
covariate X2i acts as a treatment group indicator in randomized trials, so the test for treatment
effects on competing risks would have the following null hypothesis and the alternative:

Wald’s tests were performed on 200 Monte Carlo samples. The rejection rates under different
sample sizes are summarized in Table V. There are four sets of coefficients for X2. Model I is
the null model, where α12 =γ12 =γ22 =0. Under Model I, the rejection rate in the joint model is
close to the significance level of 0.05 when the sample size is large enough, but the analysis
for competing risks data alone tends to be conservative. Models II, III, and IV are different
alternatives, where the true values for α12, γ12, and γ22 are 0, 1.0, and −1.0 in Model II, 1.0,
1.0, and 0 in Model III, and 0.8, 0.8, and −0.8 in Model IV, respectively. It is shown that the
analysis for competing risks alone has much lower power than the joint model in Models II,
III, and IV for almost all sample sizes. It is the consequence of inflated variance estimates for
competing risks failure time data in the separate analysis. We have observed similar results
under model (17)–(20) (see Tables IV(A) and (B).

We finally examined the behaviour of the joint analysis of longitudinal measurements and
survival data with a single failure type in the presence of informative censoring. The Monte
Carlo samples were generated from the joint model (17)–(20), and were analysed by the
following joint model in which risk 1 is the event of interest, and failures due to risk 2 were
incorrectly treated as non-informatively censored events

(25)

(26)

Tables VI(A) and (B) summarize the results for sample sizes 200 and 500, respectively, both
of which are based on 500 Monte Carlo samples. Considerable bias occurs for the parameter
ν1 in the joint model with a single failure type, treating the correlated competing risk as non-
informative censoring. This results in very low confidence interval coverage probabilities
especially when the sample size increases to 500. No such bias is observed for the joint model
in which the informatively censored events have been modelled together with risk 1 as failures
due to a competing risk. In addition, we note that larger bias also occurs for the parameters

 γ11, and γ12 in the single failure type joint model with the correlated competing risk treated
as independent censoring as the sample size goes up to 500.

Elashoff et al. Page 11

Stat Med. Author manuscript; available in PMC 2008 November 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



5. DISCUSSION
In clinical trials, it is very common that both longitudinal measurements and event times are
recorded on the study subjects during follow-up. Previous methods for joint modelling of these
two endpoints have focused on a single failure type for the event times with non-informative
censoring, which may not be applicable in the presence of informative censoring or competing
risks. In this article, we have proposed a joint model for longitudinal measurements and
competing risks failure time data, which can be used to handle informative censoring by treating
it as a competing risk for the event of interest. Our approach accommodates the mixed effects
sub-model for the longitudinal outcome and the two-step mixture sub-model for competing
risks. Besides the random effects U, we need to introduce an additional hidden variable τ to
simplify the estimation procedure in the mixture sub-model. An EM-based algorithm has been
developed to estimate the parameters of interest, and their variance–covariance matrix can be
approximated by inverting the empirical Fisher information derived from the profile likelihood.
Our joint model not only provides a framework for joint inference on longitudinal outcome
and time to event data with competing risks, but also a means to analyse longitudinal outcome
with non-ignorable missing mechanisms (discussed in Remark 2 of Section 2.1). In addition,
our simulation studies show that the joint model improves the efficiency of frailty estimation
in the survival endpoint, and is able to produce accurate estimates of the standard errors using
the profile likelihood method. Our joint model also is shown to have more power in statistical
tests for effects of factors at the survival endpoint. Finally, we point out that since we need to
evaluate integrals of various functions of U in the E-step of each iteration, computational
burden increases dramatically with growth of the dimension of the random effects U. This is
a common issue in all likelihood-based approaches involving random effects.

Because we discretize the baseline hazards, the dimension of the parameter space increases
with the sample size. It is a challenging task to establish the asymptotic properties of the
estimators from such a complex semi-parametric model. Recently Zeng and Cai [34] derived
the asymptotic distributions of the maximum likelihood estimators from their joint model in
which they considered a single failure type for the time to event. A rigorous treatment of the
asymptotic properties of the MLE’s under our model with competing risks warrants future
research.

Our method can be further extended to robust inference for joint analysis of longitudinal
measurements and survival data to handle outlying observations in the longitudinal outcome.
One possible approach is to use the idea of Richardson [35] by incorporating weight functions
in maximum likelihood and restricted maximum likelihood estimating equations. In a sequel
we develop a robust procedure by replacing the normal distribution assumption for
measurement errors with the t distribution to take into account longer-than-normal tails.
Another issue is about the robustness to the normality assumption of the random effects. It has
been noted by Song et al. [19] and Hsieh et al. [36] that the estimation procedure is robust to
the normality assumption in some joint models of longitudinal and survival data with a single
failure type. We have not investigated this issue in this paper although we expect similar
conclusions.

APPENDIX A: THE EM-BASED ALGORITHM

E-step
Because the complete-data log-likelihood is linear in τ, we can write EU,τ|Y,C,Ψ

(m)[l(Ψ;U, τ)]
= EU|Y,C,Ψ

(m)[l(Ψ;U, Eτ|U,Y,C,Ψ
(m)(τ))], where m indicates that the parameter estimates are from

the mth iteration of the EM algorithm. In the E-step of the (m + 1)th iteration, for the censored
subject i, we have
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(A1)

which is a function of the hidden variable U. Therefore, we need to evaluate the expected values
of all functions of U, say h(U), in l(Ψ;U, Eτ|U,Y,C,Ψ

(m) (τ)), conditional on the observed data
and the current parameter estimates. We have

(A2)

where we use the fact

(A3)

The distribution of U|Y,Ψ(m) is multivariate normal with an easily derived mean and variance
covariance matrix, and

(A4)

for the i th subject. Note that our method requires integration with respect to U in (A2) and
(A3). The integrals can be evaluated using numerical integration (quadrature) [37].

M-step
The vector of parameters Ψ is updated by maximizing Q(Ψ; Ψ(m)) = EU,τ|Y,C,Ψ

(m) [l(Ψ;U, τ)].
In the formula below, we use E to stand for EU,τ|Y,C,Ψ

(m). Closed-form estimates are available
for β, Σ, σ2, and baseline hazards λ0k(t) for k = 1, …, g, whose cumulative function H0k (t) is

shown below. We write vector  and have

(A5)

(A6)

and

(A7)
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In calculation of the baseline hazards, the failure time observations are firstly ordered from the
smallest to the largest. If there are qk distinct failure times due to the kth cause, then we write
tk1 ≤ …, ≤ tkqk for k = 1, …, g. The cumulative baseline hazard function for cause k is denoted
by H0k(t). Let R(tkj) be the risk set at time tkj, and dkj be the number of failures due to cause
k at time tkj. We have

(A8)

No closed-form solutions exist for α, θ, γ, and ν. They satisfy the following score equations,
respectively

(A9)

for k =1, …, g − 1

(A10)

for k = 1, …, g − 1

(A11)

for k = 1, …, g, and

(A12)

for k = 1, …, g, where tk j and λ0k (tk j) are the same as in (A8). We do not need to solve the
above equations, and the parameters α, θ, γ, and ν can be updated using the following one-step

Newton–Raphson algorithm in each iteration. Letting  we have

(A13)

for k =1, …, g − 1, where the matrix  and the vector  are

(A14)

(A15)

(A16)
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for k = 1, …, g − 1, where the matrix  and the vector  are

(A17)

(A18)

(A19)

for k = 1, …, g, where the matrix  and the vector  are

(A20)

(A21)

and finally

(A22)

for k = 1, …, g, where the matrix  and the vector  are

(A23)

(A24)

It should be noted that in the M-step, some parameters are calculated conditional on the most
updated values of other parameters. For example, we use β(m+1) instead of β(m) when updating
σ2 in (A6) and α(m+1) instead of α(m) when obtaining θ(m+1) from (A10). This is similar for

 in (A11) and (A12), and γ(m+1) in (A12). This is the modified version of EM algorithm
called the expectation-conditional maximization (ECM) algorithm [38]. By the ECM
algorithm, the maximization procedure is much simplified conditional on some parameters
being estimated, due to the difficulty of maximizing the likelihood with respect to α, θ, γ, and
ν simultaneously in our joint model formulation. In addition, it is shown that the ECM algorithm
has the same convergence features as the EM algorithm.
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Figure 1.
Longitudinal profile of %FVC for the CYC group and the placebo group.
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Figure 2.
The mean, the lower quartile, and the upper quartile of %FVC within each group during follow-
up. At months 0, 3, 6, 9, and 12, the numbers at risk are 81, 72, 70, 68, and 70 for CYC group,
and 80, 72, 70, 65, and 65 for the placebo group.
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Table I
Three types of events in the scleroderma lung study.

Category CYC Placebo Total

Treatment failure or death 6 10 16
Informative dropout
(AE, SAE, worsening disease) 19 13 32
Non-informative dropout
(Other reasons) 4 6 10
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Table II
Comparison of the joint model versus the separate analysis for %FVC measurements alone using 6–12 month SLS
data.

Joint analysis Separate analysis

Estimate (SE) p-value Estimate (SE) p-value

Longitudinal outcome %FVC
Baseline %FVC (β1) 0.96 (0.02) <0.0001 0.96 (0.04) <0.0001
Fibrosis (β2) −1.66 (0.50) 0.001 −1.69 (0.85) 0.05
CYC group (β3) −2.26 (1.50) 0.13 −2.51 (2.43) 0.30
CYC × Fibrosis (β4) 1.79 (0.66) 0.006 1.83 (1.11) 0.10
Effect of CYC (H0 : β3 = β4 =0)* 0.001 0.13
Cause-specific probability (treatment failure or
death)
Baseline %FVC (α1) −0.10 (0.14) 0.49 −0.03 (0.13) 0.83
Fibrosis (α2) −0.45 (1.47) 0.76 0.30 (1.39) 0.83
CYC group (α3) 0.91 (6.71) 0.89 −0.86 (7.56) 0.91
CYC × Fibrosis (α4) 0.01 (2.82) 1.00 0.32 (3.30) 0.92
Effect of CYC (H0 : α3 = α4 = 0)* 0.93 0.99
Conditional cause-specific hazards (time to
treatment failure or death)
Baseline %FVC (γ11) 0.01 (0.06) 0.85 0.04 (0.26) 0.87
Fibrosis (γ12) 0.001 (0.88) 1.00 −0.46 (2.88) 0.87
CYC group (γ13) −0.34 (3.30) 0.92 2.72 (9.09) 0.76
CYC × Fibrosis γ14) −0.28 (1.52) 0.85 −1.49 (3.68) 0.68
Effect of CYC (H0 : γ13 = γ14 = 0)* 0.64 0.86
Conditional cause-specific hazards (time to
disease-related dropout)
Baseline %FVC (γ21) −0.05 (0.05) 0.25 −0.01 (0.05) 0.76
Fibrosis (γ22) 0.24 (0.75) 0.75 0.45 (0.58) 0.44
CYC group (γ23) 1.61 (3.03) 0.60 1.06 (1.46) 0.47
CYC × Fibrosis (γ24) −0.41 (1.27) 0.75 −0.36 (0.62) 0.56
Effect of CYC (H0 : γ23 = γ24 = 0)* 0.75 0.75

*
The p-values are based on Wald test with 2 degrees of freedom.
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Table III
Simulated coverage probability of the 95 per cent confidence intervals for the joint model (each entry is calculated
based on 500 Monte Carlo samples).

N =200 N =500

Parameter True value 95 per cent CI coverage rate 95 per cent CI coverage rate

β0 10 0.974 0.946
β1 1 0.934 0.944
β2 −1.5 0.960 0.948
σ2 0.25 0.958 0.932
σu
2 0.5 0.926 0.954

α10 −0.5 0.948 0.934
α11 0.2 0.946 0.934
α12 −0.5 0.956 0.956
γ11 0.8 0.970 0.950
γ12 −0.5 0.940 0.948
γ21 0.5 0.940 0.940
γ22 0.5 0.934 0.946
ν1 0.7 0.938 0.928
ν2 0.5 0.954 0.944
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