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Understanding the interaction between epidemiological and evolutionary dynamics for
antigenically variable pathogens remains a challenge, particularly if analytical insight is
wanted. In particular, while a variety of relatively complex simulation models have
reproduced the evolutionary dynamics of influenza, simpler models have given less satisfying
descriptions of the patterns seen in data. Here, we develop a set of relatively simple
deterministic models of the transmission dynamics of multi-strain pathogens which give
increased biological realism compared with past work. We allow the intensity of cross-
immunity generated against one strain given exposure to a different strain to depend on the
extent of genetic difference between the strains. We show that the dynamics of this model are
determined by the interplay of parameters defining the cross-immune response function and
can include fully symmetric equilibria, self-organized strain structures, regular periodic and
chaotic regimes. We then extend the model by incorporating transient strain-transcending
immunity that acts as a density-dependent mechanism to lower overall infection prevalence
and thus pathogen diversity. We conclude that while some aspects of the evolution of
influenza can be captured by deterministic models, overall, the description obtainable using a
purely deterministic framework is unsatisfactory, implying that stochasticity of strain
generation (via mutation) and extinction needs to be captured to appropriately capture
influenza dynamics.

Keywords: multi-strain model; population dynamics; cross-immunity; antigenic variation;
strain diversity; influenza dynamics
1. INTRODUCTION

Antigenically diverse pathogens are responsible for a
major burden of disease in the modern world, with
dengue, influenza A, meningitis and malaria being
examples of infections that give rise to significant
morbidity and mortality globally. Understanding how
key factors (e.g. transmissibility, duration of infection,
mutability, host population size) influence pathogen
evolution and transmission dynamics is necessary for
the rational design of intervention strategies to
minimize the impact of infectious diseases.

The most important factor determining the fitness
(i.e. transmission success) of antigenically variable
pathogens is their ability to escape antigen-specific
responses of hosts’ immune systems. Cross-immunity is
the mechanism used by hosts to combat antigenic
escape—the ability of the immune system to mount a
partially effective responseagainstnovelpathogenstrains
after previous exposure to older related strains. Ecologi-
cally, cross-immunity induces frequency-dependent
orrespondence (p.minayev@imperial.ac.uk).
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inter-strain competition and can lead to the emergence
of complex cyclical transmission dynamics (e.g. Dawes &
Gog 2002; Gog & Swinton 2002; Grenfell et al. 2004;
Recker et al. 2007). To formalize the quantification of
inter-strain competition, it is convenient touse the notion
of a ‘strain space’. Pathogen strains in such a space are
represented as points, and themetric—which determines
the distance between two points—serves as a measure of
antigenic affinity between the corresponding strains
(Smith et al. 1997, 1999). Using the concept of the strain
space, cross-immunity can be incorporated into epide-
miological models as a factor that depends on the
antigenic distance between an attacking strain and
strains to which a host possesses specific immunity, i.e.
the host immune history.

The precise geometry of strain space has not yet been
established for any existing pathogen, but various
structures have been proposed. One of the simplest
types, one-dimensional strain space, in which only
nearest-neighbour interaction between strains located
along a circle or line was considered, was used by
Andreasen et al. in a phenomenological model of
influenza evolution (Andreasen et al. 1996, 1997;
J. R. Soc. Interface (2009) 6, 509–518
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Gomes et al. 2001). More complicated one- and two-
dimensional spaces, in which strain interaction was
described by a matrix, with cross-immunity being
Gaussian in inter-strain distance, were used by Gog
(Gog & Grenfell 2002) to describe dynamics and
selection in multi-strain systems. These models can
successfully reproduce certain aspects of real epidemic
patterns such as a static discrete strain structure
(DSS), increasing diversity and sequential strain
replacement observed for dengue, HIV and influenza,
respectively. However, they all have a significant
common drawback that makes them somewhat unin-
formative—the biological basis of the assumed strain
space is opaque. Furthermore, assuming strain space is
one-dimensional means influenza-type evolution is
almost pre-programmed, emerging as a soliton-type
wave in strain space.

Even moving to a two-dimensional strain space,
obtaining influenza evolution is far from assured: one
has to assume that there is a fitness (i.e. transmissibility)
gradient in one dimension in strain space, as done by
Gog (Gog & Grenfell 2002). When we reproduced the
Gog model without such a fitness gradient, circular
waves in strain space were the dominant dynamical
pattern seen. Biologically, the antigenic evolution of
influenza needs a two- to three-dimensional space to be
represented accurately (Smith et al. 2004), with perhaps
over a dozen genetic loci in haemagglutinin contributing
to its antigenicity (Bush et al. 1999).

A further challenge when developing compartmental
models of antigenically variable pathogens is the increase
in the dimensionality of state space with the number of
strains modelled. Dimensionality increases geometrically
with the number of strains for models that explicitly
describe full immune histories (Andreasen et al. 1996,
1997; Gomes et al. 2001). Even for models where state
space dimensionality increases linearly with the number
of strains (Gupta et al. 1998; Gog & Swinton 2002), there
are practical limits to the number of strains which can
bemodelled (of a few hundred to a few thousand strains).
For pathogens with a relatively limited and static
antigenic repertoire this is not necessarily an issue.
However, for influenza, where the dominant pattern is
the replacement of existing strains by new strains, upper
bounds on the number of strains able to be modelled can
limit the ability of models to capture evolutionary
patterns. Some past work has made a virtue of these
limits (Recker et al. 2007) and argued that the strain
recycling predicted by models with very limited strain
repertoires is a real feature of influenza dynamics.
However, as we discuss later, the antigenic data to back
this hypothesis are limited.While the potential antigenic
diversity of influenza must in theory be limited, the large
number of codons involved in determining antigenicity
(Bush et al. 1999; Smith et al. 2004; Koelle et al. 2006)
suggest that strain recycling, while theoretically possible,
is probabilistically very unlikely.

Simulation offers a means for both substantially
increasing the number of strains which can be modelled
and more realistically capturing pathogen transmission
and evolution, and such models have provided plausible
descriptions of influenza evolution (Ferguson et al. 2003;
Koelle et al. 2006). But these simulations are complex
J. R. Soc. Interface (2009)
and computationally intensive, and thus isolating the
key determinants of model behaviour can be difficult. To
provide more insight into pathogen dynamics and
evolution, simpler but at the same timemore biologically
realistic models need to be developed. Arguably the most
promising approach to date, which combines relative
simplicity with a genetic representation of antigenic
diversity, was proposed by Gupta et al. (1998). Strains in
this model are considered as sequences of loci, each of the
loci can be occupied by one of a set of alleles. The
distance between two strains is defined as the number of
loci at which the alleles are different. An assumption is
made that prior infection endows hosts with partial
cross-immunity against infection with strains sharing
alleles at the corresponding loci with an earlier strain. In
the original model, a very simple cross-immune
interaction between strains was assumed—the degree
to which a host was protected against new infections was
the same for all non-discordant strains.

Therefore in this paper, we focus on improving the
biological realism of simple compartmental models of
multi-strain pathogens. Specifically, we include three
factors that may be critical in explaining the evolution-
ary dynamics of diseases such as influenza A (Ferguson
et al. 2003): (i) rapid mutation (§2); (ii) more realistic
phenotypic models of cross-immunity (§3); and
(iii) transient strain-transcending immunity (§4). For
each factor, we examine the impact of pathogen
diversity and dynamics.
2. MODEL WITH NO STRAIN-TRANSCENDING
IMMUNITY

In this section we consider a deterministic model with
no strain-transcending immunity. The model consists
of a set of compartments representing parts of a
population immune to and infectious with virus strains.
These compartments can overlap, which means that
the same parts of the population can be immune to or
can be infected and become infectious with multiple
strains simultaneously. Random mixing of the popu-
lation is assumed, and immunity to a particular strain is
lifelong. Strains are described as sequences of antigens
consisting of NL loci, each of which can be occupied by
one of NA alleles. Thus, the total possible number of
strains in the model is NSZNNL

A .
The dynamics of the part of the population

susceptible to a strain i are given by

dsi
dt

ZKðli CmÞsi Cm: ð2:1Þ

In this equation, li is the force of infection defined as
liZbyi , where b is the transmission coefficient, which
we assume to be the same for all strains; yi is the
proportion of infectious with strain i; and m is the
natural birth and death rate (we suppose birth and
death processes in the population to be at equilibrium).

To quantitatively characterize affinity of strains, we
use the Hamming distance, i.e. we define the inter-
strain distance as the number of loci occupied by
different alleles. This value can take on discrete values
from the set [1, 2,., NL].
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We also define a set of additional compartments, s
ðkÞ
i

(kZ1, ., (NLK1)), which represent the proportion
susceptible to any strain j that shares alleles at the
corresponding loci with strain i but has not more than k
alleles different from i. From the definition, it is clear
that the proportion of susceptible to strains sharing
alleles with strain i but having exactly k distinct alleles
is ðsðkÞi Ks

ðkK1Þ
i Þ. We expand the definition of s

ðkÞ
i

and put s
ðNLÞ
i Z0 and s

ð0Þ
i Zsi. Dynamics of s

ðkÞ
i , where

kZ1, ., (NLK1), is described by the equations

ds
ðkÞ
i

dt
Zmð1Ks

ðkÞ
i ÞKs

ðkÞ
i

X
j:dij%k

lj : ð2:2Þ

Here dij is the distance between strains i and j, and the
summation is done over all strains, the distances
between which are less than or equal to k.

Cross-immunity affects strain dynamics profoundly,
and gives rise to several distinct dynamical regimes
(Gupta et al. 1998; Ferguson & Andreasen 2002). Here
we assume that the degree to which a host immune to
strain i is protected against infection with strain j is
defined by the number of alleles shared by the two
strains. More specifically, we define d as the number of
loci at which i and j differ, and a cross-immunity
function g(d ), a non-increasing function of d. Those
who are immune to strain i and have been exposed to
strain j get infected with probability (1Kg(d )). Thus,
g(d )Z1 corresponds to complete protection, while
g(d )Z0 implies complete susceptibility. This definition
extends the two-level cross-immunity model used by
Recker & Gupta (2005).

Another important factor is mutation that helps
virus escape pre-existing immunity. In the model that
we study, mutation is characterized at the level of
individual hosts (rather than virions), with the
parameter m representing the probability per unit
time that the strain type of someone currently infected
changes due to mutation. We assume that, as a result of
mutation, hosts acquire infectiousness with a new
strain and that mutation can only generate strains
one allele different from the current strain (i.e. one
point mutations).

We thus obtain the equations for the temporal
evolution of the proportion of people infectious with
strains i (iZ1, ., NS)

dyi
dt

Z li

X
jZ0;.;ðNLK1Þ

ðsðj Þi Ks
ðjC1Þ
i Þð1KgðjC1ÞÞ

Ksyi C
X

jZ1;.;NS; jsi

mjiðyjK yiÞ: ð2:3Þ

In this equation, s is the rate of loss of infectiousness of
the host (so 1/s is the mean duration of infectiousness).
The last term describes mutation, with mjiZmijZm
if the distance between strains i and j, dij, is 1 and
mjiZ0 otherwise. We consider infections for which the
recovery rate is much higher than the natural death
rate of hosts, so the value of s is mainly determined by
the recovery rate.

The number of differential equations describing our
model is CZNNL

A ðNLC1Þ. The dimensionality of the
model scales exponentially with the number of loci and
as a power function with the number of alleles.
J. R. Soc. Interface (2009)
3. MODEL DYNAMICS

We now numerically investigate the dynamical proper-
ties of the model described in §2. In this section, we
assume an antigenic genotype of five loci and three
alleles, giving a total possible number of different
strains of NSZ243. This assumption is relaxed later in
the paper. The mutation rate, m, for the virus is
assumed to be 10K4/year (though it should be noted
that model dynamics are almost identical for 10K5!
m!10K3). We assume a transmission coefficient of
bZ100/year and a recovery rate of sZ50/year (giving
a basic reproduction number, R0, of 2). The birth–
death rate, m, is 0.014/year, which corresponds to a life
expectancy of approximately 70 years.

To characterize the dynamics of the model, we use
bifurcation diagrams built by plotting (locally) maxi-
mum values of Zi (proportion immune to strain i ) for all
iZ1,., NS, after the phase trajectory of the system
arrives at an attractor. To achieve this, we discard the
first 10 000 year period of each solution, and analyse the
subsequent 5000 years. At tZ0, we start the system
with two strains that differ at two loci and have slightly
different prevalences.

First, we consider the case studied in Gupta et al.
(1998) and Ferguson & Andreasen (2002) where the
probability for a person exposed to one strain to be
infected with another one is the same for all non-
discordant strains regardless the genetic distance
between them. This model has a single cross-immunity
parameter, b. The function g(d ) takes the form
g(d )Zb, where b is constant for 1%d!NL and
g(d )Z0 for dZNL (this property means that there is
no cross protection against discordant strains).

The model reveals three distinct types of dynamical
behaviour (figure 1; Gupta et al. 1998). The first
dynamical regime, no strain structure (NSS), corre-
sponding to a symmetrically fixed point where all
strains coexist, is found for 0%b%bL, where bLZ0.36
for our choice of parameters. As cross-immunity
increases above the bL threshold, competition between
strains starts to structure the pathogen population and
leads to chaotic/cyclical strain structure (CSS), with
complex quasi-periodic and chaotic dynamics in the
range bL!b%bU, where bUZ0.71 for our choice of
parameters. Both the amplitude and period of epidemic
oscillations grow as the value of b approaches bU.
Further increase of the degree of cross-immunity, above
the value of bU, leads to an abrupt transition to a new
equilibrium—DSS. In the bU!b%1 region, the system
structures itself into sets of discordant strains, where all
members of a single discordant set share no common
alleles with each other. One discordant set dominates,
with all members being at a high prevalence, while all
other strains have a very low prevalence and are only
maintained by the ongoing mutation.

Assuming the same level of cross-immunity against
all non-discordant strains allows analytical derivation of
the equilibrium points of the model and their stability
(Ferguson & Andreasen 2002). However, the model is
biologically simplistic as the degree to which a person
exposed to one strain is protected against another should
be dependent on how phenotypically or genetically close
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Figure 2. Example of the functional form used to describe the
decline in cross-immunity, g(d ), with genetic distance,
d (aZ0.5, blue curve). aZ0 corresponds to a flat function
not changing with genetic distance (green curve).
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Figure 1. Bifurcation diagram plotting local maxima (taken
from the last 5000 years of a 15 000 year solution of the model)
of the proportion immune to each strain, Zi , as a function of
the cross-immunity parameter b. The plot illustrates the
different types of dynamical behaviour of the model obtained
as b varies. R0Z2 and the recovery rate sZ50/year.
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these strains are. To make the model more biologically
realistic and yet retain some simplicity, we use the
following two-parameter form of g(d ):

gðdÞZ
1; if dZ0

b$½1KðdK1Þa�; if dZ1;2;.;%ð1=aC1Þ!NL

0; otherwise;

8><
>:

ð3:1Þ
where a and b are constants that characterize, respect-
ively, the slope of the function, i.e. how fast the cross-
immunity protection decays with the distance between
strains, and the maximal value of cross-immunity
attained when a new strain has only a single allele that
differs from previous strains. Note that aZ0 corresponds
to cross-immunity that does not decay with genetic
distance, and aZ1 corresponds to cross-immunity b
at distance 1, and zero cross-immunity for any larger
genetic distance. An example of this function is plotted
in figure 2.

In this case, the dynamics of the system can be more
complicated and are determined by the interplay
between both of these cross-immunity parameters.
This is shown in figure 3a,b where we map model
dynamical behaviour as a function of the parameters a
and b for two model variants differing in the size of their
antigenic ‘genome’. The same three dynamical regimes
are seen as for the simpler model presented earlier
(corresponding to the aZ0 line in figure 3a). It is
interesting to note that for this more general cross-
immunity model, the region of parameter space support-
ing DSS dynamics is very small, corresponding to very
intense cross-immunity between all strains. Transition
from DSS to chaos always occurs through rather narrow
zones of long-periodic regimes via Andronov–Hopf
bifurcations. Within the CSS region, there is a huge
variety of dynamical behaviour. Bifurcation plots give
insight into this, and figure 4a–d show bifurcation
behaviour as a function of a for four fixed values of b.
For moderate maximal values of cross-immunity,
bL!zb!zbU, a number of different types of the
system dynamical behaviour can be distinguished as a
J. R. Soc. Interface (2009)
changes (figure 4a): small amplitude chaotic epidemic
oscillations at low a (see the interval 0%a!0.15), then
the fully symmetric equilibrium (the smooth curve in the
interval 0.14%a!0.38), then quasi-periodic oscillations
(0.38%a!0.62), giving way to chaotic behaviour (the
rest of the a-axis). A few apparent trends can be noted:
as the cross-immune response becomes narrower (i.e. as
a increases and g(d ) decays more rapidly), strain
infection prevalence grows together with the amplitude
of epidemic oscillations in chaotic regimes, while the
period of oscillations falls.

At larger maximal values of cross-immune response,
b!zbU, the dynamics of the system undergo quali-
tative changes in the second chaotic region of higher a
values (aO0.27 in figure 4b). Larger ‘windows’ of limit
cycle behaviour begin to appear in the chaotic region
(figure 4b, 0.5%a!0.68). These regions correspond to
long period solutions, an example of which is shown in
figure 5. The long-period limit cycle regions in the
bifurcation graph grow as b approaches the second
threshold value, bU, the value at which cross-immunity
is strong enough to structure the population into
discordant strain sets. The chaotic regimes are largely
replaced by limit cycles (figure 4c, 0.3%a!0.72) and
point attractors (figure 4c, 0.72%a!1). Note that the
point attractors obtained are not completely symmetric
(i.e. equilibrium strain prevalences may differ).

Once bObU, discrete structure is seen for small a,
though the equilibria seen in past work (Gupta et al.
1998) are only stable when a is very small (a!0.03 in
figure 4d ). As a increases, anAndronov–Hopf bifurcation
occurs and a long-period limit cycle appears in place of
the fixed point (the region 0.03!a!0.05 in figure 4d ).
An example of this behaviour is shown in figure 6a. As a
result of the bifurcation, strain prevalences occasionally
change abruptly, but strains still remain structured into
discordant sets. Further increases in a lead to this
periodic behaviour destabilizing and being replaced by
chaotic dynamics (0.05%a!0.35) with DSS breaking
down (see figure 6b for an example). The region
0.35%a!1.0 has a complex alternating structure corre-
sponding to different dynamical regimes; small changes
in a can cause switching between fixed points, long
period, and quasi-periodic solutions. Examples of these
solutions are presented in figure 6c,d.
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4. INCLUDING STRAIN-TRANSCENDING
IMMUNITY

The model considered in §§2 and 3 does not incorporate
short-lived strain-transcending immunity of the type
that simulation studies of viral evolution have shown to
J. R. Soc. Interface (2009)
potentially play a key role in explaining the limited

strain diversity and cluster dynamics of human

influenza evolution (Ferguson et al. 2003). Here, we

extend the system of equations (2.1)–(2.3) from §2 to

include such a short-lived non-specific immune response
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into our simpler compartmental model. We show that
such immunity (which biologicallymight bemediated by
T-cell responses against conserved epitopes) leads to a
reduction of strain diversity and qualitative and quan-
titative changes in model dynamics.

We suppose that upon infection a host is removed
from the susceptible subpopulation and enters a state
where they are temporarily immune to all strains
(as well as gaining permanent immunity to the strain
they were exposed to). Defining that the rate of
returning from this completely immune state as g, we
introduce the following equations to describe dynamics
of the temporarily immune population:

dr
ðkÞ
i

dt
Z s

ðkÞ
i

X
j:dijOk

ljKðgCmÞr ðkÞi : ð4:1Þ

Equations (2.1) and (2.3) remain unchanged, whereas
equation (2.2) is superseded by

ds
ðkÞ
i

dt
Zmð1Ks

ðkÞ
i ÞKs

ðkÞ
i

X
j:cdij

lj Cgr
ðkÞ
i : ð4:2Þ

In both (4.1) and (4.2), indexes iZ1, ., NS and
kZ1, ., NLK1. Thus, the number of differential
equations describing the model is CZ2NLN

NL

A and, as
for the simpler model considered earlier, model
dimensionality scales exponentially with the number
of loci and as a power of the number of alleles.

To compare the dynamics of models with and
without strain-transcending immunity, we map the
dynamical behaviour as a function of a and b as before,
and also plot weighted strain diversity (i.e. the average
prevalence-weighted number of co-circulating strains)
in the same phase plane (figure 7a–d ).

Including strain-transcending immunity quali-
tatively changes system dynamics at higher values of
cross-immunity (bO0.45). Short-lived immunity leads
to self-organized strain structure (DSS area) disappear-
ing and its replacement by regular long-period limit
cycles. Similarly the NSS regions (where all strains have
equal stable prevalence) also vanish, being replaced by
chaotic dynamics.

The prevalence-weighted number of circulating
strains ranges from 5 to 35 for the periodic and chaotic
regimes at bO0.45, when compared with 15–40 in the
absence of non-specific immunity.

An important aspect of influenza A evolution any
model needs to reproduce is the observed 3–5 year
interval between emergence of antigenically distinct
J. R. Soc. Interface (2009)
strain clusters (Smith et al. 2004). Since we do not
include seasonal forcing in this model, the frequency of
emergence of antigenically novel strains is just given
by the frequency of epidemics. Models with strain-
transcending transient immunity have a much larger
region of parameter space where the mean period
between strain emergence is comparable with influenza
data. As shown in figure 8a,b, strain-transcending
immunity substantially shortens the mean period
between epidemics. Model without this transient immu-
nity typically gives epidemic oscillations with periods
from a few decades to a few hundred years (figure 8a) for
the majority of combinations of cross-immunity par-
ameters a and bO0.45, whereas the period falls to under
2–5 years for a wide area of parameter space when
transient immunity is added (figure 8b). Example time
series are shown in figure 9a,b, which highlight how
different from influenza the dynamics of the model
without transient non-specific immunity can be.

Average strain diversity grows with the complexity
of the virus genotype. The results presented in
figure 10a are in agreement with those in Recker et al.
(2007) for the dZ0 case of the model studied in that
paper (b is the analogue of the immunity parameter g in
Recker et al. 2007): lower values of b (!z0.4, ., 0.62)
correspond to symmetric equilibria with all strains
coexisting—in this case the number of strains present of
course increases exponentially with the number of loci.
At higher values of b cross-immunity reduces diversity
overall, and in the extreme case of aZ0 (figure 10a) this
results in average numbers of strains increasing sub-
linearly with the number of loci for b approaching 1
(in the absence of mutation, the number of strains
equals the number of alleles for bZ1 and aZ0, but
mutation complicates this simple picture). For larger
values of a (figure 10b), we recover close to the same
exponential dependence of the number of strains on the
number of loci, albeit diversity overall still reduces with
increasing b. Transient non-specific immunity is seen to
have a noticeable effect on strain diversity for more
complex genotypes at values of aO0.5 (figure 10d ), i.e.
where three or fewer allele substitutions are sufficient to
escape prior immunity. For aZ0.6 and 0.75!b!1
there is approximately a two- to threefold difference in
strain diversity between the models with and without
transient immunity (comparing figure 10b with d ). For
smaller values of a, the difference in strain diversity is
less marked, though still significant for five or more loci.

Thus overall, including transient strain-transcend-
ing immunity improves the ability of models with
genetic strain spaces to produce dynamics resembling
that seen for influenza A in humans, since it gives a
generally lower mean strain diversity and much more
frequent emergence of new strains across a much wider
area of the cross-immunity parameter space.
5. CONCLUSIONS

In this work, we have studied a class of multi-strain
deterministic epidemic models in which cross-immunity
varies with the genetic distance between strains. At low
maximal values of cross-immunity (b!z0.4) dynamics
of the model are characterized by fully symmetric
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bifurcation at aZ0.03 (bZ0.8, R0Z2, sZ50/year): (a) aZ0.038; (b) aZ0.28; (c) aZ0.44; (d ) aZ0.81.
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Figure 7. (a) Dynamical map for model with no strain-transcending immunity, with an antigenic genotype of four loci and three
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equilibria (all strains present), low amplitude periodic
dynamics and chaos. At intermediate and high maxi-
mum values of maximal cross-immunity bzO0.4,
dynamics are more diverse, with parameter space
including ‘windows’ of periodic dynamics interleaved
J. R. Soc. Interface (2009)
with chaos, as well as boundary equilibria correspond-
ing to the self-organization of virus strains into pairwise
discordant sets. Such discordant set boundary equili-
bria are unstable to variation in the shape of the cross-
immunity function g(d ): as this function gets steeper
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(meaning antigenic escape can occur with increasingly
few genetic changes), first the boundary equilibria
change to a limit cycle via an Andronov–Hopf
bifurcation, and then a transition to a chaotic attractor
occurs. These changes reflect a weakening of intense
inter-strain competition seen for flat g(d ).

In very general terms, the three broad classes of
behaviour exhibited by the model we have developed in
this paper—namely all strains coexisting, static strain
structure (finite subset coexisting) and oscillatory
dynamics—are shared by many multi-strain models
(Andreasen et al. 1997; Gupta et al. 1998; Gomes et al.
2001; Dawes & Gog 2002; Gog & Swinton 2002; Recker
et al. 2007). However, this observation neglects the very
significant differences in the type of oscillatory
dynamics seen in different models. In addition, while
selection for immune escape means that deterministic
multi-strain models can often generate travelling waves
J. R. Soc. Interface (2009)
in strain space if the dimensionality of strain space is
low (Andreasen et al. 1997; Gomes et al. 2001; Gog &
Grenfell 2002), behaviour is more complex in higher
dimensional strain spaces and is more typically
characterized by increasing diversification until strain
space has been completely explored.

Given antigenic and genetic analyses of influenza
evolution (Bush et al. 1999; Smith et al. 2004; Koelle
et al. 2006) indicate that multiple (greater than 10)
codons are involved in determining HA antigenicity, it
would appear that models assuming one-dimensional
strain spaces—while they may phenomenologically
reproduce flu-like evolutionary dynamics—do not give
a mechanistic explanation of what limits the antigenic
diversity of influenza at each point in time. Other
recent work has proposed that influenza A evolution is
characterized by strain recycling (Recker et al. 2007),
but this hypothesis relies on the assumption that
antigenic mapping studies (Smith et al. 2004) have
relied on only measuring cross-immunity (haemagglu-
tinin inhibition, HI) between strains that circulated in
neighbouring years—thus evidence of recycling was
missed. In fact, HI tests between strains spanning
the entire evolutionary history of H3N2 have now
been completed, and no evidence of antigen recycling
has been found (D. J. Smith 2005–2006, personal
communication). Furthermore, figure 10a shows that
limited diversity is only readily obtained from ‘genetic’
strain space models of the type used here and in past
work (Gupta et al. 1998; Recker & Gupta 2005; Recker
et al. 2007) when the number of antigenic loci is
relatively low. In addition, once one allows for cross-
immunity decaying with genetic distance, diversity
increases still further (figure 10b), to levels substantially
above what is seen in actual influenza A evolution.

Given these issues, and motivated by prior simula-
tion studies (Ferguson et al. 2003), we therefore
extended the model to incorporate transient strain-
transcending immunity, which acts as a global
mechanism to reduce infection prevalence and thus
strain diversity. When strain-specific cross-immunity is
relatively strong (bOz0.45), the addition of strain-
transcending immunity results in major changes in
model dynamics: discordant strain structure is replaced
by long-period limit cycles and chaotic oscillations
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emerge in place of symmetric and non-symmetric
equilibria. Strain-transcending immunity also leads to
a general decrease in the mean period between
epidemics, higher amplitudes of epidemic oscillations,
and results, as expected, in reductions in strain
diversity. Overall, model dynamics are more reminis-
cent of influenza than in the absence of transient
immunity, but diversity still remains rather high,
especially as the number of antigenic loci increases to
numbers realistic for influenza (i.e. 10 or more).

High strain diversity is a common drawback of all
deterministic models, as in the presence of mutation, all
strains are constantly present, with no strain truly
going extinct. In ecological terms, the carrying capacity
of the population is indefinitely large. In population
genetic terms, the effective population size is infinite.
We conclude that while deterministic models with a
high-dimensional genetic strain space can reproduce
some aspects of influenza dynamics, a full explanation is
still lacking. Therefore, the theoretical challenge that
we explore in the companion paper is how to introduce
stochasticity and extinction into the relatively simple
modelling framework developed in this paper without
the use of a full microsimulation approach.
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