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Estrogen Receptors in the Medial Amygdala Inhibit the
Expression of Male Prosocial Behavior
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Studies using estrogen receptor o (ERar) knock-out mice indicate that ERa masculinizes male behavior. Recent studies of ER« and male
prosocial behavior have shown an inverse relationship between ERa expression in regions of the brain that regulate social behavior,
including the medial amygdala (MeA), and the expression of male prosocial behavior. These studies have lead to the hypothesis that low
levels of ER« are necessary to “permit” the expression of high levels of male prosocial behavior. To test this, viral vectors were used to
enhance ER« in male prairie voles (Microtus ochrogaster), which display high levels of prosocial behavior and low levels of MeA ERc.
Adult male prairie voles were transfected with ER« in the MeA (MeA-ERa) or the caudate-putamen (ERa control) or luciferase (MeA-
site-specific control), and 3 weeks later tested for spontaneous alloparental behavior and partner preference. Enhancing ERcvin the MeA
altered/reduced male prosocial behavior. Only one-third of MeA-ER« males, compared with all control males, were alloparental. MeA-
ERa males also displayed a significant preference for a novel female. This is a critical finding because the manipulations of neuropeptides,
oxytocin and vasopressin, can inhibit the formation of a partner preference, but do not lead to the formation of a preference for a novel
female. The results support the hypothesis that low levels of ERa are necessary for high levels of male prosocial behavior, and provide the

first direct evidence that site-specific ERa expression plays a critical role in the expression of male prosocial behavior.
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Introduction
Estrogen plays a critical role in the expression of male social
behavior. Studies using estrogen receptor (ER) knock-out mice
indicate that ERa and ERP regulate different aspects of male
behavior. ERBis involved in defeminization (Kudwa et al., 2005),
anxiety, and cognition (Krezel et al., 2001), whereas ERa mascu-
linizes behavior (Ogawa et al., 1998; Wersinger et al., 1997). Al-
though some males display high levels of prosocial behavior and
positive affiliative behavior, masculine behavior is typically asso-
ciated with low levels of prosocial behavior and high levels of
aggression. The expression of high levels of prosocial behavior
requires a reduction of “typical” masculine behavior. It has been
hypothesized that decreasing ERa within the social neural circuit
is “necessary” for the expression of high levels of prosocial behav-
ior (Cushing et al., 2004; Cushing and Wynne-Edwards, 2006).
Comparative studies support this hypothesis. Illinois prairie
voles (Microtus ochrogaster) are highly social, forming pair bonds
and providing biparental care. However, Kansas males are signif-
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icantly less social (Cushing and Kramer, 2005a) and express sig-
nificantly higher levels of ER« in the medial amygdala (MeA) and
bed nucleus of the stria terminals (BST) than Illinois males
(Cushing et al., 2004). Socially monogamous pine voles (M. pin-
etorum) express lower levels of ERa than the polygynous meadow
(M. pennsylvanicus) and montane voles (M. montanus) (Cushing
and Wynne-Edwards, 2006). Finally, male ER« in species of two
dwarf hamsters (Phodopus sp.) that differ in social behavior mir-
rored ERa expression within prairie vole populations (Cushing
and Wynne-Edwards, 2006).

Changes in ERa expression are correlated with prosocial be-
havior. In male prairie voles, neonatal castration eliminated allo-
parental behavior (Lonstein et al., 2002) and the ability of neu-
ropeptides to stimulate pair bond formation (Cushing et al.,
2003), whereas significantly increasing ERa in specific brain re-
gions, including the MeA (Cushing and Kramer, 2005b). Long-
day male Siberian hamsters (Phodopus sungorus) are nonaggres-
sive, although aggression increases under short days, which is
associated with increased ERa (Kramer et al., 2008). Finally, in
mice male aggression has been associated with individual varia-
tion in ERa (Trainor et al., 2006). These findings are significant,
but correlative. Therefore our goal was to increase ERa in the
MeA of male prairie voles and test the prediction that this would
disrupt prosocial behavior.

This study focused on the MeA. MeA ERe is inversely corre-
lated with male prosocial behavior (Hnatczuk et al., 1994; Cush-
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ing et al., 2004; Cushing and Wynne-Edwards, 2006). Conspecific
odors activate the vomeronasal organ, triggering the MeA and
BST, leading to stimulation of the rest of the social neural circuit
(Newman, 1999). Additionally, the MeA innervates the “reward”
system via the ventral pallidum, and the reward system is critical
for long-term social bond formation (Young et al., 2005). Finally,
the MeA regulates social recognition/memory (Ferguson et al.,
2001), which is a necessary for long-term social bond formation.
We are not suggesting that the MeA is the primarily responsible
for regulating specific social behaviors, but that it is critical for the
initiation of social responses and therefore changes in MeA can
and will impact many aspects of the social response.

Materials and Methods
Animal husbandry

Animals used in this study were laboratory-reared prairie voles that orig-
inated from wild stock trapped near Urbana, IL. Animals were housed
under a 14 h/10 h light/dark cycle and provided high fiber rabbit chow
and water ad libitum. Animals were housed in accordance with the
United States Department of Agriculture and National Institutes of
Health guidelines and all procedures were approved by the University of
Illinois at Chicago Animal Care and Use Committee before undertaking
any experimental manipulation.

Viral vector transfection

To achieve site-specific overexpression of ERa in the MeA, adult males
(60-70 d of age) were stereotactically injected, bilaterally, with adenoas-
sociated viral (AAV) vectors encoding human ERc. The site of the MeA
was determined to be —1.25 mm anteroposterior, =1.65 mm mediolat-
eral, and —5.8 mm dorsal from bregma. Two controls were established.
Site-specific controls were generated by transfecting the MeA of males
with a similar vector encoding firefly luciferase cDNA, and ERa controls
were generated by transfecting the caudate—putamen with ERa. Caudate
neurons do not express ERa. The AAV vectors used in this study have
been described previously in detail (Musatov et al., 2006). Briefly, the
vectors express short hairpin RNA containing ERa (GGCATGGAG-
CATCTCTACA) or luciferase (CCGCTGGAGAGCAACTGCAT) target
sequences under the control of the human HI promoter. In addition,
both vectors were designed to express enhanced green fluorescent pro-
tein (GFP) as a reporter to visualize transfection neurons and placed
under a control of a hybrid cytomegalovirus/chicken-B-actin promoter
to ensure stable long-term expression. Vector stocks were generated us-
ing a helper-free AAV-2 plasmid transfection system, purified by heparin
affinity chromatography and dialyzed against PBS as described previ-
ously (Clark et al., 1999). AAV genomic titers were determined by quan-
titative PCR and adjusted to 109 particles per microliter. Three weeks
after transfection males began behavioral testing. After completion of
behavioral testing, males were killed to analyze the efficiency of gene
transfer, and behavioral data were only analyzed in males in which trans-
fection was verified.

Verification of transfection. After completion of the social preference
test, brains from experimental animals were fixed using transcardial per-
fusion, sectioned at 30 wm on a freezing sliding microtome, and then the
free-floating sections were stained for ERa using standard AB immuno-
cytochemistry (for complete details, see Cushing et al., 2004). The
human-specific primary antibody RM9101-s (Neomarkers; 1:1000 dilu-
tion) was used to label transfected ER« and then visualized using DAB.
RM9101-s does not label prairie vole ERa. Therefore, all ERa observed
with this antibody were the product of transfection. Successful transfec-
tion was determined qualitatively by visually examining ER« expression
using a Nikon E-800 microscope. It should be noted that there were no
animals that display only a few transfected ERa-immunoreactive cells,
and transfected males either displayed no or a significant amount of
transfected ERa. Figure 1a shows a typical level of transfected ERa ex-
pression, which is compared with nontransfected ERa expression seen in
Figure 1b. Only animals that showed at least unilateral ERa expression
resulting from transfection in the MeA, were used in subsequent analysis
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of behavior data. Luciferase expression was determined by examining
tissue for GFP expression (see Fig. 1c¢).

Behavior

Alloparental test. Males participated in a standard alloparental test
(Cushing and Kramer, 2005a; Trainor et al., 2006; Young et al., 2005).
Males were placed in an alloparental test arena consisting of two cages
(12 X 18 X 28 cm) connected by a plastic tunnel. Males were allowed 30
min to adapt to the arena before a 1- to 3-d-old pup was placed in one of
the two cages. The behavior of the male was videotaped and analyzed for
10 min after entrance into the pup’s cage, or for 30 min if the male failed
to enter the pup cage. Males that spent a minimum of 3 min in contact
with the pup, licking and grooming, or huddling with the pup were
classified as alloparental. Because all control males were alloparental, for
the purpose of analysis they were grouped.

Social preference. Five days after the alloparental test, treated males
were tested for social preference. This was done using the standardized
vole partner preference test (Liu et al., 2001; Cushing et al., 2003).
Treated males were cohabited with an unrelated sexually naive adult
female for 1 h. This female was classified as the familiar “partner.” Female
prairie voles do not undergo spontaneous estrus and require prolonged
exposure to a male to become sexually receptive. Therefore, mating is not
a factor in this test. Immediately after cohabitation, test animals partici-
pated in a social preference test. The social preference arena consisted of
three polycarbonate cages (12 X 18 X 28 cm) in a modified Y shape. The
two cages housing stimulus animals were in parallel and a third cage
(neutral) was attached separately to each stimulus cage. The familiar
female was gently tethered in one of the stimulus cages while an age- and
size-matched sexually naive female (novel/“stranger”) that was unrelated
to both the familiar female and the subject was tethered in the other
stimulus cage. Then, the experimental male was placed in the neutral
chamber and allowed to move about freely for 3 h. The test was recorded
using a time-lapse video (12:1 ratio) and then scored by an experimen-
tally blind scorer. The data scored and analyzed include frequency of
entrance, total time spent in the chambers, and time spent in physical
contact with partner and stranger. It should be noted that without hor-
monal manipulation, such as central administration of arginine vaso-
pressin, 1 h of cohabitation does not lead to the formation of preference
for the familiar stimulus animal (DeVries et al., 1996; Cho et al., 1999);
therefore, control males were predicted to spend equal amounts of time
in the cages of and in physical contact with both females.

Statistical analysis. Based on the a priori assumption that the two con-
trol groups would not differ, preplanned comparisons were made be-
tween the two controls. If and only if there was no difference in any
measure, they were grouped into a single control group for the purpose of
analysis, which was the case in this study. Alloparental data represents
count data with two possible outcomes; therefore the data were analyzed
using 2 X 2 Fisher’s exact probability. For the social preference test, an
ANOVA was used to analyze between treatment effects, whereas a paired
t test was used for within-treatment analysis.

Results

As indicated by immunoreactivity of transfected ERa 12 (eight
bilateral and four unilateral) of the 20 males in which AAV-ER«
was injected into the MeA were successfully transfected (Fig. 1a).
There were a total of 19 control males (9 MeA luciferase and 10
caudate ERw). There was a significant treatment effect of in-
creased ERa in the MeA on both the expression of spontaneous
alloparental behavior and social preference. Enhancing ERa in
the MeA inhibited alloparental behavior with only 4 of 12 (33%)
MeA-ERa males displaying alloparental behavior, compared
with 19 of 19 (100%) of the control males (Fisher’s exact p <
0.0001) (Fig. 2). Nonalloparental behavior displayed by MeA-
ERa males included attacking the pup (n = 5), attempting to
mount and mate with the pup (n = 2), or ignoring the pup (n =
1). As predicted, control males did not display a preference for
either the familiar or novel female. In contrast, MeA-ERa males
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Figure1. a,Photomicrograph of AAV-mediated ERcx overexpression. b, Typical low levels of
ERa immunoreactivity in the medial amygdala of male prairie voles. ¢, GFP expression. d,
Graphic representation of the site of infusion (gray shaded area) (adapted from Paxinos and
Franklin, 2001). Endogenous vole ERcx (a) is labeled using the primary polyclonal antibody
1355 (Millipore; 1:10,000 dilution) and developed with nickel-DAB (purple staining) (Cushing
etal., 2004), whereas transfected human ER« is labeled using the primary antibody RM9101-s
(1:1000 dilution) and visualized using DAB (brown).
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Figure 2. Results of treatment on the expression of spontaneous alloparental behavior.
Enhancing EPvin the MeA (MeA-ERc) resulted in a significant decrease in alloparental behav-
ior compared with control males. p << 0.001.

spent significantly more time in a novel female’s cage compared
with control males (ANOVA, p < 0.05) (Fig. 3). MeA-ERa males
formed a “stranger” preference spending significantly more time
in the cage of a novel female (pair ¢ test, p < 0.05) and in physical
contact with a novel female than with a familiar female (paired ¢
test, p < 0.05) (Fig. 3).

Discussion

The results from this study indicate the importance of ERa in
regulating male prosocial behavior providing direct evidence that
ERa can inhibit the expression of male prosocial behavior. Fur-
thermore, the results support the hypothesis that a reduction in
ERw is necessary for the expression of high levels of male proso-
cial behavior. Increasing ERa in the MeA of the adult male prairie
vole reduced or inhibited the expression of alloparental behavior
and the initial formation of social preferences.

Unlike most male rodents, which are infanticidal or ignore
pups, even inexperienced male prairie voles display high levels of
spontaneous alloparental behavior, including licking, grooming,
huddling, and retrieving unrelated pups. In the majority of males,
enhancing ERa in the MeA produced a more “typical” male re-
sponse that of pup-directed aggression, although in two males it
produced a novel response: pup-directed sexual activity. The ex-
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Figure3. a,Meantime (== SE) that males spentin the cage of the familiar or novel female by
treatment. b, Mean time (==SE) in side-by-side contact with the familiar and novel female by
treatment. MeA-ERcx males spent significantly less time in the familiar female cage and signif-
icantly more time in the novel female cage than control males ( p =< 0.05). Within-treatment
analysis revealed that MeA-ERac males displayed a preference for the novel female spending
significantly more time in the novel female cage than the familiar female cage, and more time
in side-by-side contact with the novel female. *p << 0.05, significant between treatment dif-
ference; line above error bars shows significant difference within treatment, p << 0.05. Error
bars indicate SEM.

pression of spontaneous alloparental behavior is very difficult to
disrupt in male prairie voles (Cushing and Kramer, 2005a), and
although it has been suggested that alloparental behavior is con-
trolled by neuropeptides, inhibition of endogenous neuropep-
tides does not disrupt the alloparental behavior in adult males.
However, neonatal castration does disrupt male alloparental be-
havior (Lonstein et al., 2002) as well as significantly increasing
ERa in the MeA (Cushing and Kramer, 2005b). These findings
suggest that steroids play a major role in facilitating and perhaps
organizing the male’s response to pups. The fact that increasing
ERe in adults and removal of testes from neonates both inhibit
the expression of alloparental behavior suggests that a low thresh-
old level of steroid is necessary for the expression of alloparental
behavior, but that higher levels masculinize behavior.

Enhancing ERa in the MeA clearly altered alloparental behav-
ior. However, there was variability in the response. Although the
sample size was insufficient to determine the reason for the vari-
ability, it is possible that differential enhancement of ERa could
explain part of the variation. Variation could have been related to
unilateral versus bilateral enhancement of ERa. Although it has
been hypothesized that the right and left amygdala may differen-
tially regulate behavior (Cooke et al., 2007), empirical studies that
have compared unilateral versus bilateral effects in the amygdala
suggest that there is no difference as unilateral and bilateral le-
sions produce the same effect on behavior [MeA, Sheehan et al.
(2001); basolateral, Floresco and Ghods-Sharifi (2007)]. Addi-
tionally, the degree of enhancement could have affected the re-
sponse. It is possible that animals with more ERa responded
differently than those with less. Finally, it could be a combination
of the degree of enhancement and unilateral versus bilateral ERa.
Future studies will be designed to determine whether the right
and left side of the amygdala play different roles in regulating
social behavior.
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Although male prairie voles form long-term pair bonds, this
process requires either extended cohabitation or central admin-
istration of the neuropeptide vasopressin (Insel and Young,
2001). Control males displayed the predicted response, spending
an equal amount of time with the familiar and the novel female,
whereas MeA-ERa males formed a preference for a novel female,
spending significantly more time in contact with the novel fe-
male. This result is similar to observations of male mice in that
after spending time with a nonreceptive female, males prefer a
novel female when given a choice (Moy et al., 2004). The prefer-
ence for a novel female is particularly relevant when considered in
light of the numerous studies of social preference in prairie voles
and the function of neuropeptides. In has been argued that neu-
ropeptides are primarily responsible for the formation of pair
bonds (Keverne and Curley, 2004; Young and Wang, 2004; Nair
and Young, 2006). Vasopressin and oxytocin antagonists inhib-
ited the formation of a partner preference or inhibited social
contact, but did not result in the formation of a preference for a
novel female (Cho et al., 1999). These results suggest that ERa
expression significantly alters the normal steps involved in the
formation of social preference. Interestingly, the only other study
in which male prairie voles formed a preference for a novel female
also involved steroidal manipulation through adrenalectomies
followed by treatment with corticosterone (DeVries et al., 1996).

Although several mechanisms have been proposed to regulate
the formation of pair bonds, the neuropeptide arginine vasopres-
sin has been proposed to be the primary mechanism involved in
regulating pair bond formation and parental behavior in male
prairie voles (Young and Wang, 2004). Although we are not sug-
gesting that the current results negate the role of vasopressin, they
clearly demonstrate that there are critical aspects of social bond-
ing that have not previously been investigated and that ER« plays
a critical role. The results from this study bring into question the
assumption that the pattern of the vasopressin Vla receptor
(V1aR) is sufficient to explain the formation of pair bonds. Neo-
natal castration is one of the few reported methods to disrupt
alloparental behavior in adult male prairie voles (Lonstein et al.,
2002). Adult males that were castrated neonatally display a female
pattern of ERa and females display low levels of alloparental
behavior (Cushing and Kramer, 2005b). Neonatal castration also
inhibited the subsequent ability of centrally administered vaso-
pressin to stimulate partner preferences in adult males, but did
not alter the expression of V1aR (Cushing et al., 2003), indicating
that the lack of response was not caused by changes in the ability
to respond to vasopressin. Chimeric male mice that express prai-
rie vole V1aR display a prairie vole-like pattern of V1aR and an
increase in general social affiliation (Young et al., 1999), but do
not develop a partner/social preference. One possibility is that
social preferences were absent in these transgenic mice because
ERa expression was unchanged from the normal pattern, which
includes high levels in the MeA. Prairie voles display variation in
the length of a microsatellite in the V1aR promoter and length is
positively correlated with the expression of prosocial behavior;
additionally, this element in the V1aR of the polygynous mon-
tane and meadow voles is substantially shorter (Hammock and
Young, 2004; Hammock et al., 2005). However, the assertion that
the length of this microsatellite is the key element in prosocial
behavior has recently been challenged with the finding that many
other species in the genus Microtus that do not express high levels
of social behavior also display significant variation in V1aR mic-
rosatellite length (Fink et al., 2006). This finding lead to the sug-
gestion that other factors/genes must also be involved in the ul-
timate formation of long-term pair bonds. Although montane
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and meadow voles express the same V1aR microsatellite and the
same pattern of V1aR in the brain, meadow voles display proso-
cial behavior in response to centrally administered vasopressin,
whereas montane males do not (Young et al., 1999). They do,
however, differ in ER« expression with meadow vole male ex-
pressing an intermediate pattern between montane and prairie
(Cushing and Wynne-Edwards, 2006). We suggest that the cur-
rent findings indicate that a reduction in ERa may also be
necessary.

The formation of long-term social bonds is a complex process
that has been proposed to involve at least two neural circuits, the
social behavior neural circuit and the reward system (Young et
al., 2005). It has been proposed that within these circuits the
ventral pallidum (Lim et al., 2001) and lateral septum (Liu et al.,
2001) play an essential role in pair bond formation in males, and
the bed nucleus of the stria terminalis in male parental care (De
Vries and Villalba, 1997). Here, we show that altering receptor
patterns of a nucleus upstream of these regions is sufficient to
alter the behavioral response to social stimuli. This does not ne-
gate the critical role of the lateral septum or reward system in the
expression of social behavior, but clearly demonstrates that
changes in the initial response to social stimuli can prevent po-
tentiation of these areas. This also presents the possibility that
variable responses can be produced from the same system by
altering ERa expression, seasonally or otherwise, to change how
the neural circuit regulates social behavior. The findings in this
study do not imply that the MeA directly regulates pup-directed
aggression or the formation of pair bonds, but that changing the
receptor pattern can change the response of the whole circuit and
dramatically alter the ultimate response. This conclusion is em-
phasized by the observation that MeA-ERa males mounted and
thrust against the pup. Of the thousands of alloparental tests that
have been run with prairie voles, this has never been reported,
and supports the concept that altering receptor expression can
result in misdirected behavior.
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