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Abstract
Estradiol and progesterone are two steroid hormones that target a variety of organ systems, including
the heart, the bone and the brain. With respect to the latter, a large volume of basic science studies
support the neuroprotective role of estradiol and/or progesterone. In fact, the results of such studies
prompted the assessment of these hormones as protective agents against such disorders as
Alzheimer’s disease, stroke and traumatic brain injury. Interestingly, results from the Women’s
Health Initiative (WHI) yielded results that appeared to be inconsistent with the data derived from
in vitro and in vivo models. However, we argue that the results from the basic science studies were
not inconsistent with the clinical trials, but rather, are consistent with, and may even have predicted,
the results from the WHI. To illustrate this point, we review here certain in vivo paradigms that have
been used to assess the protective effects of estrogens and progesterone, and describe how the results
from these animal models point to the importance of the type of hormone, the age of the subjects and
the method of hormone administration, in determining whether or not hormones are neuroprotective.
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2. INTRODUCTION
The U.S. Census Bureau estimates that by 2010, the population of women between 45 and 64
years old will reach approximately 42 million, a marked increase from the value reported for
2000 (approx. 32 million) (U.S. Census Bureau. Projected population of the United States, by
Age and Sex: 200 to 2050. www.census.gov/ipc/www/usinterimproj/Internet release date:
March 18, 2004). This increasing number of women will consequently need to make decisions
about the use of hormone therapy to treat not only menopausal symptoms, but potentially, to
maintain a healthy brain. And though numerous basic science studies, epidemiological studies
and some clinical trials have supported the potential benefit of hormone therapy in reducing
the incidence of age-associated brain dysfunction (including reducing the risk for Alzheimer’s
disease), recent results from the Women’s Health Initiative (WHI) have suggested the contrary
and left the field unsettled as to the future of hormone therapy. For example, caveats of the
WHI (particularly the WHI memory study, WHIMS) include the possibility that both the age
of the subjects and the duration of post-menopausal hormone deprivation diminish the
protective brain response to steroid hormones. Additionally, the type of hormone (for example,
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progesterone versus the synthetic, medroxyprogesterone acetate) and its method of
administration may have also influenced the outcomes.

While it is clear that a better understanding of the neurobiology of gonadal steroid hormones
and their receptors is needed, it is equally important that we interpret the basic science studies
appropriately, and understand their limitations if we are to apply the results from these studies
towards the design of the next large-scale clinical trial or in fact, implement safer and more
effective ways of treating the menopause and the post-menopausal period. To this end, we
review here some of the common animal models that have been used to assess the
neuroprotective efficacy of estrogens and progestins, and describe some of the limitations that
must be acknowledged in interpreting their results.

3. MODELS USED TO ASSESS THE NEUROPROTECTIVE EFFECTS OF
ESTROGENS AND PROGESTINS
3.1. The ovariectomized rodent

In vivo studies that have tested the effects of estrogens and/or progestins on various aspects of
neurobiology have often employed the ovariectomized rodent (using either rats or mice) as an
experimental model. Indeed, numerous studies have demonstrated that ovariectomy can result
in impairment of cognitive performance (1–3), influence structural plasticity of neurons (4),
impair cholinergic function (2,5), and reduce neurotrophin expression (3,6–8). All these
changes have been linked to such neurodegenerative diseases such as Alzheimer’s disease, and
as such, the ovariectomized rodent has been used to assess if steroid hormones such as estradiol
and progesterone may prevent or attenuate some of these deficits. In fact, both estradiol and
progesterone have been shown to be effective neuroprotectants in a variety of animal models
in which ovariectomy was used to eliminate ovarian steroid hormone production. Examples
are provided below:

3.2. The stroke model
The neuroprotective effects of estrogens have been demonstrated in a variety of models of
stroke, as induced by causing acute cerebral ischemia. These include transient and permanent
middle cerebral artery occlusion models (9–11), global forebrain ischemia models (12,13),
photothrombotic focal ischemia models (14), and glutamate-induced focal cerebral ischemia
models (15). The neuroprotective effects of estrogens have also been demonstrated against
subarachnoid hemorrhage, a highly prevalent form of stroke in females (16). These protective
effects have been described in multiple species, including rats, mice and gerbils (17,18).
Collectively, these results support the argument that estrogens could be valuable candidates
for brain protection in females.

It is important to recognize that ovariectomy causes a dramatic reduction in not only circulating
estradiol, but also in circulating progesterone. As such, the structural and functional
impairments that are reported to occur following ovariectomy may result from the loss in not
only circulating estrogens, but of progesterone as well. Accordingly, it should come as no
surprise, that progesterone is also an effective neuroprotectant in animal models of stroke. For
example, Jiang et al. illustrated that the administration of progesterone before middle cerebral
artery occlusion (MCAO) resulted in a marked reduction in cerebral infarction and reduced
impairments that resulted from the occlusion (19). Interestingly, progesterone was also found
to be protective even when administered shortly after the ischemic event (20,21), and resulted
in improvements in various functional measures, including the rotarod test, and adhesive-
backed somatosensory and neurological scores (22). Further, progesterone also protected
against cell death following an acute episode of global ischemia (23), and may be mediated by
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progesterone’s ability to reduce lipid peroxidation, the generation of isoprostanes (24) and the
expression of pro-inflammatory genes (25).

3.3. Traumatic brain injury
Another in vivo paradigm that has taken advantage of the ovariectomized model to assess the
effectiveness of steroid hormones as a neuroprotectant is the traumatic brain injury (TBI)
model. In particular, studies assessing the effects of progesterone have found that it can
significantly reduce cerebral edema, even when administered up to 24 hours after the
experimental injury. Mechanistically, the protective effects of progesterone may be attributed
to its ability to reduce complement factor C3, glial fibrillary acidic protein (GFAP), and nuclear
factor kappa beta (NFκB) in the TBI model (25), and decrease the levels of lipid peroxidation
(26).

And in animal models that simulate demyelinating disease, progesterone has also been found
to have significant neuroprotective potential, as evidenced by its ability to increase the
expression of myelin proteins in the damaged sciatic nerves of young adult rats with nerve
crush injuries (27). Furthermore, progesterone has also been shown to promote morphological
and functional recovery in the Wobbler mouse, an animal model of spinal cord degeneration
(28,29).

These pieces of evidence that were obtained from animal models certainly supported the
neuroprotective potential of these steroid hormones, and offered some insight into the
mechanisms by which these hormones may be exerting their protective effects.

However, when this neuroprotective potential of estrogens and progesterone was applied to
certain clinical trials, such as the WHIMS, the results were far from expected and were in fact,
deemed inconsistent with the data derived from various animal studies. The estrogen
formulation, Premarin (30,31) or the combined estrogen/progestin formulation, PremPro,
increased the risk for dementia and stroke (32–34) unlike what the animal studies would have
predicted. And though the temptation has been to place blame on either the basic science data
or alternatively, the clinical studies, we argue that the data resulting from animal models, were
on the contrary, consistent with the WHI studies and arguably, predicted the results of the WHI.

4. FACTORS THAT INFLUENCE HORMONE INDUCED NEUROPROTECTION
4.1. The importance of age

The ovariectomized model is an excellent model to study the effect of estrogen and/or
progesterone without the potential confound of having endogenous levels of estrogens and
progesterone being contributed by the ovary. However, the ovariectomized animal best mimics
the surgically menopausal woman, and may not necessarily model the menopause. Thus, the
animal studies in which estradiol and/or progesterone administration to a young adult,
ovariectomized animal has yielded beneficial effects, such as neuroprotection, should be
interpreted as predicting the beneficial effects of a specific form of estrogen (17 β-estradiol),
and/or progesterone in younger, premenopausal women (perhaps those who have undergone
bilateral oophorectomy). The WHIMS, however, assessed the effects of a particular estrogen
formulation on older women who were on average 10 years past the menopause.

Animal studies have, in fact, demonstrated that (reproductive) age influences the protective
effects of estradiol. For example, estradiol was found to be effective at protecting against
scopolamine-induced cognitive impairment in rats that were beginning to go through the phase
of reproductive senescence (as evidenced by a phase of constant estrus). However, in older
animals (that were in a state of constant diestrus), estradiol treatment was ineffective (35).
Moreover, Nordell and colleagues (36) have demonstrated that in young adults, estradiol
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administration to an ovariectomized rat attenuates the pro-inflammatory effects of an
excitotoxic lesion, whereas estradiol exacerbated the toxicity in older, reproductive senescent
animals. Thus, data from animal studies have suggested that neuroprotective efforts with
estrogen in older animals is not effective and may actually exacerbate pathological cascades,
and as such, are perfectly consistent with the WHI trial in which estrogen treatment of older
women was found to lead to an increased risk for dementia and stroke. Furthermore, new reports
suggest that, when the WHI data were segregated according to age, younger women were more
likely to benefit from hormone therapy, whereas older women who were approximately 10
years beyond the menopause were prone to the negative consequences of hormones therapy
(37).

4.2. The type of hormone matters
Another important distinction between those animal studies in which estrogens and/or
progesterone has been found to be protective and the clinical trials in which an estrogen or an
estrogen and a progestin preparation had negative consequences lies in the choice of hormone
used. Basic science studies have, in fact, demonstrated that progesterone is neuroprotective
(19,26,28,29,38–40), while the synthetic progestin, MPA, is not (38,39,41). For example, in a
model of stroke (reversible focal stroke using the intraluminal filament model followed by 22
hours of reperfusion), MPA diminished the protective effects of conjugated equine estrogens
(CEE) and MPA diminished estrogen’s ability to reduce stroke damage (41). Interestingly,
with regards to the traumatic brain injury model, MPA required a larger dose than P4 to
accomplish a comparable reduction in cerebral edema. However regardless of the dose of MPA,
MPA did not favor a better behavioral recovery than progesterone (reviewed in (42)).

Therefore, while P4 does not interfere with the beneficial effects of estrogens, MPA appears
to have the capacity to prevent estrogen’s beneficial effects. Such data requires us to consider
the possibility that some of the negative consequences of hormone therapy observed in the
WHI trials may have been a result of the choice of progestin used in the hormone therapy
regimen.

4.3. The delivery of estrogens and progesterone
In animal models, several routes of administration and delivery of steroid hormones have been
used, including intravenous injection, subcutaneous injection, intranasal administration (43),
oral gavage (44,45), addition of the steroid to the water supply of animals (46), subcutaneous
implantation of Silastic® pellets and implantation of the “matrix-driven delivery (MDD)” pellet
(IRA, Sarasota, Fl). The latter two methods have been used with the intention of providing
continuous delivery of steroid hormones. While the use of Silastic® pellets have been
demonstrated be effective in delivering a constant level of 17 β-estradiol (17β-E2) over weeks
(10,47) to months (3) in rats, the delivery of constant and sustained levels of hormone (either
17 β-E2 or P4) to mice has proven to be more problematic. To obviate the problem of sustained
steroid hormone delivery to mice, several approaches have been tested, including oral gavage,
addition to the water supply of the animals (46) and implantation of the IRA MDD pellet
system.

The later method of steroid delivery have become widely used, with IRA reporting 924
published papers using their 17 β-E2 pellets and 142 reports using their P4 pellets
(www.innovrsch.com). However, we have discovered that these pellets have not been validated
for the kinetic of release of the steroid in mice. Instead, most published reports that utilized the
17 β-E2 pellets from IRA cite either the IRA website (www.innovrsch.com) or other
publications to support a continuous release of 17 β-E2. Surprisingly, we found that these
citations, in turn, lead to a single ex vivo dissolution study of one of the IRA pellets (48). Indeed,
most studies assess levels of E2 at the termination of their study and claim continuous release
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of the steroid at the reported concentration throughout the duration of treatment. Our data,
however, in which we assessed the acute (up to 7 days) release characteristics of these steroid
pellets suggest that this is not a valid assumption, and instead, show that both 17 β-E2 and P4
pellets produce a huge initial burst of hormone, followed by a gradual decline that even after
7 days is far exceed the target mid-estrous cycle target levels of 50 pg/ml for 17 β-E2 and 4
ng/ml for P4. (Tables 1 and 2).

The results reported here could also explain the results recently reported by Green et al. (49),
who used a similar treatment with a 0.25 mg, 90-day release 17 β-E2 pellets from IRA. They
observed that at the end of 90 days, plasma estradiol was elevated 3-fold over ovary-intact
controls, uterine weights were 81% higher than ovary-intact controls and pituitary weights
were 2.6-fold greater than ovary-intact controls. Additionally, two of the 17β-E2 treated
animals had to be euthanized due to vaginal hyperplasia. These findings are consistent with
what has been seen with high bolus doses of estrogens, which are known to cause permanent
changes in rodent reproductive function (50,51) including growth of uterine tissue in rodents
(52). As such, the initial release of 17 β-E2 following implantation could have contributed to
the observed uterine, vaginal and pituitary hyperplasia. Additionally, the few studies using
mice that have measured 17 β-E2 concentrations as an end parameter have reported abnormal
pharmacological responses (49) or strikingly high 17 β-E2 concentrations (53,54), even as long
as 35 to 90 days after implantation of the pellets (55–58).

Most reports using IRA pellets sample for the levels of 17 β-E2 or P4 at the termination of the
study [for example, see (49,55–58)], and only a few of these studies report levels of the ovarian
hormones within or near physiologically relevant concentrations at that time (49,57).
Regrettably, many reports state their pellets produce physiological levels of 17 β-E2 based
upon technical information provided by IRA [for example see (59,60)].

Based upon our observation of a large initial release of steroid hormones after implantation of
these pellets, we urge caution in the interpretation of results obtained from studies that use of
these hormone formulations. For example, Theodorsson and Theodorsson reported negative
effects of estrogen, when delivered using the IRA pellet (1.5mg), in a transient middle cerebral
artery occlusion (MCAO) model of cerebral ischemia (61). This is in sharp contrast to
numerous reports that support a benefit of estrogen treatment, where estrogen reduces the lesion
size following experimental stroke (11,16,62,63). We argue that this discrepancy was due to
differences in the levels of estradiol to which the animal was exposed. The high concentrations
may have desensitized the brain to the protective effects of estrogen (potentially through
receptor downregulation). Thus, a more accurate conclusion that should have been made is that
“high dose” estradiol is not beneficial in preventing damage associated with transient MCAO.

Thus, these animal studies point to the importance of delivering the appropriate levels of
estrogen, and as such, question whether persistent delivery of a high dose of estrogen and/or
progestin (as is done in most hormone therapy regimens) is the appropriate means of delivering
a therapeutic or protective dose of hormone.

4.4. Caveats associated with animal models
Transgenic knockout animals have been valuable in defining potential mechanisms by which
estrogens exert their protective effects. However, these models are not without their limitations.
For example, in determining the relevant estrogen receptor in the neuroprotective effects of
estrogen against experimental stroke, some studies support the role of ER-α(64) while others
implicate ER-β in mediating estrogen-induced protection (65). For example, Dubal and
colleagues described that the protective effects of low dose estrogen (resulting in plasma levels
that are ~ 25 pg/ml) against experimentally-induced stroke was abolished in ER-α knockout
(ERαKO) mice (10). However, due to the apparent loss of negative feedback regulation at the
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level of the hypothalamus, ERαKO mice are exposed to much higher levels of estrogen than
their wild-type counterparts (66). As such, the “threshold” for the protective effects of estrogen
may have been much higher. Consistent with this idea, administration of higher concentrations
of estradiol (~ 200 pg/ml) to ERαKO mice was effective at reducing infarct volume (67,68).
Thus, depending on the region of the brain, either ER-α or ER-β may be involved in mediating
estrogen’s protective effects.

5. PERSPECTIVE
The studies described herein strongly support the value of animal models in testing the
neuroprotective potential for estrogens and progestins. In fact, numerous in vivo paradigms
have supported the ability of estradiol and progesterone to protect against a variety of insults.
And though these models have several advantages relative to human clinical trials, at least with
regards to the ability to manipulate and control experimental variables, it is imperative that we
also recognize the caveats and limitations of each model. Only by recognizing such caveats
will we be able to effectively translate these findings to human studies and later, implement
them toward the development of novel hormone-based therapies for the menopause and the
postmenopausal period, during which the risk for various disorders increases.
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Table 1
Concentration of 17 β-E2 at various times after implantation of IRA “matrix-driven delivery (MDD)” pellets containing
17 β-E2

Hours after implantation Serum 17 β-E2 concentration (pg/
ml)

Pellet 17 β-E2 Content (mg) Proposed duration of 17 β-E2
release

1 13,044 0.25 60
4 10,563 0.25 60
8 2,536 0.25 60
12 1,113 0.25 60
24 965 0.25 60

Days after implantation
4 972 0.25 60
7 856 0.25 60

17 β-E2: 17 beta estradiol
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Table 2
Measured serum progesterone levels at various times following implantation of the IRA “matrix-driven delivery
(MDD)” progesterone pellets

Hours after implantation Serum Progesterone
concentration (ng/ml)

Pellet Progesterone Content
(mg)

Proposed duration of
Progesterone release

1 133.2 10 60
4 165.2 10 60
8 191.9 10 60
12 97.9 10 60
24 79.6 10 60

Days after implantation
4 37.2 10 60
7 38.6 10 60
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