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1. Introduction

A common objective at pre-clinical or phase | trial stages is to estimate an 1Cs, i.€., the
concentration of an experimental compound required to achieve 50% in vitro response
inhibition. 1Cxg is closely related to and sometimes confused with ECsp, the half-maximal
effective concentration, which is the analogous quantity of interest when the response is
increasing with dose. Although these parameters are commonly estimated, there is great
variation in the techniques used and they are not always based upon sound statistical principles
or accompanied by valid standard error estimates to properly reflect uncertainty.

Models for dose response upon which estimation of 1Csy and ECgg has been based range from
simple (e.g., linear) to more complex (e.g., three- or four-parameter nonlinear models). Prior
authors (e.g., [1]) have emphasized the use of sigmoidal curves based on nonlinear regression
techniques, with the logistic function forming the basis for some of the popular choices (e.g.,
[2]). Itis clear that effective estimation of an 1Cgy must properly account for random variation
and be based upon a model that not only matches the nature of the response variable, but
adequately characterizes the observed dose-response pattern.

In this article, we demonstrate the comparative fit of several nonlinear statistical models to
continuous absorbance response data on bone marrow endothelial cell lines, replicated at
various doses of an inhibitory agent. Our purpose is to outline a general process for defining
ICsq based on a specified model, fitting the model via maximum likelihood, and estimating
ICsq and its standard error. Other considerations raised by the motivating examples include
model reparameterization, adjustment of the dose scale for more reliable model fitting, and
extensions to allow for heterogeneous residual variance across doses. While experimental
conditions, the nature of the response data, and the class of candidate dose-response curves
necessarily vary in practice, it is hoped that the methods illustrated here will provide a useful
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reference contributing to valid 1Csq estimation in clinical practice. Thus, while most aspects
of the techniques discussed here tie in with existing statistical strategies, our aim is to clearly
and thoroughly illustrate the details of the analytic considerations motivated by the data
described in the following section.

2. Motivating Study Data

Two independently established bone-marrow endothelial cell lines which demonstrate
characteristic behavior were used for this study. Human bone-marrow endothelial cells
(BMEC) [3] and transformed human bone-marrow endothelial cells (TrHBMEC) [4] are of
particular interest given their ability to express specific surface receptors when treated with
pro-inflammatory cytokines and their ability to form tubular networking when grown on
Matrigel®. Breast and prostate cancer bone metastasis [5-7] are among the pathologic
conditions that induce marrow angiogenesis, which requires proliferation of endothelial cells
to create a tumor blood vessel system. Without an adequate blood supply, tumors will shrink
in size and subsequently in clinical significance. Due to the diversity of microvascular
endothelial cells, those derived from bone marrow are the model for determining the therapeutic
potential of new anti-angiogenic compounds being considered for bone metastasis therapy. In
the motivating study, we tested the ability of SC-2-71, a quinazoline-related compound derived
from thalidomide, to inhibit growth of BMECs in vitro.

For this experiment, BMEC and TrHBMEC were grown to confluence in T-75 flasks
(Corning), trypsinized, counted and plated in 48-well plates (Corning). For the data collected
in this study, cells were plated in triplicate for each thalidomide analog dose concentration:
control media, vehicle, 10um, 30uM, 50uM, 70uM and 90uM. The control media for BMECs
contains Delbecco’s Modified Eagle Medium (Gibco) with 10% fetal bovine serum, 1%
penicillin streptomycin and 100 ul antiobiotic. A 100 uM stock solution of SC-2-71 was made
with a vehicle of 10% dimethyl sulfoxide and 90% ethanol and then diluted to final testing
concentrations.

After one day incubation at 37°C in the control media, the media was changed every 48 hrs
for 6 days with 250 ul/well of the treatment solutions. On day 7 the cells were washed with
300ul of a 1% Gluteraldehyde solution (4ml/996mL 1X-PBS) by gentle rocking for 15 min.
The gluteraldehyde was then removed and the cells were fixed with 300ul of a 0.5% Crystal
Violet solution (5g/1L ddH20) by gentle rocking for 15 min. Plates were then rinsed in distilled
water for 10 minutes, inverted, and allowed to let dry for 24 hours. In order to get an initial
qualitative analysis, the dry 48-well plates were scanned. The crystal violet was next solublized
in 750ul of Sorensen’s Solution (8.9679 Tri-sodium citrate/305mL dH20, 19.5mL 1N HCL/
17.5mL dH20, 500mL 90% ethanol) for 15 minutes of gentle rocking. The absorbance values
constituting the response data for the current study were then obtained by reading the plates at
560 —590 nm in an OPTIMA Fluorostar plate reader. For the purposes of this study, the vehicle
was deemed to represent the appropriate “0-dose” condition, and the control media data were
excluded.

The goal of the motivating experiment is to estimate 1Cggs (in units of uM) for the two sets of
endothelial cell line data. Figure 1 displays the raw data for TTHBMEC and BMEC (hereafter
referred to as TR and BM), with the dose axis displayed in the desired units. Note that for TR,
doses measured in uM correspond to a natural scale for plotting and modeling the response
data. For BM, however, the following doses were applied: 0, 0.01, 0.1, 1, 10, 30, 50, 70, and
90 uM. This scaling is as unappealing for modeling as it is for visual purposes (Figure 1), due
to the lack of distance between doses at the lower end of the range. We address this issue of
dose scaling further in section 3.4. Also of note in Figure 1 is a tendency for response
observations to be more tightly distributed for higher doses, both for TR and BM cell line data.
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This invites considerations of variance heterogeneity, discussed in section 3.5. Despite the
specific nature of the motivating endothelial cell line example, we note that the statistical
models and methods discussed in section 3 are applicable in a wide variety of continuous dose-
response data analytic settings that are often relevant to pre-clinical or early-stage clinical
research.

3. Statistical Methods

The motivating data consist of multiple independent observations of a continuous response,

generally with replicates at each of several doses of the inhibitor of interest. As a foundation
for maximum likelihood analysis, we initially assume independent and identically distributed
normal random errors with mean 0 and common variance 2. The mean (p;) of a given response
(Y;) is modeled as a nonlinear function of the dose (dose;) that produced that response. Thus,
the basic likelihood function upon which statistical analysis is based is expressed as follows:

f(a;y>=[:l[ { \/zl_mexp [0 - ui)z/(zcrz)]} :

(3.1)

where 0 is a vector of model parameters to be estimated, n is the total number of observations,
and p; = g(dose;) is the smooth function of dose dictated by a particular nonlinear model.
Maximum likelihood estimates derived under (3.1) are identical to least squares estimates.
Standard error estimates based on the two methods are asymptotically equivalent, though there
tends to be some discrepancy in relatively small samples such as those obtained in our
motivating studies.

3.1 Models Considered

Based on the motivating endothelial cell line data, the primary models considered herein are
as follows:

1) Exponential: wi=g(dose;)=e@+P dose)
2) Three — parameter logistic: wi=g(dose;)=C/[ 1+el@*Bdosed]
3) Three — parameter Gompertz: ui=g(dose;)=C exp[ —e @+ dose] (3.2)

The exponential model is clearly the most restrictive and incorporates the fewest parameters.

Versions of model 2) above are often used to account for a sigmoidal dose-response pattern.
The three-parameter Gompertz curve described here also accommodates sigmoidal patterns
and has connections with the Gompertz distribution, which underlies a model more commonly
encountered in survival analysis (e.g., [9]). Allowing the linear function (a+ pdose;) to vary
freely over the real line, note that the theoretical range of the response () based on the
exponential model is (0, «). This is in contrast to the range of (0, C) based on the three-
parameter logistic and Gompertz models, where the extra parameter C is a scaling constant
that is needed to allow for mean responses exceeding one. While the response will generally
be decreasing with dose when the objective is ICsq estimation, each of these models can be
used just as readily for estimating ECgq based on a response that increases with dose.

3.2 Defining ICsgq

We define ICsq as the dose concentration that results in a mean response that is 50% of that
achieved at the lowest (usually 0) dose, although this definition is typically adjusted when
fitting models that assume a minimal response greater than zero (see section 3.6). A general
process for determining a parametric expression for 1Cs is easily demonstrated via the
exponential model. First, use model 1) in the previous section to define the mean response at
dose 0, i.e., exp(c). Set the expression for u = g(dose) based on model 1), i.e., exp(a+ pdose),
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equal to exp(a)/2, which is half of the 0-dose mean. Solving for dose based on the resulting
equality yields the model-based ICsq. Following this process for each of the three models in
section 3.1 produces the following functional expressions for 1Csp:

1) Exponential: ICs0=h(B)= - In(2)/B
2) Three — parameter logistic: ICsp=h(w,8)=[In(2e?+1) — «]/B
3) Three parameter Gompertz: ICsp=h(«,8)={In[In(2)+e?] — a} /B (3.3)

3.3 Maximum likelihood computation and standard errors

A variety of statistical software packages can be used to fit nonlinear models of the type
discussed here, yielding numerically-derived maximum likelihood estimates (MLEs) and
corresponding standard errors based on inverting the estimated observed information matrix.
The MLEs for ICsq under the exponential, three-parameter logistic, and three-parameter
Gompertz models follow by inserting the MLEs for o and f into the expressions from section
3.2.

As ICxg is a function of one or more of the original model parameters in each case, we may
approximate the standard error of its MLE by means of the multivariate delta method (e.g.,
[9]). We express this conveniently in matrix terms by defining £ as the estimated variance-
covariance matrix of the MLE for the model parameters involved in the ICsq expression, and
by defining D as the vector of estimated first derivatives of the I1Csg function [h(.)] with respect
to those parameters. £, obtained directly from the statistical software, is equal to the scalar Var

@
(B) for the exponential model, and is the 2x2 matrix \Far( B ) in the case of the three-parameter
logistic and Gompertz models. The corresponding vectors D are obtained by inserting the
MLEs for o.and B into analytical expressions (D) for the vectors of first derivatives, which are

readily obtained (Appendix 1). The estimated standard error of the MLE for I1Csg is the square
root of its delta method-based variance estimate, which is given by Var (I/CR) =BZB'.

While the delta method is valid and generally produces equivalent results, a more transparent
approach to facilitate standard errors for the 1C5q estimates relies upon rewriting the models
for mean response (section 3.1) specifically in terms of 1Csg. The appeal of this strategy is that
the 1Cgq estimate and its standard error may then be obtained directly from commercial
statistical software, making such reparameterizations relatively common in similar dose-
response modeling applications [10,11]. To do so here, we use the formulae for 1Cgq in section
3.2 to express B in terms of 1Csq and, where applicable, a. Inserting the resulting expression
for B into the corresponding mean response functions yields the following equivalent models:

1) Exponential: wi=g(dose;)=el@~doseilIn)/1Cso}
2) Three — parameter logistic:  uj=g(dose;)=C/[ 1+elo+doseillnl2exp(a)+11-a}/ICso})

3) Three — parameter Gompertz: ui:g(dosei):Cexp{—e[

<r+d().s'ei[ln[ln(2)+cxp(n)]-n}/lC50]} (3.4)

Note that the scaling parameter C is the same as it was under the original parameterization in
(3.2). Asymptotically valid statistical inferences about ICsg via the ratio of the estimate to its
standard error can be based on Student’s t distribution with (n—p) degrees of freedom, where
p is the number of parameters used to characterize the mean response.

For all model fits illustrated in the Results section, we used SAS software package version 9.1
[12] for the calculation of MLEs and the estimated observed information matrix. Specifically,
we fit each model via the user-specified likelihood facility available in the SAS NLMIXED

procedure. Simple matrix manipulations to obtain delta-method based standard error estimates
to accompany MLEs for ICgg under the original model parameterizations were conducted using
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the SAS IML package [13]. As these yielded essentially identical standard errors to those
obtained directly based upon the alternative model formulations given in this section, standard
errors reported in section 4 are based on the reparameterized models as implemented via
NLMIXED.

3.4 Dose axis scaling

While no adjustment of the dose axis is necessary for the TR cell line data, a rescaling to spread
out the lower doses is required in order to promote stability in models fit to the BM data (Figure
1). For this purpose, we use the following transformation: dose;* = In(1000xdose; + 1), where
dose; is measured in uM. This yields a range of approximately 0 to 11 for dose;*, similar to the
uM scale for the TR data. The exponential, logistic, and Gompertz models were then fit to the
BM data with dosej* replacing dose; in the respective expressions for mean response given in
sections 3.1 and 3.3. The resulting MLEs for 1C5q were then transformed back to the uM scale
as follows:

____ exp (Iffo) -1

ICso=——F7—,

1000 (3.5

Where IE?O represents the estimated ICsg on the dose;* scale. Standard errors on the uM scale
were obtained via the following delta-method estimator, based on the preceding function of

IC5,:
— IC: SE(IC:
SE(IC50) e"p( 501)0>(<)0 ( 50)’ (3.6)

where SE (IE;()) is obtained as described in section 3.3 based on models fit on the dose;* scale.

3.5 Accounting for variance heterogeneity

As previously mentioned, Figure 1 suggests some indication of lower variance at higher doses
when examining the response data from both the TR and BM cell lines. To accommaodate such
tendencies, the residual variance (52) in model (3.1) can be modeled as a function of dose in
its own right, or simply assumed to be different for certain dose subgroups (e.g., high vs. low).
This process is completely analogous to a weighted least squares approach (e.g., [14]), the
purpose of which is generally to improve statistical efficiency. Though it adds little complexity
to the model fitting process itself, it can lead to numerical instability depending on the amount
of data available. We illustrate an analysis allowing for heterogeneous residual variance
according to high or low dose in section 4, and programs to implement this approach as well
as an exponential model for increasing or decreasing variability with dose are available from
the authors.

3.6 More flexible models

When a sufficient number of doses and observations per dose are available, more complex
models including extensions of the three-parameter curves introduced in section 3.3 may be
desirable. For example, a four-parameter logistic model is emphasized in recent software
developments devoted toward the estimation of sigmoidal dose-response patterns [15]. Here,
we consider such natural extensions of the scaled logistic and Gompertz models introduced
previously:
Four — parameter logistic:uij=g(dose;)=D+C/[ 1+e @+ dose]
Four — parameter Gompertz:ui=g(dose;)=D+C exp/[ —e(@*B dose)] (3.7)
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The additional parameter (D) in each model is an additive scaling parameter that allows the
curve to “bottom out” at a point distinct from 0. Given sufficient data, this can provide desirable
flexibility and potentially improved fit. Because 1Csq is most generally defined as the dose that
achieves a response halfway between the minimal theoretical response and the maximal (i.e.,
dose 0) response [e.g., between D and D + Cexp(—e?), respectively, based on the Gompertz
model in (3.7)], the parametric definitions of ICs for the four-parameter logistic and Gompertz
models remain identical to their counterparts under the corresponding three-parameter models
in (3.3). Thus, the models in (3.7) reparameterize in terms of 1Cgq exactly as in (3.4), except
with the addition of D to the mean response function.

Another type of extension that is sometimes warranted is to account for hormesis, which in the
case of ICgq estimation implies a mean response function that may be expected to increase over
low doses before settling into a pattern of decreasing response with dose. The following is a
four-parameter extension of the scaled logistic model in (3.2) that is an alternate form of a
model proposed by Brain and Cousens [16], versions of which were further studied by others
[10,17]:

Logistic model with hormesis:ui=g(dose;)=C(1+£e1%¢) /[ 1+¢l@+Pdosed) (3.8)

The parameter fin (3.8) allows for hormesis, and (3.8) becomes equivalent to the logistic model
in (3.2) when f = 0. Although (3.8) does not admit a closed-form expression for 1Cg, Similar
logic to that employed in section 3.2 reveals that it implies the following equation:

(1D 1+ PIC0]=2(1+e7)(1+fe'),

where ICs is defined as the dose yielding 50% of the 0-dose response. By solving the above
for B and inserting the resulting expression into (3.8), we obtain the following equivalent
parameterization directly in terms of 1Csq:

2(1+e~2)(1+fe'Cs0
a+dosei><ln( (1te l)if+ © )—e_”) /IC50]}

(3.9

When f = 0, equation (3.9) becomes equivalent to the corresponding expression for the three-
parameter logistic model given in equation (3.4).

While we do not study it here in detail, note that a Gompertz model potentially allowing for
hormesis, analogous to model (3.8), can be contemplated by multiplying the Gompertz curve
expression in (3.2) by the factor (1+fed°sei). Sample programs for conducting all analyses
described in Section 3 are available from the authors. As a specific example, Appendix 2
contains a straightforward program for fitting model (3.9) via the SAS NLMIXED procedure
[12].

3.7 Assessment of model fit

One obvious measure of model fit that can be used to select among candidate nonlinear models
is the average of the squared residuals, or mean squared error (MSE). For the models discussed
here with homogeneous variance, this is equivalent to the square of the MLE for the residual
standard deviation (s). In addition, one can conduct a classical statistical test for “lack of fit”
as discussed in many linear regression texts, which remains valid in the normal-error nonlinear
model setting with replicates [18]. This test compares the observed mean response at each dose
against the predicted mean based on the fitted model to determine whether the model provides
an adequate representation of the data. The test statistic is a ratio of lack-of-fit and pure error
mean squares and is distributed as a central F random variable with (c—p) and (n—c) degrees

of freedom under the null hypothesis of adequate fit, where c is the number of distinct doses

in the experiment, n is the total number of (dose, response) data pairs, and p is the number of
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parameters used to model the mean response. Details of this standard test are widely available
(e.g., [14]).

The observed data consist of 3 observations per dose in each case, for a total of 21 and 27
observations for the TR and BM cell lines, respectively. While these are relatively small
numbers, numerically stable estimates of 1Csq and its standard error were obtained for all
models discussed in section 3.1, with equivalent results based on the alternative
parameterizations in section 3.3.

Table 1 provides MLEs and corresponding standard errors for all model parameters, including
ICsp, based on fitting each of the three models in section 3.1 to the TR and BM cell line data.
Note that the IC5q estimate and its standard error are very similar across models for TR. In
contrast, estimates of 1Cgq and their standard errors for the BM data are quite different, with
those based on the two-parameter exponential model vastly distinct from those derived via the
three-parameter models. Table 1 also displays the MSEs for each model, which are all nearly
identical for the TR data but are very different for BM. In the latter case, the exponential model
clearly provides a poor fit, while the three-parameter logistic appears to fit slightly better than
the Gompertz model.

Figure 2 displays the raw data and the fitted curves for the BM data. Vertical lines are drawn
from the curves down to the estimated ICsg’s on the dosej* = In(1000xdose; + 1) axis scale. A
horizontal line is drawn at 50% of the estimated 0-dose response based on the three-parameter
logistic model, to illustrate its intersection with the vertical line that marks the corresponding
ICsq estimate. Note that Figure 2 agrees with Table 1 visually in the sense that the sigmoidal-
shaped curves provide a much better fit to the BM data than does the exponential. The
exponential model is woefully inadequate to describe the observed dose-response pattern for
BM, resulting in an unrealistically low 1Csgq estimate.

In what follows, we illustrate the various model extensions described in sections 3.5 and 3.6.
Although considerable improvements in fit are possible for both the TR and BM cell line data
relative to the three models summarized in Table 1, for simplicity of presentation we use the
BM data to illustrate most of these extensions.

Table 2 provides MLEs and standard errors for the BM data under the three-parameter logistic
model, after allowing a different residual variance for high as opposed to low doses.

Specifically, the residual variance a% applies to doses less than or equal to 1 uM (6.91 on the

dose;* scale) for BM, while ag applies to doses greater than 1 uM. The estimates and standard
errors in Table 2 can be compared to the corresponding ones in Table 1, and the fitted curves
are extremely similar. The effect of allowing for heterogeneity is to provide a slightly better
fit to the data for higher doses (> 1 uM), which receive greater weight in the analysis. However,
the resulting fit is not as good for lower doses, which is verifiable by comparing dose-specific
MSEs. In this case, the overall MSE (Table 2) for the scaled logistic heterogeneous variance
model is slightly higher than that for the homogeneous variance model (Table 1). There is a
modest change in the 1Csq estimate after allowing variance heterogeneity (2.43 uM vs. 2.97
uM), and its standard error is somewhat larger (0.89 uM vs. 0.70 uM). We conclude that in this
small data set there is no tangible advantage to generalizing the three-parameter logistic model
to allow residual variance heterogeneity, although such an investigation remains a worthwhile
part of a thorough 1Csq estimation process.

Table 3 provides the ML estimates based on fitting four-parameter logistic and Gompertz
models to the BM cell line data. Several interesting observations are apparent from this table.
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First, the estimates of D and C, the additive and multiplicative scaling parameters, respectively,
are identical based on the two models. The estimated ICsgs are almost identical (1.14 vs. 1.11
uM). Second, these 1C5 estimates are quite different from those based on the three-parameter
models summarized in Table 1, which were both near 3 uM. Third, the MSEs based on the
four-parameter models are markedly reduced (0.017 for both models), as compared to 0.031
and 0.042 for the three-parameter logistic and Gompertz models (Table 1). Finally, we note
that although the MLEs were numerically stable, standard error estimates accompanying the
four-parameter model fits were not. This reflects on the fact that these models are pushing the
level of complexity supported by the relatively small data set (only 3 observations at each of
the 9 doses).

In Figure 3, the fitted four-parameter logistic curve summarized in Table 3 is overlaid with the
raw data and the prior three-parameter curve (Table 1). The improved fit is apparent, due to
the addition of the lower limit parameter (D) which allows the curve to flatten out at a response
value of approximately 0.244 and represents the observed data at higher doses extremely well.
The steep descent of the four-parameter curve yields an I1Csg estimate of approximately 7 on
the dosej* = In(1000xdose; + 1) scale, as opposed to the value of 8 yielded by the three-
parameter model (these translate to approximately 1 uM and 3 uM, respectively, as summarized
in Tables 1 and 3).

Lack of fit tests suggest inadequacy in the two- and three-parameter models summarized in
Table 1, which can be alleviated via the four-parameter models. For example, the F statistic
(p-value) for lack of fit to the BM cell line data via the three-parameter logistic model was 2.77
(0.044), as compared to 0.26 (0.95) for the four-parameter logistic model. Despite this clear
improvement in fit, Figure 3 illustrates an important caution regarding dose-response modeling
when doses are relatively sparse and/or few data points are available at each dose. Specifically,
the four-parameter model arguably “overfits” the data in the sense that it assumes a great deal
about the response pattern between doses of roughly 7 and 9 on the plotted scale, where there
are no observed data (see Discussion).

Finally, Table 4 summarizes the fit of the four-parameter logistic model allowing for a hormetic
response [equations (3.8) and (3.9)] to the TR and BM cell line data. This model yields a sizable
improvement in MSE over the three-parameter logistic model (0.014 vs. 0.025 for TR; 0.022
vs. 0.031 for BM), and provides a more reasonable fit to the data (e.g., lack-of-fit F statistic =
2.66 for BM; p=0.42). Further, standard error estimates are stable, with those corresponding
to 1Cso markedly lower than those obtained via the three-parameter models in Table 1 (0.40
vs. 0.83 for TR; 0.39 vs. 0.70 for BM). In both cases, the estimated 1Csg is lower subsequent
to allowing for hormesis in the model. Figures 4 and 5 overlay the fitted curves (Table 4) with
the corresponding three-parameter logistic fits (Table 1). Note the improvement in fit for both
TR and BM. The improved fit for TR occurs despite the fact that the model does not predict
any increase in response at low doses, while there is a slight suggestion of hormesis in the BM
data.

5. Discussion

Our goal has been to present a relatively complete overview of statistical considerations
involved in I1Cx estimation for continuous responses, motivated by data on endothelial cell
lines with replicates over a series of doses. While we have chosen to focus upon three primary
underlying models (including a Gompertz model that is to our knowledge novel to this
purpose), the basic steps characterizing the process are generally not model-specific. We have
demonstrated the definition of ICsq based on a specified model for mean response, its
estimation with corresponding standard errors via maximum likelihood as implemented in
commercial software (with and without reparameterizing directly in terms of 1Csp), dose axis
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scaling, the accommodation of heterogeneous variance across doses, flexible model extensions,
and assessments of model fit.

Our illustrative motivating examples are indicative of the fact that in real-life studies, dose-
response data are not always voluminous or extremely well behaved. For instance, Figure 2
suggests that for the relatively sparse data from the BM cell line experiment, none of the two-
or three-parameter models provides a fully adequate fit. To demonstrate potential
improvements, we considered the four-parameter curves in section 3.6 [egn. (3.7)]. These
produce a sizeable improvement in fit to the observed data as discussed in section 4, although
the concern of overfitting is prominent and reliable standard error estimates are not supported
given the modest sample sizes. Without data at intervening doses, it is impossible to know
whether the more gradual descent postulated by the three-parameter model (Figure 3) is more
realistic in this case. Nevertheless it is clear that, when supported by the available data,
substantial improvements in fit are possible via more flexible models for mean response.

Given the instability of standard error estimates for the four-parameter models in Table 3, we
prefer in this application to emphasize the extension that allows for a hormetic response in

conjunction with the logistic model (Table 4; Figures 4 and 5). This model is arguably the best
of those considered for the BM and TR cell line data in light of model fit and stability of standard
error estimates. However, the tendency toward an increasing mean response over the first three
doses in the case of the BM cell line experiment may be spurious given the sparse data (only
three observations per dose); further studies would be required to firmly demonstrate hormesis.

Finally, a heterogeneous variance model allowing for less dispersion in responses at higher
doses was not tangibly beneficial for the analysis of the BM cell line data (Table 2). We expect
that the accommodation of heterogeneous variance will be more likely to demonstrate
efficiency gains for models that fit the data relatively well at each dose. For example, if the
four-parameter logistic and Gompertz models [eqgn. (3.7)] had been better supported by the
small amount of data available, acc ounting for heterogeneity in that context would be more
likely to improve precision. Simulation studies conducted for our own benefit (not summarized
here) confirm that ICsq and standard error estimation under the four-parameter models with
heterogeneous variance is indeed feasible given adequate numbers of doses and replicates at
each dose. We close by noting that the logical steps employed here in comparing models and
assessing their fit may be useful as a general guide for similar studies involving dose-response
data, although our specific results must be interpreted with some restraint in light of the limited
available sample size.
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APPENDIX 1: First Derivatives for Delta Method Variance Calculations

The analytic expressions (D) for the vectors of first derivatives discussed in section 3.3 with
respect to the three-parameter logistic and Gompertz models are as follows:
1) Exponential: D:(’)I1/0ﬁ:ln(2)/,32

1eti oh/da = —{In[2exp(a)+1]-a

2) Scaled logistic: D=( ﬁhéﬁk ),(’)h/(?a:m,()h/(?ﬁ:. {in] [;(1 )+1]-a}
3) Gompertz: D= (9h/(9(}’ (')h/(’)(y—Lm (’)h/(')ﬁ_w*hl[ In(2)+exp(a@)]
Pt “\ onh/op )’ ~ BlIn2)+exp(a)]’ == F

APPENDIX 2: Example of SAS NLMIXED Code for Fitting Model (3.9)

data tr;
input doseuM resp;
list; cards;

0 0.72

0 0.781
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PRCC NLM XED data=tr cov;
parms C = 1 f = 0.01 IC50 = 5 alph = -5 sigma = .3;
bounds sigma >= 0;
pi = 2*arsin(l);
mui = C*(1 + T*exp(doseuM))/(1 + exp(alph + doseuM*
log(2*(1+exp(—alph))*(1+F*exp(1C50))/(1+F) - exp(-alph))/1C50));

like = (1/(sqrt(2*pi*sigma**2)))*exp(-(1/(2*sigma**2))*(resp - mui)

loglik=log(like);
model resp ~ general(loglik);

run;
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Plots of raw response data for TR (first panel) and BM (second panel) endothelial cell lines,

using the desired dose scale units of uM.

Contemp Clin Trials. Author manuscript; available in PMC 2009 November 1.




1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duosnuely Joyiny vd-HIN

Lyles et al.

BM Cell Line Response

Page 13

20
1

Exponential

Gompertz

Scaled Logistic (3 parm.)
IC50 for Scaled Logistic

15

1.0

05

Dose*

Figure 2.
Raw data and fitted dose-response curves for BM data. Vertical lines are drawn from the curves
down to the estimated ICsq’s on the dose* = In(1000xdose + 1) axis scale.
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Raw data and fitted three- and four-parameter logistic dose-response curves for BM data.
Vertical lines are drawn from the curves down to the estimated ICsq’s on the dose* = In
(1000%dose + 1) axis scale.
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Raw data and fitted three-parameter and hormetic logistic dose-response curves for BM data.
Vertical lines are drawn from the curves down to the estimated ICgy’s on the dose* = In
(1000xdose + 1) axis scale.
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Figure 5.

Raw data and fitted three-parameter and hormetic logistic dose-response curves for TR data.
Vertical lines are drawn from the curves down to the estimated ICsy’s on the dose (in uM) axis
scale.
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