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ABSTRACT Oxidation of methionine residues in calmodulin (CaM) lowers the affinity for calcium and results in an inability to
activate target proteins fully. To evaluate the structural consequences of CaM oxidation, we used infrared difference spectroscopy
to identify oxidation-dependent effects on protein conformation and calcium liganding. Oxidation-induced changes include an
increase in hydration of a-helices, as indicated in the downshift of the amide I9 band of both apo-CaM and Ca21-CaM, and a modi-
fication of calcium liganding by carboxylate side chains, reflected in antisymmetric carboxylate band shifts. Changes in carboxylate
ligands are consistent with the model we propose: an Asp at position 1 of the EF-loop experiences diminished hydrogen bonding
with the polypeptide backbone, an Asp at position 3 forms a bidentate coordination of calcium, and an Asp at position 5 forms a
pseudobridging coordination with a calcium-bound water molecule. The bidentate coordination of calcium by conserved
glutamates is unaffected by oxidation. The observed changes in calcium ligation are discussed in terms of the placement of
methionine side chains relative to the calcium-binding sites, suggesting that varying sensitivities of binding sites to oxidation may
underlie the loss of CaM function upon oxidation.

INTRODUCTION

Calmodulin (CaM), the ubiquitous Ca21-binding regulatory

protein of eukaryotes, is the chief mediator of Ca21-dependent

signaling events in the cell (1,2). In response to rises in in-

tracellular Ca21 levels, CaM binds up to four Ca21 ions and

undergoes a marked conformational change, enabling the

protein to recognize and bind a multitude of target proteins

and to reorganize its distribution among Ca21-dependent

versus Ca21-independent binding partners (1–3). Among the

targets activated by CaM are metabolic enzymes, kinases and

phosphatases, ion channels, and transcription factors, which

places CaM in a pivotal ‘‘switch’’ role in such cellular pro-

cesses as inflammatory response, transcription, and synaptic

potentiation (2,3).

Calmodulin shares many structural features with other

small Ca21-binding proteins such as troponin C, calbindin,

and recoverin (4). Calmodulin contains four canonical EF-

hand Ca21 binding motifs, which exist as pairs in the

N-terminal and C-terminal lobes separated by a metastable

linker sequence (5–10). EF-hands are helix-loop-helix struc-

tures that were named using traditional helix nomenclature for

the protein albumin and represent a common binding motif for

calcium (86). Cooperative binding of four Ca21 ions to the

four EF-hands stabilizes an elongated CaM structure, in

which the hydrophobic target-binding surfaces are exposed

on either lobe (7). The utility of CaM as a signaling protein,

therefore, depends on its ability to structurally couple Ca21

binding with target protein recognition. Disrupting either of

these events, or their physical linkage, can compromise or

abolish CaM function.

Although pathological CaM mutations are rare (CaM has

an identical sequence in all vertebrates), covalent posttrans-

lational modifications of CaM are common, and modulate the

Ca21 binding affinity and extent of fractional activation of

target proteins (11–15). One such modification is the oxida-

tion of methionine residues by reactive oxygen species,

which generate methionine sulfoxide (MetSO) to form oxi-

dized CaM (CaMox). Oxidation of the critical Met residues,

Met144 and Met145, to MetSO greatly reduces the ability of

CaM to activate target proteins (11,15–20), and decreases the

protein’s affinity for Ca21 (21–24). Oxidation of CaM me-

thionines in vivo was suggested to serve as a means of

dampening Ca21 signaling in response to prolonged stress,

aging, or physical insults such as ionizing radiation

(11,25,26). In this respect, ionizing radiation generates large

amounts of reactive oxygen species in cells (27) and mo-

bilizes Ca21-dependent responses, of which CaM is an in-

tegral part (25,28). Oxidation of CaM methionines, therefore,

may provide a means of ‘‘cross-talk’’ between the oxidative

and cell-signaling effects of radiation exposure.

The structural mechanism underlying the effects of Met

oxidation on CaM function, however, remains uncertain. It

was suggested that Met oxidation results in global confor-

mational changes that disrupt the helical structure of apo-

CaM, interfering with the ability of CaMox to bind all four

Ca21 ions and activate target proteins (23,29). Alternatively,

oxidation may result in a more subtle conformational change

that allows complete Ca21 binding, but selectively alters

Ca21 liganding to diminish the binding affinity. This possi-
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bility is supported by the proximity of methionine residues to

Ca21 ligands within the CaM structure (Fig. 1). Ca21 binds to

an EF-hand domain, which consists of a helix-loop-helix

structure, where the majority of Ca21 coordination residues

are located in the EF-loop, and an additional residue is in the

subsequent N-terminal helix (Fig. 1 B). Within the 12-residue

binding sequence, highly conserved Asp and Glu side chains

coordinate Ca21 at Asp1, Asp3, Asp5 (or Asn5), and Glu12 (4).

All of these side chains coordinate Ca21 through a single

oxygen atom (i.e., monodentate coordination, Fig. 1 C), ex-

cept for Glu12, which binds in a bidentate mode. The coor-

dination sphere is completed by a backbone amide carbonyl at

position 7 and a water molecule stabilized by the side chain at

position 9. The CaM sequence shows that all Ca21-binding

sites have at least one Met residue in the C-terminal EF-hand

a-helix, whereas Ca21-binding sites 2 and 4 have two, with an

additional Met residue in the N-terminal helix (Fig. 1). A

disruption of the EF-hand helices by the presence of MetSO

has the potential to alter Ca21 liganding.

To investigate the structural effects of Met oxidation on the

conformation of CaM and how the liganding of Ca21 is al-

tered, we examined H2O2-oxidized and nonoxidized CaM in

solution, using Fourier-transform infrared (FTIR) spectros-

copy. An established technique for the determination of pro-

tein conformation (30–35), FTIR spectroscopy also exhibits

exquisite sensitivity and an ability to monitor the structure of

both the protein backbone and amino-acid side chains, mak-

ing it ideal for rapid and simultaneous measurements of pro-

tein conformation and ligand binding (30,36–38). Particularly

useful to our investigations is the demonstrated ability of

FTIR spectroscopy to discriminate the different coordination

modes (Fig. 1 C) of Glu or Asp side chains bound to metal ions

(39–44). Our spectroscopic data provide evidence that Met

oxidation increases solvent exposure of the a-helices of CaM,

and modifies the coordination of Ca21 by carboxylate side

chains in the EF-loop. These findings support the view that the

oxidation of CaM modifies its function primarily through

disruption of tertiary contacts, and suggests that the loss of

Ca21 affinity upon oxidation is a direct result of a perturbation

of Ca21 binding sites.

EXPERIMENTAL PROCEDURES

Materials

Deuterium oxide (D2O, 99.9 atom % D) was purchased from Aldrich

Chemical Co. (Milwaukee, WI). Ethylene glycol-bis(2-aminoethylether)-

N,N,N9,N9-tetraacetic acid (EGTA) was purchased from Fluka (Basel,

Switzerland). All other buffers and chemicals were from Sigma (St. Louis,

MO), were of reagent grade, and were used without additional purification.

Expression and purification of CaM

Recombinant vertebrate CaM was produced by expression in Escherichia
coli from the pET15b expression vector, as described previously (17). Pro-

tein was purified by hydrophobic interaction chromatography on a phenyl-

sepharose CL4B column, as described previously (45). Purity of all proteins

was at least 95%, as determined from polyacrylamide gel electrophoresis

(data not shown). Calmodulin was stored as a lyophilized powder at �20�C

until use. In all experiments, the concentration of CaM was determined

spectrophotometrically, using an extinction coefficient of 2980 M�1 cm�1 at

280 nm (calculated with the ProtParam tool on the ExPASy website, http://

ca.expasy.org/tools/).

Oxidation of CaM methionine residues

Unless otherwise stated, the oxidation of CaM was performed as described

previously (15). Briefly, lyophilized protein was dissolved to ;1 mg/mL in

oxidation buffer (50 mM Tris-HCl, 120 mM KCl, 1 mM MgCl2, 100 mM

CaCl2, pH 7.4), to which concentrated hydrogen peroxide (H2O2) was added

to a final concentration of 50 mM. Oxidation was allowed to proceed at room

temperature (23�C 6 1�C) for 24 h, and was stopped by passing the reaction

volume through a 5-mL HiTrap desalting column (GE Healthcare, Uppsala,

Sweden) containing Sephadex G25 and equilibrated with water. The void

FIGURE 1 The EF-hand coordination of Ca21 in CaM. (A) Structures of

the third (left) and fourth (right) calcium-binding sites of CaM (7) (Protein

Data Bank code 1cll), indicating the position and orientation of Met residues

with respect to calcium (green)-liganding groups. (B) Sequence alignment of

12 amino-acid Ca21 binding sequences (red) in EF-hands of vertebrate

CaM. Residues providing a calcium ligand are numbered and marked with a

dot. Ligands at positions 7 and 9 in each EF-loop coordinate calcium through

a backbone carbonyl or through a water molecule bound to the side chain,

respectively. All other residues coordinate calcium directly via the side

chain. Acidic residues (Asp or Glu), in which coordination occurs via the

side-chain carboxylate group, are shown in boldface. The proximity of

methionines (blue) is indicated, showing that all binding sites have at least

one Met residue in equivalent positions in one of the helices that flank the

EF-loop (helical sequences are underlined). (C) Nomenclature for carbox-

ylate side-chain coordination geometries.
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volume (containing CaMox) was immediately frozen and lyophilized, and

was used within 2 weeks of preparation. Under these reaction conditions,

complete oxidation of all nine methionine residues of CaM occurs (15,17), as

verified by observing the characteristic decrease in electrophoretic mobility

of CaMox in the presence of 10 mM CaCl2 (17,21) (data not shown). Infrared

spectra showed that one cycle of freezing-lyophilization did not appreciably

alter the secondary structure and conformation of CaMox (data not shown).

The oxidation of CaM was further verified by the presence of a very weak

band at 1035 cm�1 in transmission-mode spectra in D2O (data not shown);

sharp bands at 1030–1050 cm�1 in proteins were assigned to the S¼O stretch

vibration of MetSO (46).

Infrared spectroscopy

The CaM samples for FTIR spectroscopy were prepared by dissolving ly-

ophilized protein in buffer at ;10 mg/mL (;600 mM). Samples in D2O were

allowed to equilibrate at room temperature for at least 18 h before use, to

allow for complete exchange of amide protons. Unless specified otherwise,

all buffers contained 20 mM Tris-HCl (pH/pD 7.5) and 120 mM KCl. Buffers

for Ca21-CaM contained 10 mM CaCl2. Samples of Mg21-CaM contained

150 mM MgCl2 and no calcium salts. Before the addition of buffer, apo-CaM

and Mg21-CaM samples were depleted of metals as follows: protein was

diluted to ;2 mg/mL in a solution of 2 mM EGTA and 2 mM ethyl-

enediaminetetraacetic acid (EDTA), and allowed to sit for 3 h at room tem-

perature. The protein solution was then dialyzed exhaustively against MilliQ

deionized water for 24 h at 4�C, and then frozen, lyophilized, and recon-

stituted in the appropriate buffer. Immediately before use, samples were

passed through a sterile 0.2-mm polyvinylidene fluoride filter, or in some

cases, centrifuged for 5 min at 5000 3 g to remove insoluble aggregate.

Infrared spectra were recorded on a Bruker Vector 22 FTIR spectrometer

(Bruker Optics, Billerica, MA), equipped with a liquid N2-cooled photovol-

taic mercury-cadmium-telluride detector, and continuously purged with dry,

CO2-free air. Unless otherwise stated, solution spectra were obtained in at-

tenuated total reflectance (ATR) mode, using the BioATRcell II (Harrick

Scientific, Pleasantville, NY) with a 4-mm-diameter multireflection silicon

ATR crystal (sample volume, 7.5 mL). All spectra were obtained at room

temperature. To prevent cross-contamination, after each measurement, the

ATR crystal was washed with 10 sample volumes of 2 mM EDTA/2 mM

EGTA, followed by buffer. All spectra are the accumulated average of 256

scans at 2-cm�1 resolution, with a zero-filling factor of 2 (final spectra are 1

point per cm�1). Spectra were corrected for absorption of buffer and atmo-

spheric water vapor by manually subtracting blank spectra, to obtain a flat

baseline in the 1750–1850 cm�1 region. Because ATR spectra are known to

exhibit altered peak intensity (particularly at high frequency) relative to ab-

sorption spectra (47), ATR spectra were converted to ‘‘simulated’’ absor-

bance-mode spectra by normalizing, using a linear function in the Opus 4.0

software program (Bruker Optics). Comparison of spectra collected in this

manner with those obtained in transmission mode (using barium fluoride

windows) showed no difference in band positions, indicating that anomalous

dispersion effects were negligible in our experiments (data not shown).

Overlaid spectra were normalized to a constant peak area from 1800–1600

cm�1. Subtraction, normalization, and differentiation of spectra were per-

formed in Opus 4.0, and graphing and fine-structure enhancement (see below)

were performed using IgorPro 6 (WaveMetrics, Inc., Lake Oswego, OR).

Averaged data from at least 10 separate experiments are shown. Difference

spectra are the average of individual subtractions obtained from at least six

experiments. As a control, error spectra were determined by separating the

unaveraged difference spectra into two datasets, which were subtracted and

divided by
ffiffiffi

2
p

to compensate for differences in average and error spectral

counts (48).

Fine-structure enhancement of FTIR spectra

The principle of fine-structure enhancement (FSE), a method of identifying

component peaks of broad spectral bands, was described by Barth (49).

Briefly, the FSE of a spectrum S involves generating a smoothed version of S

(Ssm), and subtracting the smoothed spectrum from the original:

SFSE ¼ S�WSsm;

where SFSE is the final (fine structure-enhanced) spectrum, and W is a

‘‘weighting factor’’ (0 , W , 1). Difference spectra were smoothed over a

13-cm�1 window (25 data points), using a Savitsky-Golay algorithm, and the

smoothed spectra were subtracted from the original spectra using a weighting

factor W ¼ 0.985, according to Barth (49). To verify that this procedure

faithfully enhanced features present in the original absorbance spectra, the

FSE procedure was also performed on the absorbance spectra (Supplemen-

tary Material, Data S1). The resulting enhanced spectra were qualitatively

similar to those obtained using Fourier self-deconvolution, with a Lorentzian

line and a bandwidth of 16 cm�1 (data not shown).

RESULTS

Oxidation-induced changes in ATR-FTIR
absorbance spectra of CaM

Fourier-transform infrared spectroscopy provides a powerful

tool to study the effects of Met oxidation on the backbone

fold and Ca21-binding ligands of CaM. For comprehensive

analysis, spectra were acquired in both D2O and H2O buffers,

allowing greater visualization of amide and carboxylate

(COO�) stretch regions, which are resolved differently in the

two solvents. The amide regions (I, II, and III, as indicated in

Fig. 2, C and D) reflect peptide backbone conformations in

H2O, and these band positions are similar in D2O (Fig. 2, A
and B) with the exception of the amide II9 (deuterated amide

II) peak, which downshifts to reveal antisymmetric (Asy)

COO� stretching bands near 1580 cm�1 (Fig. 2, A and B).

Visualization of the Asy COO� bands in D2O provides in-

formation regarding Ca21 liganding by Asp and Glu car-

boxylate side chains, as complemented by absorbance bands

in the symmetric (Sy) COO� stretching region (;1404

cm�1) that are more readily observed in H2O (30,36,42). The

sensitivity of FTIR is apparent in the significant oxidation-

induced spectral changes that reflect the effects of oxidation

on the helical environment of CaM (Fig. 2, A–D, amide I/I9)

and Ca21 liganding (Fig. 2 A, Asy COO�).

Upon oxidation, the greatest perturbation occurs in the

Asy-COO� region of the Ca21-bound state (Fig. 2 A), where

the peak at 1581 cm�1 (CaM) downshifts to 1576 cm�1

(CaMox), suggesting alterations in the Asp and Glu coordi-

nation of Ca21 (42,50,51). In comparison, the Asy-COO�

band of apo-CaM (Fig. 2 B) experiences very little shift, and

retains intensity upon oxidation, indicating that the oxida-

tion-dependent shift of Asp/Glu side-chain absorbances is

specific for the Ca21-bound state. An effect by oxidation on

secondary structure can be seen in a downshift of the amide

I/I9 bands (;2 to 6 cm�1), yet overall, retention of the a-helical

protein conformation is indicated by the nominal shift in the

amide III band resolved in H2O (52–55). It is therefore evi-

dent that Met oxidation produces minimal changes in the

conformation of CaM, but marked changes in the signal of

side-chain carboxylate groups, suggesting an effect of oxi-

dation on Ca21-coordinating ligands.
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Identification of FTIR bands associated with
calcium liganding, using difference spectra

To aid in the interpretation of the oxidation effects observed

in Fig. 2, we examined the Ca21-CaM minus apo-CaM dif-

ference spectrum (Fig. 3 A), which reflects known structural

changes upon Ca21 binding to CaM. To reveal further

component peaks, FSE (49) and second-derivative tech-

niques (56) were used (Fig. 3, B–D). Importantly, the ma-

jority of peaks observed in the FSE difference spectrum

correspond to minima in second-derivative spectra, provid-

ing strong evidence that the FSE bands reflect resolved

FIGURE 2 The FTIR absorbance spectra of CaM (black) and CaMox (gray)

(10 mg/mL). Positions of major bands in D2O (A and B) and H2O (C and D)

and their maxima (cm�1) are indicated. Spectra were acquired in Tris buffer,

pH/pD 7.5, at room temperature. Sample buffer contained 10 mM CaCl2
(A and C), or samples were depleted of metals using EGTA/EDTA (B and D).

Spectra were buffer-subtracted and normalized to a constant amide I/I9 band

area, as described in Experimental Procedures. Tick marks on y axis represent

D0.2 absorbance units.

FIGURE 3 Identification of D2O absorbance bands associated with Ca21

ligands in nonoxidized CaM. (A) Ca21-CaM-minus-apo-CaM difference

spectrum (solid line) and error spectrum (averaged subtractions of spectra of

like samples, dotted line). Positive peaks reflect structures in Ca21-bound

state, and negative peaks reflect structures in apo-state. (B) Fine structure-

enhanced difference spectrum (solid) and error (dotted line), generated from

A, as described in Experimental Procedures. Resulting spectra were multi-

plied by a factor of 10. Band shifts assigned to Ca21-coordinating Asp and

Glu carboxylates are shaded in dark gray and light gray, respectively (see

also Table 1). (C) Second derivative of nonoxidized Ca21-CaM and (D) apo-

CaM absorbance spectra in Fig. 2, A and B. Resulting spectra were mul-

tiplied by a factor of 25. Minima correspond to positions of component

bands in original absorbance spectra. Conditions are as described in legend

of Fig. 2. Tick marks on y axis represent D0.05 absorbance units.
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structural features experiencing changes between the apo and

Ca21-bound states of CaM. Assignments of these bands are

summarized in Table 1.

The difference spectrum in Fig. 3 A shows a Ca21-activated

change in protein conformation in the amide I9 region and

liganding in the Asy-COO� region. The appearance of posi-

tive peaks reflects changes associated with Ca21 ligation,

whereas negative peaks reflect the apo structure. Increased

resolution of absorbance shifts are evident in both the FSE and

second-derivative spectra, indicating that the broad features in

Fig. 3 A are a compilation of overlapping bands (Fig. 3, B–D).

In the FSE spectra, the 1570(�)/1552(1) cm�1 band shift

upon Ca21 binding is characteristic of EF-hand proteins, and

reflects the formation of a bidentate Ca21 coordination by

Glu12 in the Ca21 binding sequence (41–44,57) (Fig. 3 B).

Carboxylate bands of Asp residues involved in calcium li-

ganding are resolved in the FSE difference spectra at

1595(1)/1587(�)/1579(1) cm�1 (Fig. 3 B). These same

features are well-resolved in the FSE absorbance spectra,

where a single broad feature centered at 1587 cm�1 in apo-

CaM is split into two peaks at 1593 cm�1 and 1580 cm�1 after

Ca21 activation (see Fig. S1 in Data S1). The large frequency

shifts after Ca21 activation, apparent in both the absorbance

and difference spectra, reflect the fact that 11 of 17 Asp res-

idues in CaM function as Ca21 ligands (Fig. 1).

The 1587-cm�1 band apparent in apo-CaM is characteristic

of Asp carboxylates in the ionic (nonliganded) state (36,42,

43,58). The shift of Asp bands to both higher-frequency and

lower-frequency positions upon calcium binding is indicative

of two different liganding environments. The higher-fre-

quency 1595(1) cm�1 peak is indicative of Asp carboxylates

in a monodentate or bridging ligand structure, whereas the

lower-frequency 1579(1) cm�1 band absorbs in a region

characteristic of a weak pseudobridging interaction involving

the Asp side chain, Ca21, and solvent (36,39–43). Although

they were not specifically commented on, these shifts can be

seen in previously reported FTIR spectra of CaM (42,51).

Examination of the relative orientation and surface accessi-

bility of the Asp side chains in the EF-hands of CaM supports

the assignments of the 1595(1) cm�1 and 1579(1) cm�1

peaks (4,59) (see Discussion).

The conserved Asp1 of the EF-loop has a lower surface

accessibility than Asp3 and Asp/Asn5, and therefore has a

greater probability of binding in either a monodentate or

bridging fashion (1595(1) cm�1), where the peptide back-

bone is the hydrogen-bonding partner (60). On the other hand,

Asp3 and Asp/Asn5 are in close proximity to the Ca21-bound

H2O (itself bound to the side chain at position 9), creating the

potential for pseudobridging interactions (1579(1) cm�1)

between Ca21 and this water molecule. In CaMox, similar

frequency shifts are observed in Ca21-minus-apo difference

spectra (see Fig. S2 in Data S1), although the absorbance

frequencies of the Ca21-bound Asp residues differ slightly

from those in the nonoxidized protein (see below). Band

shifts upon Ca21 binding also occur in the Sy-COO� region

in both CaM and CaMox (see Fig. S3 in Data S1). Although

we do not assign these shifts to specific binding geometries,

the appearance of multiple bands at 1451, 1428, and 1411

cm�1 upon Ca21 binding supports the presence of two pop-

ulations of Ca21-bound aspartates in Ca21-CaM.

Resolution of calcium-dependent increases in
helix stability

Ca21 binding also produces absorbance changes in the con-

formation-sensitive amide I9 band of CaM. Based on high-

resolution structures of CaM, it is known that Ca21 binding

‘‘opens’’ the target-binding pockets (located between the

central linker and the helices flanking the EF-hands) and

stabilizes helices in the linker region, elongating the molecule

(1). This conformational change is reflected in the gain of

intensity in the a-helical region of the amide I9 band and a

loss of intensity at lower frequencies (unordered and b-sheet

structures). In the FSE spectrum (Fig. 3 B), a marked band

shift upon Ca21 binding can be seen at 1654(�)/1647(1)

cm�1. The 1654(�) cm�1 peak is a ‘‘classic’’ a-helical ab-

sorbance frequency, whereas the 1647(1) cm�1 band was

previously assigned to highly solvent-exposed a-helices (61–

63). This band pair therefore reflects helices that are shielded

from solvent in the apo-state, and become exposed upon

Ca21 activation. Additional bands between 1691 cm�1 and

1661 cm�1 probably arise from the reorganization of turns

TABLE 1 Assignment of bands in fine structure-enhanced FTIR difference spectra

Turns/b

Bent/

disordered

helix a-helix

Solvated

a-helix b-sheet

a-helix/

b-sheet

interaction

Asy-COO�,

monodentate

Asp

Asy-COO�,

ionic Asp

Asy-COO�,

ionic Glu

Asy-COO�,

pseudobridging

Asp

Asy-COO�,

bidentate

Glu

Asy-COO�,

bidentate

Asp

Ca21-CaM 1673 1661 – 1647 1632 – 1707, 1593 – – 1580 1552 –

Apo-CaM 1685 1669 1654 1636 – – 1587 1570 – – –

Ca21-CaMox 1674 1660 – 1645 1631 1623 1743, 1602 – – 1570 1552 1549

Apo-CaMox 1683 1667 1653 – 1635 1622 – 1586 1571 – – –

Reference for

assignment

(31) (31,58) (31) (58,61,63) (31) (65–67) (40,41,43,78) (43,58,78) (43,58,78) (78) (41–43,78) (78)

Positions in cm�1 of component bands in amide I9 and Asy-COO� regions of fine structure-enhanced FTIR difference spectra. Assignments for Ca21-CaM

and apo-CaM were based, respectively, on positive and negative peaks in FSE difference spectra of Fig. 3 B and Fig. S2 B in Data S1, except for the

monodentate and pseudobridging Asp bands that were based on Fig. 4.
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and bends upon Ca21 binding, whereas the 1636(�)/1632(1)

cm�1 band pair suggests a reorientation of b-structure, which

is responsible for allosteric communication between neigh-

boring EF-hands of the protein (4,64). Consistent with this

assignment, a comparison of the structures of apo-CaM

and Ca21-CaM reveals that the strands of these b-sheets

become reoriented on Ca21 binding (5,7,9,10). The broad

1623(�) cm�1 band, reflecting apo-CaM, occurs at a posi-

tion consistent with previously described absorbances of

extended chains (65,66), side chains of Arg, Tyr, or Gln

residues (36), interactions between a-helices and b-sheets

(67), and the intermolecular b-sheet (33,65). It is intriguing

to note that evidence of interactions between the unstructured

N-terminus and uncoiled central linker of apo-CaM was

reported (68). The 1623(�) cm�1 band may reflect an in-

tramolecular interaction by this structure that is similar in

absorbance to a b-sheet/a-helix interaction. In addition, a

Ca21-induced gain in intensity at 1613 cm�1 could be as-

sociated with changes in Arg or Tyr hydrogen bonding

(36,69), suggesting that side chains also contribute to the

1623(�) cm�1 band.

CaMox maintains native fold, whereas Met
oxidation promotes helical destabilization

In the Ca21-bound state, oxidation of CaM produces shifts in

the amide I9 band, indicating that some degree of conforma-

tional change occurs upon Met oxidation (Fig. 4). The most

notable of these changes is the 1650(�)/1642(1) cm�1 band

pair, which reflects a shift of a-helical absorbance (Fig. 4 B).

This 8-cm�1 downshift is comparable to that observed upon

binding of Ca21 (Fig. 3 B), strongly suggesting that it reflects

an alteration in the hydration of a-helices. In fact, the oxidation

of methionine residues was shown by NMR spectroscopy (16)

and oxidative surface mapping (70) to induce disordering or

transient unwinding of a-helices in the neighborhood of the

oxidized residue, which would cause a downshift in the amide

I9 absorbance frequency (61–63). We therefore attribute this

band shift to the destabilization of helices induced by the oxi-

dation of methionines. The shift to 1642 cm�1 could also be

interpreted as a replacement of helices with an unordered

structure. However, the retention of the amide III maximum at

1308/1309 cm�1 upon oxidation (Fig. 2 C, see Fig. S3 in Data

S1) indicates that CaMox remains mostly helical, and that the

1650(�)/1642(1) cm�1 shift reflects a destabilization or

transient unfolding, rather than a loss, of helices. This obser-

vation is also consistent with previous data showing that Ca21

binding restores the native fold of CaMox (22,23). Other band

shifts in the 1700–1658 cm�1 range suggest subtle rearrange-

ments in turns and bends, whereas the 1635(�)/1629(1) cm�1

shift likely reflects a change in the b-sheets of CaM, possibly

suggesting a different conformational preference in the EF-

hands of CaMox.

In apo-CaM, the overall shift of the amide I9 region sug-

gests some loss of helical structure upon oxidation. However,

as in Ca21-CaM, apo-CaM retains an amide III maximum at

1322 cm�1, consistent with the retention of helical structure

(Fig. 2 D). In the FSE spectrum (Fig. 4 D), the band pair

1648(�)/1621(1) cm�1 may reflect the loss of a-helical

structure by oxidation-induced unraveling of the central

linker, coupled with a potential increase in interactions be-

tween the linker and the N-terminus, as proposed by Faga

et al. (68). The 1621(1) cm�1 band may also contain con-

tributions from the intermolecular b-sheet because of protein

FIGURE 4 Conformational effects of oxidative modifications of CaM

observed in D2O spectra: CaMox-minus-CaM difference spectrum of Ca21

activated CaM (A and B) and apo-CaM (C and D) in D2O. (B) Fine-structure

enhancement of A. Two populations of Asp residues are indicated by shading

(see Results and Discussion): monodentate (dark gray) and pseudobridging

and bidentate (light gray). (C) CaMox-minus-CaM difference spectrum of apo-

CaM. (D) Fine-structure enhancement of C. In all traces, difference spectra are

represented by solid lines, and error spectra by dotted lines. Fine-structure

enhancement was performed as described in Experimental Procedures, and

was multiplied by a factor of 25. Conditions are as described in legend of Fig. 2.

Tick marks on y axis represent D0.05 absorbance units.
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aggregation (22), although precautions were taken to remove

insoluble aggregate from samples before data collection (see

Experimental Procedures). Further band shifts at 1671(1)

cm�1 and 1658(1) cm�1 likely reflect a slight increase in

turns or bent/disordered helices, either globally or in the

metastable central linker helix of CaM (31,33,58).

Met oxidation alters calcium coordination
by carboxylate side chains

The absorbance spectrum of Ca21-CaMox differs most no-

ticeably from that of Ca21-CaM in the Asy-COO� stretching

region (Fig. 2 A). This observation suggests that Met oxida-

tion alters the coordination of Ca21 by CaMox, because the

Asy-COO� peak is sensitive to cation binding. To explore this

possibility, we examined CaMox-minus-CaM difference

spectra, in both the presence and absence of Ca21 (Fig. 4), to

investigate oxidation-dependent shifts in carboxylate absor-

bance. Comparison of the FSE spectra for Ca21-CaM and

apo-CaM shows an increased number of oxidation-induced

spectral perturbations in the Asy-COO� region of the more

rigid Ca21-bound form (Fig. 4, B and D). This finding sug-

gests that most of the change in Asy-COO� absorbance oc-

curring upon Met oxidation results from perturbations of

Ca21-liganding Asp/Glu residues. The Asy-COO� shifts

seen upon oxidation of apo-CaM, in contrast, likely reflect

changes in solvent exposure or intramolecular interactions

(e.g., salt bridging) of carboxylates not involved in Ca21

binding (see below).

The prominent shifts observed in the Asy-COO� region of

the Ca21-CaM FSE difference spectra (Fig. 4 B) reveal two

oxidation-induced band shifts at 1602(1)/1593(�)cm�1 and

1580(�)/1570(1) cm�1, which are consistent with changes

in the absorbance of Asp residues. The negative bands at

1593 cm�1 and 1580 cm�1 reflect contributions by non-

oxidized CaM, and correlate with bands assigned to the two

Ca21 liganding populations of Asp observed in the apo-CaM

spectrum (Fig. 3 B). Therefore, we propose that the 1580(�)/

1570(1) cm�1 downshift results from increased stabilization

of the weak pseudobridging interaction between Asp, Ca21,

and solvent water formed upon Ca21 binding. In addition, the

1602(1)/1593(�) cm�1 upshift correlates with a shift toward

a stronger or more ‘‘monodentate-like’’ interaction with

Ca21. This scenario likely results from a loss or weakening of

hydrogen bonding between the EF-loop Asp1 (1593(�)

cm�1) and the polypeptide backbone, leading to a ‘‘pure’’

monodentate coordination (1602(1) cm�1) of Ca21 by this

Asp residue. Indeed, the FTIR spectrum of CaM saturated

with Mg21, which is known to complex with EF-hands solely

through monodentate coordination by aspartates (4,71), has a

primary Asy-COO� peak at 1600 cm�1 (data not shown),

very close to the 1602-cm�1 peak observed in Fig. 4 B.

A critical ligand for maintaining Ca21 coordination is the

conserved glutamate residue at the twelfth position of the

Ca21 binding sequence (Fig. 1 B). In the Ca21-bound state,

this residue coordinates Ca21 in the bidentate mode

(4,5,7,8,10), and forms hydrogen bonds with the polypeptide

backbone at positions 2 and 9 of the EF-loop (72,73). These

interactions are believed to be responsible for both the Ca21

specificity of the EF-hands of CaM, and for the allosteric

coupling between Ca21 binding sites (4,71–74). According

to the data in Fig. 4, the oxidation of methionines in Ca21-

CaM has no apparent effect on the 1552-cm�1 peak associ-

ated with the Glu coordination of Ca21 (Fig. 4 B), indicating

that the bidentate coordination between Glu12 and Ca21 is

retained upon Met oxidation. This result is consistent with

previous measurements indicating that the oxidation of all

nine methionines to their sulfoxides does not affect the

stoichiometry of Ca21 binding (15). Moreover, the second-

derivative spectra of both nonoxidized (Fig. 3 C) and oxi-

dized (see Fig. S1 in Data S1) Ca21-CaM display a minimum

at 1554 cm�1 and 1552 cm�1, respectively, further indicating

that CaM oxidation does not appreciably disrupt the bidentate

coordination of Ca21 by Glu residues. However, there is an

absorbance increase at 1549(1) cm�1 that is consistent with

the bidentate coordination of Ca21 by a carboxylate. Mo-

lecular-dynamics simulations report that disruption of the

Asp1 interaction with the polypeptide backbone can result in

a bidentate ligation of Ca21 by Asp3 (75). Therefore, it is

likely that increased monodentate coordination by Asp1

(discussed above) results in the formation of bidentate co-

ordination by Asp3, as indicated by a band at 1549(1) cm�1.

In apo-CaM, Asy-COO� bands are also observed, indi-

cating that certain Asp residues undergo an oxidation-de-

pendent absorbance shift in the absence of Ca21 (Fig. 4 D).

The band pair at 1600(1)/1590(�) cm�1 suggests a shift in

Asp from ionic to bridging or monodentate absorbance fre-

quencies. A potential explanation for this band shift involves

the reported interaction between the N-terminal tail and the

destabilized central linker of apo-CaM (68). There is a po-

tential for further helix destabilization by oxidation of Met76,

which would likely alter interactions between Asp78 and

Asp80 (in the central linker of CaM) and the N-terminal

residues (68). The broad absorbance increase at 1574(1)

may reflect changes in the environment of Glu residues and

the possible formation of salt bridges that result in a broad-

ening of absorbance (76). Upon Ca21 binding, the retention

of native fold by Ca21-CaMox would eliminate N-terminal

interactions with the central linker. Therefore, we conclude

that the majority of Asy-COO� absorbance changes upon

Ca21-CaM oxidation are related to changes in Ca21 binding.

An additional 1743(1)/1707(�) cm�1 band pair was de-

tected that is unique to the difference spectrum of Ca21-CaM

(Fig. 4 A). These peaks are too broad to appear in the FSE

spectrum. Bands in this region, normally associated with the

C¼O stretch of protonated carboxyl groups, may occur in the

FTIR spectra of ionized carboxylates bound to metal ions in a

monodentate mode (36,77–79). We suggest that the 1707(�)

cm�1 band represents absorbance by the noncomplexed

carbonyl of Asp1 upon Ca21 binding, reflecting a double
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bond characteristic that is typical of highly asymmetric

monodentate carboxylates (78,79). This scenario can be vi-

sualized as the metal cation effectively acting as a proton,

pulling electron density from the coordinating oxygen to

make the noncomplexed carbonyl more ‘‘double bond-like’’(78).

In CaMox, a further increase in monodentate coordination

would again increase the double bond characteristic of the

noncoordinating carbonyl, resulting in an absorbance shift to

1743(1) cm�1. Therefore, the two band shifts at 1743(1)/

1707(�) cm�1 and 1602(1)/1593(�) cm�1, together with

the similarity of the 1602(1) cm�1 band to the Asy-COO�

band of Mg21-CaM (data not shown), lead us to propose that

Met oxidation results in the loss of hydrogen-bonding in-

teractions between the monodentate Asp1 of certain EF-loops

and the backbone, thereby strengthening the monodentate

coordination of Ca21 by Asp1. Further spectral shifts can be

seen in the symmetric COO� stretching band (see Fig. S4 in

Data S1). Although we do not assign shifts in this region to

specific coordination structures, the oxidation-dependent loss

of bands at 1452 cm�1 and 1432 cm�1 is consistent with our

assignment of band shifts in two different populations of Asp

residues.

In conclusion, band shifts in the Asy carboxylate-stretch-

ing band of Ca21-CaM indicate that methionine oxidation

modifies the mode of Ca21 coordination by carboxylate side

chains in the four EF-hand binding motifs of CaM (Fig. 2).

We propose that Asp residues are responsible for these re-

sults, because the critical bidentate ligation of Ca21 by the

conserved Glu12 of the Ca21 binding sequence remains intact

upon Met oxidation. These findings suggest that altered co-

ordination of Ca21 by Asp residues in the binding sites may

underlie the order-of-magnitude decrease in apparent Ca21

affinity upon oxidation of CaM methionines (15), and has the

potential to explain observed disruptions in Ca21 signaling

under conditions of oxidative stress (26,80,81). Changes in

the Asy-COO� band upon oxidation of Ca21-CaM (Fig. 4)

arise from shifts in two classes of carboxylate residues: we

suggest that Asp1 shifts to a higher frequency, whereas Asp3

and/or Asp5 shifts to a lower frequency (Fig. 5). We further

propose that these band shifts reflect an increase in mono-

dentate coordination by Asp1, which may lead to bidentate

Ca21 ligation by Asp3, and stabilization of a pseudobridging

interaction by Asp5.

DISCUSSION

Summary

Using FTIR spectroscopy, we resolved spectral shifts in the

amide I9 and Asy-COO� stretching bands upon oxidation

of methionine in CaM, and assigned these absorbance shifts

to 1), an increased solvent exposure of a-helices in CaMox;

and 2), an oxidation-induced change in the coordination of

Ca21 by carboxylate side chains in the EF-hands of CaM. We

hypothesize that the carboxylate side chains reflect two

populations of Ca21-liganding Asp residues affected by CaM

oxidation: one that shifts to a lower frequency (i.e., from

1580 cm�1 to 1570 cm�1 and 1549 cm�1), and one that shifts

to a higher frequency (i.e., from 1593 cm�1 to 1602 cm�1;

Fig. 4 B). In comparison, methionine oxidation does not af-

fect the band at 1552 cm�1 associated with Ca21-bound

glutamates. This latter result is consistent with retention of

the bidentate coordination of Ca21 by the conserved Glu12 in

the Ca21 binding sequence. The oxidation-induced changes

in Asy-COO� absorbance (Fig. 2) are consistent with a

change in the mode of Ca21 coordination by Asp ligands, i.e.,

Asp1 and Asp3/Asp5 of the EF-loop (Fig. 1). The FTIR

spectra also showed increased levels of solvent exposure of

a-helical amide groups upon Met oxidation, evident as a

spectral shift from 1650 cm�1 to 1642 cm�1 in amide I9

difference spectra after FSE (Fig. 4 B). Thus, whereas me-

thionine oxidation results in significant spectral changes in

the absorbance bands associated with carboxylates involved

in Ca21 liganding for Ca21-CaM, there are also important

spectral changes in the amide I9 band, associated with de-

stabilization of a-helical folds. Taken together, these ob-

FIGURE 5 Oxidation-induced destabilization of helices

in EF-hand by oxidized methionine (not shown) results in

altered conformation of EF-loop that affects Ca21 ligand-

ing. Alterations in Ca21 liganding involve modifications in

hydrogen bonding (dashed lines) and repositioning of a

water molecule (red arrow) that displaces hydrogen-bond-

ing interaction between Asn9 and the chelating water

ligand. Changes in binding involve diminished hydrogen

bonding between Asp1 and the backbone (CaMox, thin

dashed line), apparent as an upshift in monodentate Asy

COO� absorbance from 1593(�) cm�1 to 1602(1) cm�1

(Fig. 4 B), which may result from destabilization of the EF-

loop (not shown). This also permits the formation of a

bidentate ligation of Ca21 by Asp3 (CaMox, yellow line),

and a pseudobridging interaction between the available

noncoordinating oxygen atom of Asp5 (CaMox, thick dashed line), apparent as a downshift from 1580(�) cm�1 to 1549(1) cm�1 and 1580(�) cm�1 to

1570(1) cm�1, respectively (Fig. 4 B). Model depicts Ca21 binding site IV (1exr.pdb) (59), with generic numbering of Ca21 ligands (Fig. 1) before (CaM) and

after (CaMox) Met oxidation.
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servations suggest that changes in the mode of Ca21 coor-

dination in CaMox can be explained by an altered confor-

mation of the loop region of the EF-hand, caused by

oxidation-induced destabilization of the helices flanking the

Ca21 binding sites.

Conformational changes of CaM upon
methionine oxidation

The finding that oxidation of CaM increases the solvent ex-

posure of a-helices corroborates previous results that also

found Met oxidation to decrease the dynamic stability of

helices and to disrupt certain tertiary-structure contacts in

native CaM (16,18,19,22,24). However, these data are at

odds with early measurements suggesting that the oxidation

of CaM results in global unfolding, with an extensive loss of

secondary structure (23). The increase in helix solvation can

be interpreted in two compatible ways. In one sense, it may

reflect an ‘‘opening’’ of the structure of CaM to expose

otherwise solvent-shielded regions of the helix, such as that

occurring upon Ca21 binding (Fig. 3 B). This scenario is

possible, but is considered unlikely, given that the a-helices

of Ca21-CaM are already highly solvent-exposed in the wild-

type protein before Met oxidation (5,7,51); any additional

structural opening upon Met oxidation would likely be in-

significant, compared with that caused by Ca21 binding.

Alternately, the increased solvation apparent in the amide I9

band may reflect a partial unwinding or fraying of a-helices

by the presence of MetSO, a known helix-destabilizer

(16,22,82). In this case, residues in a partially unwound

portion of the a-helix would sample conformations similar to

those of a classic helix, but with intrahelical hydrogen bonds

at distorted angles and/or partially replaced by hydrogen

bonds with solvent (61,62), resulting in a downshifted amide

I/I9 absorbance frequency. This interpretation of the shift in

the amide I9 helix signal agrees with the observed line-

broadening in NMR spectra (16) and the observed loss of

thermal stability of helices in CaM upon Met oxidation

(22,24). Furthermore, a recent study using oxidative surface

mapping (70) revealed that in apo-CaM, the reactivity of

Met145 toward the hydroxyl radical increased after oxidation

of Met144, suggesting that local disordering of the polypep-

tide backbone occurs when Met is oxidized. Together, these

findings strongly suggest that methionine oxidation induces a

destabilization, but not an unfolding per se, of CaM helices in

the neighborhood of Met residues.

Oxidation modifies the coordination of calcium
by carboxylate side chains

The finding that Met oxidation alters the coordination of

Ca21 by EF-hand carboxylate side chains suggests a struc-

tural basis for the observed order-of-magnitude decrease in

apparent Ca21 affinity after the oxidation of CaM (15). This

effect can be observed after the oxidation of as few as two

vicinal C-terminal methionines adjacent to the fourth (high-

est-affinity) Ca21 binding site of CaM (15). Our results in-

dicate that the oxidation of methionines in CaM results in a

modification of hydrogen-bond interactions of carboxylate

ligands that likely involve Asp1, which was previously as-

sociated with a loss of Ca21 affinity. In troponin C, which is

structurally homologous to CaM, diminished Ca21 affinity is

evident with the disruption of interactions between Asp1 and

the EF-loop backbone (60). Molecular-dynamics simulations

of an equivalent perturbation of Asp1 interactions in CaM

revealed a rearrangement of Asp3 coordination of Ca21 from

a monodentate to a bidentate mode, resulting in an additional

Ca21 ligand (75). This leads us to suggest that oxidation-

induced destabilization of helices results in alterations in Asp

coordination of Ca21, while maintaining a stable Glu bi-

dentate coordination. Although all four Ca21-binding sites in

CaM are geometrically similar (Fig. 1), the sensitivity of

Ca21 binding to the oxidation of CaM may, in part, be at-

tributable to the bracketing of the EF-loop in site IV by three

methionine side chains, including the functionally sensitive

Met144/Met145 (Fig. 1). Using a recent high-resolution crystal

structure of Ca21-CaM (59), it is possible to construct a

model of oxidation-induced perturbations in Ca21 liganding,

suggesting conformational rearrangements consistent with

the observed spectral shifts. Although the model reflects the

crystal structure of Ca21 binding site IV (Fig. 5), we use

generic numbering (1 through 12) for discussion of the Ca21

ligands.

Two water molecules appear in the crystal structure: one

that acts as a Ca21 ligand, and is held in place by a hydrogen

bond to the side chain –NH2 of Asn9; and a second molecule

that is more distal from the cation, but that has the potential to

hydrogen-bond to the Asn9 side-chain amide group (Fig. 5,

CaM). The Ca21 liganding water associated with Asn9 is also

within hydrogen-bonding distance of the noncoordinating

oxygen atoms of the Asp3 and Asp5 carboxylates (Fig. 5).

Our data indicate that oxidation results in a destabilization of

Met-containing helices proximal to the Ca21 binding region,

altering Ca21 liganding. We propose that upon Met oxida-

tion, the side-chain interaction between Asp1 and the protein

backbone is weakened, which results in the bidentate coor-

dination of Ca21 by Asp3 (75) and the formation of a stable

pseudobridging interaction between Asp5, Ca21, and the li-

ganding water, permitting Asp9 to shift its interaction to the

proximal water molecule (Fig. 5). This change in liganding

would explain the shifts in absorbance bands from 1593

cm�1 to 1602 cm�1, and from 1580 cm�1 to 1570 cm�1, and

the appearance of a band at 1549 cm�1, which are associated

with the monodentate, pseudobridging, and bidentate modes

of Ca21 coordination, respectively (Table 1). Spectral data

also indicate that the bidentate coordination of Ca21 by Glu12

is conserved, because there are no observed shifts in the

1552-cm�1 band associated with Glu coordination (Table 1).

Intriguingly, this change in coordination structure may be

limited to the Asp residues of the EF-hands. The conserved
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Glu residue at position 12 of the EF-hand Ca21 binding

sequence (Fig. 1 B) is known to be essential for Ca21 se-

lectivity and proper conformational change upon Ca21 co-

ordination in CaM and other EF-hand proteins (4). The fact

that the bidentate coordination of Ca21 by Glu12 is not dis-

rupted by Met oxidation is consistent with the ability of

CaMox to retain its ability to bind (but not fully activate)

targets in a Ca21-sensitive manner (15,19,80). Moreover, the

idea that the Asp, but not Glu, coordination of Ca21 is altered

by Met oxidation lends support to the hypothesis that Met

oxidation disrupts CaM activation by interfering with the

ordered sequence of cation binding and conformational

change events necessary for proper target activation (17–

19,83,84). In all EF-hands, Ca21 binding is thought to occur

first at the ligands at the N-terminus of the EF-loop (Asp

residues in this case), followed by a ‘‘wrapping’’ of the EF-

loop around the ion, terminating in the formation of bidentate

coordination by Glu12 (72,85). A difference in the preferred

coordination structure by Asp residues (i.e., by the N-ter-

minal part of the EF-hand) may slow or otherwise interfere

with the early stages of this process, altering the proper se-

quence of binding and conformational changes needed for

proper CaM activation. Consistent with this hypothesis,

previous measurements found that the oxidation of methio-

nines in CaM disrupts the cooperativity between Ca21

binding sites (15).

Our model of selective modulation of Ca21 binding by

Asp residues provides a conceptually interesting means of

modulating the Ca21 activation of sensor proteins such as

CaM, because the oxidation of Met is reversible through the

action of methionine sulfoxide reductases, and is known to

regulate Ca21 signaling under conditions of oxidative stress

(11,26,80). It is known that a loss of Ca21 coordination by the

critical Glu residue effectively abolishes the function of EF-

hand proteins (4,73). By allowing this interaction to be re-

tained, Met oxidation of CaM can modulate the function of

the protein in a subtle manner, by affecting its affinity for

Ca21 and its relative efficacy at activating targets. The fact

that the subtle conformational and cation-binding alterations

induced by Met oxidation do not completely abolish the

function of CaM, or cause a catastrophic unfolding or ag-

gregation, may explain why this regulatory modification of

CaM appears to have persisted through evolution (11) and

may be harnessed in some organisms to blunt Ca21 signaling

under conditions of oxidative stress (26). Particularly inter-

esting in this regard may be the role of CaMox in the cellular

response to ionizing radiation, which is known both to

stimulate Ca21 signaling and to generate reactive oxygen/

nitrogen species (25,27,28); experiments aimed at defining

this role are underway in our laboratory. The observation that

the oxidative modification of CaM can affect its metal-

binding propensity, furthermore, suggests that fine-tuning

cation coordination in a metal-binding protein may be a

particularly useful way to modulate its function. Sensitivity

to such modifications may be a common feature of metal-

binding proteins subject to posttranslational regulation in

vivo.

CONCLUSIONS AND FUTURE DIRECTIONS

We demonstrated that the oxidation of methionines in CaM

selectively alters the coordination of the Ca21 ion by the

carboxylate side chains in the EF-hand binding clefts. We

propose that oxidation differentially modifies Ca21 liganding

by two populations of Asp residues, acting to weaken the

hydrogen-bond interaction between Asp1 and the EF-loop,

and to alter selectively the mode of binding interactions be-

tween Asp3 and Asp5 and Ca21. The overall result is to di-

minish effectively the Ca21 binding affinity of CaMox. These

findings support the role of destabilized structure and the

disruption of tertiary contacts in the inactivation of CaM by

oxidation, and further suggest that altered Ca21 liganding

may play a role in the nonproductive association of CaM with

a range of target proteins, resulting in large reductions in their

function. Future measurements should be directed at re-

solving residue-specific changes in binding interactions at

individual Ca21 binding sites in CaM, and their effects on

both cooperative calcium binding and the mechanism of

target-protein association with CaMox.
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