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Abstract
Ovarian carcinoma arises from the ovarian surface epithelium, which undergoes phenotypic changes characteristic
of müllerian epithelium during the first stages of tumorigenesis. The variant isoform of the hepatocyte nuclear
factor 1 (vHNF1) is a transcription factor involved in the development of tissues derived from the müllerian duct.
Here, we show that vHNF1 knockdown in two ovarian carcinoma cell lines, SKOV3 and IGROV1, leads to reduced
E-cadherin (E-cadh) expression and decreased proliferation rate. Accordingly, SKOV3 cells ectopically expressing a
dominant-negative (DN) vHNF1 mutant undergo an epithelial-mesenchymal–like transition, acquiring a spindle-like
morphology, loss of E-cadh, and disrupted cell-cell contacts. Gene expression profiling of DNvHNF1 cells on the
basis of a newly compiled list of epithelial-mesenchymal transition–related genes revealed a correlation between
vHNF1 loss-of-function and acquisition of the mesenchymal phenotype. Indeed, phenotypic changes were asso-
ciated with increased Slug transcription and functionality. Accordingly, vHNF1-transfected immortalized ovarian
surface epithelial cells showed down-regulation of Snail and Slug transcripts. In DNvHNF1-transfected SKOV3
cells, growth rate decreased, and in vHNF1-transfected immortalized ovarian surface epithelial cells, growth rate
increased. By immunohistochemistry, we found a strong association of vHNF1 with E-cadh in clear cell and in a
subset of serous carcinomas, data that could potentially contribute in distinguishing different types of ovarian tu-
mors. Our results may help in understanding the biology of ovarian carcinoma, identifying early detection markers,
and opening potential avenues for therapeutic intervention.
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Introduction
The pathophysiology of epithelial ovarian cancers (EOCs) remains
poorly defined. One widely supported hypothesis is that they are
derived from inclusion cysts. These cysts originate from the ovarian
surface epithelium (OSE), which is the monolayer of cells covering
the ovaries [1,2]. Ovarian surface epithelium cells appear as a simple
epithelium with some characteristics typical of mesenchymal cells.
Ovarian surface epithelium cells remain plastic in short-term culture,
expressing vimentin together with cytokeratins 8 and 18. Conversely,
invaginations and inclusion cysts have properties characteristic of
müllerian epithelium, including expression of the specific epithelial
marker E-cadherin (cadh) at the cell-cell junctions. After transformation,



1482 Role of vHNF1 in Ovarian Cell Differentiation Tomassetti et al. Neoplasia Vol. 10, No. 12, 2008
EOC cells can coexpress E-cadh and the mesenchymal marker vimentin
as well as epithelial cytokeratins [3]. Unlike the tumor suppressor func-
tion of E-cadh in breast, prostate, and colon carcinomas [4,5], expression
of E-cadh in ovarian epithelium seems to be associated with the devel-
opment of EOCs [6].Nonetheless, themechanism of E-cadh–associated
malignant OSE transformation is controversial [7,8]. In some advanced-
stage EOCs, the so-called mesenchymal-epithelial transition (MET),
which occurs during the first stages of transformation, is followed
by an epithelial-mesenchymal transition (EMT) with loss of E-cadh
expression [9].

Epithelial-mesenchymal transition is required for morphogenesis
during embryonic development but has also been implicated in the
acquisition of invasiveness by end-stage tumors [10–12]. This con-
version results in loss of expression of adhesion molecules, such as E-
cadh, ZO-1, and occludin, with consequent loss of cell-cell contacts
and extensive remodeling of the cytoskeleton. Loss of E-cadh during
development and cancer progression in tumors, other than EOCs, is
mainly caused by transcriptional repression resulting from interaction
of regulators with specific E-boxes in the proximal promoter of Cdh1,
the gene encoding E-cadh [13]. Most prominent in this respect are
the Snail-related zinc-finger transcription factors Snail and Slug.

The variant isoform of the transcription factor HNF-1 (vHNF1)
activates transcription on homodimerization or heterodimerization
with its companion protein HNF1α [14]. A role for HNF1 proteins
in tumors has not yet been defined. For HNF1α, a biallelic inacti-
vation of the relevant gene has been found in 50% of human liver
adenomas [15], and somatic mutations were observed in 11% of en-
dometrial carcinomas but not in breast and ovarian carcinomas [16].
Regarding vHNF1, the complete inactivation by germ line mutation
of TCF2, the gene encoding for vHNF1, seemed to be associated to
renal cell carcinoma [17] hypothesizing a tumor suppressor function.
More recently, two variants within TCF2 have been found to be as-
sociated to prostate cancer risk [18]. vHNF1 is involved in the de-
velopment of tissues organized in tubules, such as the pancreatic
exocrine ducts and the kidney tubules [19,20], and in müllerian
duct–derived tissues [21]. The transcription of the FR gene, which
encodes the folate receptor (FR) α, is strongly activated in EOCs. We
recently showed that the FR gene is regulated by vHNF1 [22], which
is expressed in ovarian tumor specimens but not in OSE cells or in
specimens obtained from tumors of other oncotypes.

Here, we addressed the potential role of vHNF1 in the MET-like
taking place during ovarian cell transformation. We used in vitro ap-
proaches to negatively or positively affect vHNF1 expression and/or
functionality in ovarian normal and transformed cells. We found that
vHNF1 expression and functionality are directly correlated with epi-
thelial differentiation, positively associated with growth potential,
and inversely correlated with expression and functionality of E-box–
binding transcriptional repressors. Immunohistochemical analysis of
normal and transformed ovarian tissues showed that vHNF1 is not ex-
pressed in OSE cells but is expressed in 33% of E-cadh–expressing
EOCs independently of tumor grading. The overall results demon-
strate that vHNF1 is a new player in the epithelial differentiation of
a subset of normal and transformed ovary cells.

Materials and Methods

Cell Culture
The ovarian carcinoma cell lines IGROV1 and SKOV3 (American

Type Culture Collection, Manassas,VA) were maintained in RPMI
1640 medium (Sigma, St. Louis, MO) supplemented with 10% FCS
(Sigma) and 2 mM L-glutamine. hTERT-IOSE (hereafter desig-
nated IOSE), obtained as described [23], were maintained in 199-
MCDB105 medium (Sigma) supplemented with 15% FCS, 2 mmol
L-glutamine, 200 μg/ml G418, and 50 μg/ml hygromycin.

Reagents and Antibodies
Triton X-100 (TX-100) and MES were from Sigma-Aldrich Fine

Chemicals (St. Louis, MO); geneticin sulfate (G418) was from Gibco
BRL (Paisley, Scotland). The following primary antibodies (Abs) were
used at the dilution recommended by the manufacturer: anti-vHNF1
(goat), anti-HNF1 (rabbit), anti–ZO-1, and anti–occludin 1 (Santa
Cruz Biotechnology, Santa Cruz, CA); anti–E-cadh mAb (mouse;
Transduction Laboratories, BD Biosciences Pharmingen, Palo Alto,
CA); anti-S100A4 (rabbit; DakoCytomation, Glostrup, Denmark).
Horseradish peroxidase–labeled secondary Abs were from Amersham
Bioscience–GE Healthcare (Piscataway, NJ). Secondary fluorochrome–
conjugated Alexa Fluor 488 (green) was from Molecular Probes
(Eugene, OR).

Small interfering RNA Treatment
IGROV1 and SKOV3 cells (5 × 105) were seeded in 24-well

plates and transfected 24 hours later with 80 pmol/ml of small inter-
fering RNA (siRNA) duplex against vHNF1 mRNA (SmartPool;
Dharmacon, Lafayette, CO) or Luciferase siRNA as control (Quiagen-
Xeragon, Germantown, MD). siRNA transfection was performed
by using Lipofectamine 2000 (Invitrogen, Paisley, UK) according to
the manufacturer’s protocol. Cells were harvested 48 hours later and
analyzed for RNA and protein expression by quantitative reverse
transcription–polymerase chain reaction (RT-PCR) and Western blot
analysis, respectively.

Construction of DNvHNF1 and vHNF1 Expression Vectors
vHNF1 cDNA was obtained from the vector RSV-LFB3 (kindly

provided byC. Toniatti, IRBM,Merck Research Laboratories, Pomezia,
Italy). Dominant-negative vHNF1 (DNvHNF1; nt 1-729 of the open
reading frame) was obtained by standard PCR with sense and antisense
primers containing HindIII and XbaI restriction sites, respectively
(sense, 5′-AGGAGGTCTAGAATGGTGTCCAAGCTCACG-3′; anti-
sense, 5′-AAGGGAAGCTTTCACCAGGCTTGTAGAGG-3′). The
purified fragment was inserted into the HindIII and XbaI sites of the
expression vector pcDNAIneo (Invitrogen). For the expression vector
encoding vHNF1, the vHNF1 open reading frame was inserted into
the HindIII and XbaI restriction sites of the pcDNA3.1/Hygro vector
(Invitrogen). Before transfection, both vHNF1-pcDNA3.1/Hygro and
DNvHNF1-pcDNAIneo were verified by sequencing.

Quantitative Real-time RT-PCR
Total RNA was isolated with the RNeasy Total RNA kit (Quiagen,

Hilden, Germany) according to the manufacturer’s instructions. One
microgram of total RNA was reverse-transcribed using the ABI High
Capacity cDNA Archiving Kit (Applied Biosystem, Foster City, CA).
Three replicates were run for each gene in each sample in a 96-well
format plate. The probes and primer sets were the following Assays
on Demand: Ref Hs00170423_m1 for Cdh1, Hs00195591_m1 for
Snail, Hs00161904_m1 for Slug, HS00170182_mi for PLAU, and
Hs00277509_m1 for FN (Applied Biosystems). GADPHmRNA levels
were used as a control for the RNA extraction and RT experiments.
Data were analyzed with the Sequence Detector v1.9 software. Relative
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gene expression for each sample was determined using the formula
2(−ΔC t) reflecting target gene expression normalized to GAPDH levels.

Cell Solubilization, Fractionation, and Western Blot Analysis
For preparation of total cell lysates, cells were washed with ice-cold

PBS and lysed in SDS sample buffer (62.5 mM Tris-HCl pH 6.8,
2.3% SDS, 10% glycerol, 5% β-mercaptoethanol, 0.005% bromo-
phenol blue). Proteins were separated on precast 4% to 12% SDS-
PAGE (Invitrogen) and transferred onto nitrocellulose membranes
(Amersham Bioscience–GE Healthcare) as described [24]. Visualiza-
tion was by the enhanced chemiluminescence method (Amersham
Biosciences) using a Chemidocxrs and the Quantity One software
(Bio-Rad, Hercules, CA). For cellular fractionation, confluent cells were
treated as described [24]. Protein concentration of the fractions was de-
termined by the BCA protein reagent assay (Pierce, Rockford, IL).

Cell Transfection
IGROV1 and SKOV3 cells were transfected with the DNvHNF1

construct essentially as described [25] using Lipofectamine 2000 ac-
cording to the manufacturer’s suggestions (Invitrogen). Forty-eight
hours after transfection, fresh medium containing 400 μg/ml G418
(Gibco BRL) was added to the cell culture. DNvHNF1-positive clones
were identified by RT-PCR using oligonucleotides that amplify only
DNvHNF1 but not wild type (wt) vHNF1 (data not shown). Stable
clones were tested by Western blot analysis on total cell lysates using
rabbit anti-HNF1 Ab, which recognized both wt and DNvHNF1 pro-
teins (Santa Cruz Biotechnology).

Immunof luorescence
Immunofluorescence was performed essentially as described [24],

2 × 104 cells seeded on glass coverslips were grown for 48 hours,
washed with cold PBS, and fixed with cold methanol for 10 minutes
before immunoreaction. Samples were mounted with Mowiol solu-
tion and examined with an Eclipse TE2000-S microscope with a 40×
PanFluor objective (Nikon, Melville, NY). Images were acquired
with ACT-1 software (Nikon) at a resolution of 2250 × 1800 pixels.
All procedures were carried out at room temperature.

Electrophoretic Mobility Shift Assay
Preparation of nuclear extracts (NEs) and electrophoretic mobility

shift assay were carried out essentially as described [22].

Microarray Analysis
Gene expression in DNvHNF1 and mock transfectants was com-

pared in three different RNA preparations pooled for each cell line.
Total RNA from transfected SKOV3 cultures was extracted, further
purified on RNeasy Mini Kit (Qiagen, Valencia, CA) according to the
manufacturer’s protocols, and treated with DNase (RNase-free DNase
Set; Qiagen). Targets were obtained by synthesizing cDNA from 15 μg
of total RNA. To verify the reproducibility of the observations, we
performed two separate retrotranscriptions from both cell types to ob-
tain four separate targets for hybridization. Genome set Human U133
Plus 2.0 chips (Affymetrix, Santa Clara, CA) were used in duplicate.
Data from the two biologic replicates for each target (DNvHNF1 and
mock cells) were tested in duplicate chips (a total of four samples for
target) after normalization. The statistical analyses of the microarray
data were performed with GenePicker software designed by the
IFOM Institute (Milan, Italy). This software allowed to set up analysis
schemes and to search the data for regulated genes using t test and
Change-Fold Change analysis. We performed the reported analysis se-
lecting the probe sets with significant statistical analysis (P < .05 for
t test) and a fold change >1.5 or <−1.5, obtaining a list of 621 probe sets.

Compilation of Gene Lists Associated with the Epithelial or
Mesenchymal Phenotype

A list of EMT-related genes was compiled after a literature search for
genes modulated during processes activated by EMT [10,12] and taking
into consideration two studies of gene expression profiling: one on
Ha-ras–transformed polarized mammary epithelial cell line EpH4 in-
duced to EMT by TGFβ treatment [26] and another onMadison-Darby
canine kidney epithelial cells expressing the E-box–binding repressors
Snail, Slug, and E47 [27]. Table W1 shows a list of genes associated with
epithelial (140) and mesenchymal (186) phenotypes and passing criteria
as that reported above. The categorization reported in both Tables 1 and
W1 was done according to the Gene Ontology categories.

Luciferase Assay
Cells were transfected with TOP- and FOP-promoter–reporter

gene constructs (Upstate Biotechnology, Lake Placid, NY) using
Lipofectamine 2000 according to the manufacturer’s suggestions
(Invitrogen). Cotransfection with thymidine kinase–Renilla was per-
formed to evaluate transfection efficiency. After 48 hours, cells were
lysed and analyzed for promoter activity. The dual-luciferase assay
was performed essentially as suggested by the manufacturer (Promega,
Madison, WI).

Growth Potential Measurements
In vitro proliferation of stable transfected cells was measured with

the CellTiter-Glo luminescent cell viability assay kit (Promega) ac-
cording to the manufacturer’s suggestions. Cells (4 × 104 cells per well)
were cultured in 96-well plates for up to 5 days. In vitro proliferation
of siRNA-treated cells was evaluated as radiolabeled thymidine incor-
poration. Briefly, cells were plated in 96-well plates at a density of 1 ×
104 cells per well and transiently transfected with siRNA duplex
against vHNF1 mRNA or control siRNA. Cells were pulsed for
4 hours with [methyl-3H]thymidine (Amersham; 1 μCi per well)
and 24 (for IGROV1 cells) or 48 hours (for SKOV3cells) later washed
twice with ice-cold PBS. After fixation with 100 μl of 10% trichloro-
acetic acid for 30 minutes at 4°C, cells were lysed with 100 μl per well
0.2NNaOH and radiolabeled thymidine incorporation was measured
by scintillation counting.

Immunohistochemistry
All clinical specimens were obtained with approval from the insti-

tutional review board and informed consent from all participating
patients to use excess biologic material for investigative purposes.
Immunohistochemistry (IHC) was performed by using routine tissue
blocks and a commercially available tissue arrays (Ovary cancer,
AccuMax Array, Petagen and CJ1 Human, Ovary cancer, and Super
Bio Chips) essentially as described [28]. For antigen retrieval and pri-
mary Ab dilutions, see Supplementary data. Two observers (M.L.C.
and A.T.) independently assessed positivity or negativity of staining
on the basis of intensity and the percentage of positive cells.

Statistical Analyses
GraphPad Prism software (GraphPad Software, San Diego, CA) was

used to analyze all data. Differences between mean values were deter-
mined by Student’s t test, and Fisher’s test was used to determine
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Table 1. Genes Associated with Epithelial and Mesenchymal Phenotypes* and Found to Be Differentially Expressed in DNvHNF1Versus Mock Cells.
Gene Symbol
 GenBank ID
 Gene Name
 Fold Change
 P
Epithelial genes (n = 134)†
Actin cytoskeleton organization (n = 6)
PODXL
 NM_005397
 podocalyxin-like
 1.94
 .0002
Cell adhesion/ECM–related (n = 22)
ANXA4
 BC000182
 annexin A4
 −1.84
 .0000

CD99
 U82164
 CD99 antigen
 1.66
 .0000

CDH1
 NM_004360
 cadherin 1, type 1, E-cadherin
 −3.33
 .0404

CLDN1
 AF101051
 claudin 1
 −2.07
 .0002

CLDN7
 NM_020412
 claudin 7
 −7.26
 .0000

EVA1
 AF275945
 epithelial V-like antigen 1
 3.00
 .0002

FBLP-1
 AL133035
 filamin-binding LIM protein-1
 −3.01
 .0131

ITGA3
 NM_002204
 integrin, alpha 3
 1.62
 .0002

ITGB6
 AK026736
 integrin, beta 6
 2.50
 .0002

PDZK1IP1
 NM_005764
 PDZK1-interacting protein 1
 −2.03
 .0000

NID2
 NM_007361
 nidogen 2
 −1.91
 .0005

OCLN
 AI829721
 occludin
 −1.70
 .0512
Cell cycle (n = 8)
DUSP1
 NM_004417
 dual-specificity phosphatase 1
 −1.94
 .0053
Cell growth/maintenance (n = 42)
BPAG1
 AI798790
 bullous pemphigoid antigen 1, 230/240 kDa
 1.64
 .0000

DEFB1
 U73945
 defensin, beta 1
 −7.78
 .0000

GDI2
 D13988
 GDP dissociation inhibitor 2
 −1.86
 .0000

SEMA3C
 NM_006379
 sema domain, immunoglobulin domain (Ig), secreted, (semaphorin) 3C
 6.22
 .0000

TACSTD2
 J04152
 tumor-associated calcium signal transducer 2
 −4.03
 .0325
Cell motility (n = 8)
F11R
 AF154005
 F11 receptor
 −2.09
 .0325

JAG1
 U77914
 jagged 1
 2.19
 .0000
Metabolism (n = 29)
CA2
 M36532
 carbonic anhydrase II
 −17.04
 .0000

CITED2
 AF109161
 Cbp/p300–interacting factor, with Glu/Asp–rich carboxy-terminal domain, 2
 −2.02
 .0340

EXT1
 NM_000127
 exostoses (multiple) 1
 −1.63
 .0005
Mesenchymal genes (n = 173)

Actin cytoskeleton organization (n = 9)
ACTN1
 AI082078
 actinin, alpha 1
 1.9
 .0005

PLEK2
 NM_016445
 pleckstrin 2
 2.02
 .0008
Cell adhesion/ECM–related (n = 21)
BGN
 BC002416
 biglycan
 10.5
 .0000

CD44
 AF098641
 CD44 antigen
 2.10
 .0000

COL5A1
 NM_000393
 collagen, type V, alpha 1
 2.05
 .0000

COL5A2
 AL564683
 collagen, type V, alpha 2
 39.29
 .0000

FN1
 AK026737
 fibronectin 1
 −10.39
 .0425

Lamb1
 M20206
 laminin, beta 1
 2.91
 .0000
Cell cycle (n = 10)
CDC2
 NM_001786
 cell division cycle 2, G1 to S and G2 to M
 −1.69
 .0523
Cell growth and/or maintenance (n = 59)
CXCL1
 NM_001511
 chemokine (C-X-C motif ) ligand 1
 −1.78
 .0015

EPS8
 NM_004447
 epidermal growth factor receptor pathway substrate 8
 2.07
 .0000

FZD1
 NM_003505
 frizzled homolog 1
 1.86
 .0006

FZD2
 L37882
 frizzled homolog 2
 1.66
 .0001

HMGA2
 NM_003483
 high mobility group AT-hook 2
 2.76
 .0001

IGFBP1
 NM_000596
 insulin-like growth factor binding protein 1
 −9.94
 .0067

IGFBP3
 M31159
 insulin-like growth factor binding protein 3
 −2.90
 .0006

KIFAP3
 NM_014970
 kinesin-associated protein 3
 2.71
 .0067

Met
 BG170541
 met proto-oncogene (hepatocyte growth factor receptor)
 2.77
 .0015

PMP22
 L03203
 peripheral myelin protein 22
 2.05
 .0013

PTPRM
 NM_002845
 protein tyrosine phosphatase, receptor type, M
 −2.74
 .0013

SLC29A1
 AF079117
 solute carrier family 29 (nucleoside transporters), member 1
 1.90
 .0003
Cell motility (n= 25)
MMP10
 NM_002425
 matrix metalloproteinase 10 (stromelysin 2)
 3.59
 .0000

MMP2
 NM_004530
 matrix metalloproteinase 2
 4.10
 .0000

MMP7
 NM_002423
 matrix metalloproteinase 7
 7.51
 .0000

PLAU
 NM_002658
 plasminogen activator, urokinase
 2.90
 .0000

PLAUR
 X74039
 plasminogen activator, urokinase receptor
 4.02
 .0000

S100A2
 NM_005978
 S100 calcium binding protein A2
 2.20
 .0000

S100A3
 NM_002960
 S100 calcium binding protein A3
 2.04
 .0004

S100A4
 NM_002961
 S100 calcium binding protein A4
 2.05
 .0000

S100A6
 NM_014624
 S100 calcium binding protein A6
 1.64
 .0001

S100P
 NM_005980
 S100 calcium binding protein P
 −29.48
 .0002

SERPINH1
 BF316352
 serine (or cysteine) proteinase inhibitor
 −2.44
 .0000
Development/differentiation (n = 23)
ID1
 D13889
 inhibitor of DNA binding 1, dominant negative helix-loop-helix protein
 −1.94
 .0000

ID3
 NM_002167
 inhibitor of DNA binding 3, dominant negative helix-loop-helix protein
 −23.23
 .0001
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whether the percentage of EMT-related genes is different by chance.
The correlation of vHNF1 and E-cadh expression levels in IHC was
evaluated by χ 2 test. P values <.05 (2-sided) were considered significant.
Results

vHNF1 Silencing Impairs Epithelial Differentiation of
Ovarian Tumor Cells
To identify the role of vHNF1 in ovarian carcinoma cells, IGROV1

and SKOV3 cells were transfected with vHNF1-specific siRNA or
control siRNA (Figure 1A). The reduction of endogenous vHNF1
transcription and protein expression correlated directly with a decrease
in the levels of E-cadh transcription and protein expression in both cell
lines. The decreased intensity of the 120-kDa band corresponding to
the full-size E-cadh protein in lysates of vHNF1 siRNA-treated cells
(Figure 1B) was not caused by degradation [29] because proteins of
lower molecular weight were equally abundant in all lysates.
Further, we measured the growth capability of IGROV1 and

SKOV3 cells treated with vHNF1-specific siRNA (Figure 1C). By radio-
labeled thymidine incorporation, we observed that reduction of endog-
enous vHNF1 expression led to a 25% (P = .026) and 45% (P = .018)
decrease in proliferation of IGROV1 and SKOV3 cells, respectively.

vHNF1 Loss-of-Function Impairs Epithelial Differentiation of
Ovarian Tumor Cells
o scrutinize the role of vHNF1 expression in ovarian carcinomas, we

stably transfected IGROV1 and SKOV3 cells with an expression plas-
mid containing a DNvHNF1 cDNA encoding the truncated vHNF1
form that occurs naturally in pancreatic β-cells of patients bearing
maturity-onset diabetes of the young type 5 (Figure 2A) [30]. We were
unable to obtain any stable clone despite repeated DNvHNF1 trans-
fections in IGROV1 cells (data not shown), but we obtained sev-
eral stable clones by transfecting SKOV3 cells. Western blot analysis
of total cell lysates from DNvHNF1-transfected SKOV3 clones
(hereafter designated DNvHNF1) using an Ab that detects both wt
vHNF1 and DNvHNF1 revealed the truncated 27-kDa band only
in DNvHNF1 cells (Figure 2B). Probing the same blots with an Ab
against E-cadh showed a large decrease in the expression of this protein
in all DNvHNF1 clones analyzed. Furthermore, we obtained the same
results on transfection of MDCK cells with the same construct (data
not shown). Clone 1 was further characterized.
Table 1. (continued )
Gene Symbol
 GenBank ID
 Gene Name
 Fold Change
 P
ID4
 U16153
 inhibitor of DNA binding 4, dominant negative helix-loop-helix protein
 −3.89
 .0001

LUM
 NM_002345
 lumican
 18.65
 .0001

SNAI2
 AI572079
 snail homolog 2 (Drosophila)
 4.91
 .0000

SPARC
 NM_003118
 secreted protein, acidic, cysteine-rich (osteonectin)
 8.94
 .0000
Metabolism (n = 22)
ACVR1
 NM_001105
 activin A receptor, type I
 2.74
 .0045

BHLHB2
 NM_003670
 basic helix-loop-helix domain containing, class B, 2
 2.36
 .0000

PTGIS
 NM_000961
 prostaglandin I2 (prostacyclin) synthase
 −2.17
 .0012
Biological process unknown (n = 3)
PSTPIP2
 NM_024430
 proline-serine-threonine phosphatase interacting protein 2
 −2.67
 .0003

UPP1
 NM_003364
 uridine phosphorylase 1
 −2.80
 .0000
*The genes listed in the EMT-related gene database (Table W1) were extracted from the DNvHNF1/Mock data set generated using the GeneChip Human Genome U133 Plus 2.0 Array. Note that 307
(94%) of 326 EMT-related genes were present in the chip.
†The total number of genes belonging to each category is shown in parentheses.
Figure 1. vHNF1 silencing impairs epithelial differentiation of ovar-
ian tumor cells. IGROV1 and SKOV3 cells were treated with a
vHNF1-specific siRNA. (A) Quantitative RT-PCR on total RNA ex-
tracts from cells treated with a control (light gray bar) or vHNF1-
specific (dark gray bar) siRNA. Data represent mean (SD) for the
vHNF1 and E-cadh genes normalized to the housekeeping gene
GAPDH in at least six determinations. Asterisks indicate significant
differences (P < .05). (B) In a parallel experiment, cells were lysed
and analyzed by Western blot analysis with Abs against vHNF1 and
E-cadh, respectively. Co siRNA indicates control siRNA. β-Actin was
used for normalization of gel loading. One of three experiments is
shown. (C) IGROV1andSKOV3 cellswere treatedwith a control (light
gray bar) or a vHNF1-specific (dark gray bar) siRNA as in Figure 2, and
proliferation was evaluated by incorporation of radiolabeled thymi-
dine. Data are mean (SD) of six replicates; one of two experiments
is shown. Asterisks indicate significant differences (P < .05).



1486 Role of vHNF1 in Ovarian Cell Differentiation Tomassetti et al. Neoplasia Vol. 10, No. 12, 2008
Consistent with the loss of E-cadh expression, in phase-contrast
microscopy DNvHNF1 clones revealed a spindle-like shape and loss
of defined cell-cell borders compared with the more epithelial mor-
phology of mock-transfected cells (hereafter referred to as Mock cells;
Figure 2C , upper panel ). Immunofluorescence analysis of adherens
junctions showed that E-cadh and β-catenin (ctn) expressions were
confined to cell-cell contacts in Mock cells, whereas in DNvHNF1
cells, there was loss of E-cadh staining and discontinuous β-ctn stain-
ing at cell-cell contacts (Figure 2C , lower panel ). Moreover, both
ZO-1 and occluding 1, markers of tight junctions, were clearly pres-
ent at cell-cell contacts in Mock cells, but they were mainly concen-
trated in the nuclei of DNvHNF1 cells, as previously shown in other
cell systems [31,32]. Normal and transformed ovarian cells may dis-
play both epithelial and mesenchymal features [3], and accordingly,
Figure 2. vHNF1 loss-of-function impairs epithelial differentiation of ovarian tumor cells. (A) Schematic representation of wt vHNF1, with
its functional domains, and the truncated DNvHNF1. Note that DNvHNF1 only maintains the N-terminal dimerization and B domains.
(B) Western blot analysis of total cell lysates from Mock cells and DNvHNF1 clones was performed using a rabbit anti-HNF1 Ab. The 15-
to 24-kDa bands in DNvHNF1 lysates might represent shorter DNvHNF1 products; β-actin was used for normalization of gel loading.
(C) Upper panel: Morphology of Mock and DNvHNF1 cells. Cells were grown to confluence in six-well plates, and images were obtained
by phase-contrast microscopy with a 10× objective. Bar, 100 μm. Lower panel: IF was performed on methanol-fixed Mock and
DNvHNF1 cells with Abs against the molecules indicated. Images were obtained with a 40× objective. (D) Electrophoretic mobility shift
assay of NEs prepared fromMock and DNvHNF1 cells was performed using two oligonucleotides containing the HNF1 consensus DNA-
binding site and corresponding to the proximal elements of the sequences of the albumin (high affinity) and FR (low affinity) promoters,
respectively. Specific DNA-protein complexes were competed with a 100-fold molar excess of unlabeled probes (100× Comp), as in-
dicated. (E) Quantitative RT-PCR of the FR transcript using total RNA extracted from Mock and DNvHNF1 transfectants. Data represent
mean (SD) for FR expression normalized to the housekeeping gene GAPDH in at least six determinations. Asterisk indicates a significant
difference (P < .01).
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SKOV3 cells coexpress both cytokeratins and vimentin. Interestingly,
DNvHNF1 cells maintained coexpression of cytokeratins and vimentin
but failed to display the typical pattern of cell-cell junctional cyto-
keratin filaments observed in Mock cells. Similar expression patterns
were seen in the other DNvHNF1 clones (data not shown).
Electrophoretic mobility shift assay was performed with NEs from

DNvHNF1 cells using two different vHNF1-specific oligonucleo-
tides corresponding to the proximal elements of the sequences of
the albumin (high affinity) and FR (low affinity) promoters [22,33].
This analysis indicated that the ability of NEs from DNvHNF1 cells
to form DNA complexes with the oligonucleotides was substantially
reduced compared to those from Mock cells (Figure 2D). On the
basis of our previous demonstration that vHNF1 binds to and acti-
vates the FR promoter in ovarian carcinoma cells, we evaluated the
FR transcript levels in DNvHNF1 cells to confirm the effective down-
regulation of endogenous vHNF1 transcriptional activity by expression
of the DNvHNF1 protein. Indeed, real-time RT-PCR analysis re-
vealed a fourfold lower level of the FR transcript in DNvHNF1 cells
(Figure 2E).

vHNF1 Loss-of-Function Induces a Gene Expression Profile
Resembling That of EMT
We compared the gene expression profiles of DNvHNF1 cells and

Mock cells by the GeneChip Human Genome U133 Plus 2.0 Array.
Using a cutoff of 1.5-fold, we identified 459 upregulated and 473
downregulated genes in DNvHNF1 cells. A preliminary analysis of
the differentially expressed genes indicated a pattern suggestive of
EMT (data not shown). Thus, we focused on EMT and compiled a
list of specific epithelial (140) and mesenchymal (186) genes that are
reported in Table W1 (for list compilation, refer to the Materials and
Methods section). In the epithelial gene list, genes associated with
cell growth/maintenance, metabolism, cell adhesion/extracellular cell
matrix (ECM)–related, and development/differentiation were the
largest classes; in the mesenchymal gene list, cell growth/maintenance
and cell motility–associated genes formed the largest classes. We ex-
tracted the expression data for each gene of this EMT-related list from
the DNvHNF1 versusMock data sets. A search for variation of expres-
sion of these genes in DNvHNF1 cells was consistent with our initial
observation: 22% (67/307) of EMT-related genes were expressed dif-
ferently in the two cell lines (Table 1), compared to the 13% expected
by chance (P < .0001). More specifically, 24 of 134 epithelial genes in
DNvHNF1 cells were differentially expressed: 16 of them were down-
regulated and 8 were upregulated, which is consistent with published
EMT data [26,27] (Figure 3A). In addition, 43 of 173 mesenchymal
genes were differentially expressed and 29 of them (67%) were up-
regulated in DNvHNF1 cells. Most modulated genes in DNvHNF1
cells were associated with cell adhesion/ECM (18 genes), cell growth/
maintenance (16 genes), or motility (13 genes). Among the mesenchy-
mal genes, we observed up-regulation of CD44, Met, PLAU, PLAUR,
MMP2, MMP7, S100A4, HMG2A, SNAI2, and SPARC, all of which
are expressed during EMT. Real-time RT-PCR for PLAU showed up-
regulation of these genes in DNvHNF1 cells (Figure 3B). Western blot
analysis with anti-S100A4 Ab indicated increased expression of this
protein in DNvHNF1 cells compared to Mock cells (Figure 3C ).
Among epithelial genes, we found down-regulation of CDH1, which
encodes E-cadh, and OCLN, which encodes for occluding, that had
been shown before to be downregulated in DNvHNF1 cells (Figure 2),
and TACSTD2, encoding Ep-CAM protein, which is highly expressed
in ovarian carcinoma cells [34].
Some apparent discrepancies with published data were found, such
as the up-modulation of ITGB6 and SEMA3C, described before
as down-modulated in the epithelial phenotype [26], and the down-
regulation of typical mesenchymal genes, such as FN and IDs [9,35].
Nevertheless, real-time RT-PCR confirmed the down-regulation of
FN in DNvHNF1 cells (Figure 3B).

These results strongly suggest that vHNF1 loss-of-function im-
pairs cell-cell adhesion and leads to a more mesenchymal phenotype
in the SKOV3 ovarian carcinoma cell line.
Figure 3. vHNF1 loss-of-function induces a gene expression pro-
file resembling that of EMT. (A) Upper panel: we compiled a list of
specific epithelial (134) and mesenchymal (173) genes that are re-
ported in Table W1. The number of genes in the largest functional
classes is reported. Lower panel: we extracted the expression data
for each gene of this EMT-related list from the DNvHNF1 versus
Mock data sets. Epithelial (dashed bars) and mesenchymal (dotted
bars) genes differentially expressed in DNvHNF1 versus Mock data
sets. (B) Quantitative RT-PCR for target mRNA was performed with
total RNA extracted from Mock (light gray bars) and DNvHNF1 (dark
gray bars) cells. Data represent mean (SD) for the relevant genes
normalized to the housekeeping gene GAPDH in at least six deter-
minations. Asterisks indicate significant difference (P < .02). (C)
Western blot analysis of total cell lysates from Mock and DNvHNF1
cells was performed using a rabbit anti-S100A4 Ab. β-Actin was
used for normalization of gel loading. One of three gels is shown.
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vHNF1 Loss-of-Function Leads to Slug Expression
and Functionality

E-cadh down-regulation could have been caused by transcriptional
repression by E-box transcription factors, so we performed quantitative
real-time RT-PCR to evaluate the expression of E-cadh and its transcrip-
tional regulators Snail and Slug. Compared to Mock cells, DNvHNF1
cells showed absence of E-cadh mRNA, 2-fold decreased Snail mRNA
levels, and 1.8-fold increased Slug mRNA levels (Figure 4A). We then
analyzed in these cell lines the effect of vHNF1 loss-of-function onCdh1
promoter activity (Figure 4C ) by transiently transfecting the promoter
constructs depicted in Figure 4B. Luciferase reporter assay showed that
the activity of the E-box–containing Cdh1 promoter significantly de-
creased about threefold in DNvHNF1 cells compared to Mock cells.
The activities of the mutated E-box–containing construct were less de-
repressed in DNvHNF1 cells than in Mock cells, indicating that in
DNvHNF1 cells, other mechanisms may contribute to the repression of
the Cdh1 promoter in addition to the activity of E-box–binding proteins.

These results indicate that loss of E-cadh expression in DNvHNF1
cells might be caused by transcriptional repression partly mediated by
Slug binding to specific E-boxes of the Cdh1 promoter.

Ectopic Expression of vHNF1 in IOSE Cells Is Sufficient to
Induce Snail and Slug

The data presented above indicate that vHNF1 participates in de-
termining the epithelial phenotype of ovarian cancer cells. To evalu-
ate whether vHNF1 is sufficient to activate a differentiation program
toward MET in normal ovary cells, we stably transfected hTERT-
IOSE cells [23] with vHNF1 cDNA. Western blot analysis with anti-
vHNF1 Ab revealed that two selected clones of vHNF1-transfected
hTERT-IOSE (hereafter designated vHNF1-IOSE #1 and #2) express
a 62-kDa vHNF1 protein not expressed by mock-transfected hTERT-
IOSE (hereafter designated Mock-IOSE; Figure 5A). By phase-
contrast microscopy, vHNF1-IOSE #2, which represents a clone grown
in vitro for longer time than vHNF1-IOSE #1 cell line, appeared to lose
the typicalmesenchymalmorphology, whereas bothMock- and vHNF1-
IOSE #1 maintained a more spindle-like morphology (Figure 5B).

By quantitative RT-PCR on total RNA, the E-cadh transcript was
slightly detectable in all transfected IOSE (data not shown). Expres-
sion of Snail transcript in vHNF1-expressing clones was found to be
downregulated 3- and 4-fold, and Slug transcript 2.5- and 3.5-fold,
respectively (Figure 5C ).

We then analyzed the effect of vHNF1 loss-of-function on the Cdh1
promoter activity inMock and vHNF1-IOSE cells (Figure 5D) by tran-
siently transfecting the promoter constructs (shown in Figure 4B). Lu-
ciferase reporter assay showed that the activity of the E-box–containing
wt Cdh1 promoter increased approximately 2.5-fold in vHNF1-IOSE
cells in comparison toMock-IOSE cells. The activities of themutated E-
box1-3-4 construct was approximately twofold de-repressed in vHNF1-
IOSE cells compared to Mock-IOSE, suggesting that E-boxes 1, 3, and
4 are relevant for the CDH1 gene transcription in this type of cells.

These results together demonstrate that vHNF1 negatively regu-
lates specific E-box–binding repressors in normal ovarian cells, which
is in line with the data on ovarian carcinoma cells reported above.

vHNF1 Modulates the Proliferative Potential of Ovarian
Cancer and Normal Cells

We aimed also to evaluate vHNF1-dependent growth potential
in both DNvHNF1 and vHNF1-transfected-IOSE. In culture,
DNvHNF1 cells grew slower than Mock cells, so that the DNvHNF1
Figure 4. vHNF1 loss-of-function leads to Slug expression and
functionality. (A) Quantitative RT-PCR for E-cadh, Snail, and Slug
transcripts was performed on total RNA extracted from Mock
(light gray bars) and DNvHNF1 (dark gray bars). Data represent
mean (SD) for the genes indicated, after normalization to the
housekeeping gene GAPDH in at least six determinations. Aster-
isks indicate significant differences (P ≤ .02). (B) Schematic
representation of Chd1 proximal promoter containing four puta-
tive E-box sequences cloned upstream of the luciferase gene
and transiently transfected in Mock and DNvHNF1 cells. Muta-
tions within the E-boxes are as indicated. (C) Luciferase-promoter
gene assay of Mock (light gray bars) and DNvHNF1 (dark gray
bars) cells transiently transfected with reporter plasmids contain-
ing the wt Cdh1 proximal promoter or the same promoter with mu-
tated E-box sequences (mEbox) as reported in panel B. Data are
mean (SD) normalized for transfection efficiency in three indepen-
dent experiments performed in triplicate. Asterisk indicates a signif-
icant difference (P ≤ .01).
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cell density was 30% lower on day 5 after seeding (P = .0001;
Figure 6A), consistent with the decrease in proliferation after transient
vHNF1 silencing (Figure 1C ). The slower growth rate was paralleled
by reduced colony-forming capability (data not shown).
Growth potential was also evaluated in the IOSE transfected cells
up to 7 days. It is noteworthy that ectopic vHNF1 expression caused
a two- and three-fold increase of the growth rate of vHNF1-IOSE #1
and #2, respectively, in comparison to Mock-IOSE cells (Figure 6B).
Figure 5. Ectopic expression of vHNF1 in IOSE cells is sufficient to induce Snail and Slug. (A) Western blot analysis of total cell lysates
from Mock and DNvHNF1-IOSE clones #1 and #2 was performed with a rabbit anti-vHNF1 Ab. (B) Morphology of Mock and DNvHNF1-
IOSE cells. While Mock- and vHNF1-IOSE #1 showed a more spindle-like morphology, vHNF1-IOSE #2, which represents a clone grown
in vitro for longer time than vHNF1-IOSE #1 cell line, appeared larger in size acquiring a more compacted morphology. Images were
obtained by phase-contrast microscopy using a 10× objective. Bar, 100 μm. (C) Quantitative RT-PCR for Snail and Slug transcripts was
performed on total RNA extracted from Mock (white bar) and vHNF1-IOSE #1 (light gray bars) and #2 (dark gray bars) cells. Data rep-
resent mean (SD) for the relevant genes normalized to the housekeeping gene GAPDH in at least six determinations. Asterisks indicate
significant differences (P≤ .05). (D) Luciferase-promoter gene assay using Mock (white bar) and DNvHNF1-IOSE #1 (light gray bars) and
#2 (dark gray bars) cells transiently transfected with promoter reporter plasmids containing the wt Cdh1 proximal promoter or the same
promoter with mutations in the E-box sequences (mEbox) as reported in Figure 4B.
Figure 6. vHNF1 modulates the proliferative potential of ovarian cancer and normal cells. Cells were seeded in 96-well plates, and
growth was measured for up to 5 to 7 days with a CellTiter-Glo luminescent cell viability assay kit (Promega). (A) Mock (▪) and DNvHNF1
(▴): data represent mean (SD) of six determinations from three independent experiments. (B) Mock (○) and vHNF1-IOSE #1 (•) and #2
(▴): data represent mean (SD) of five determinations from one of three experiments. Asterisks indicate significant differences (P ≤ .05).
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These results are in line with those shown above (Figure 1A) and
suggest a positive involvement of vHNF1 in controlling the prolifera-
tion of normal and transformed ovarian cells.

vHNF1 Is Expressed in a Subset of Normal and Transformed
E-cadh–Expressing Ovarian Cells

We previously showed that vHNF1 is expressed only in ovarian car-
cinoma cell lines and not in short-term cultures of OSE cells [22].
Here, we used IHC to evaluate vHNF1 expression together with E-
cadh in sections from four normal human ovaries, selected for having
a normal monolayer epithelium or for presenting invaginations and
inclusion cysts lined by a single layer of cells, and in samples from be-
nign, lowmalignant potential (LMP) andmalignant ovarian tumors of
different histotypes (Figure 7). When detected, anti-vHNF1 staining
was observed only in the nucleus or in the nucleus and the cytoplasm,
whereas anti–E-cadh mainly stained the cell membrane. No vHNF1
expression was detected in OSE from different individuals. In 20% of
cysts, the single, normal cell layer reacted with anti-vHNF1 together
with anti–E-cadh (representative example in Figure 7). Cells from four
benign tumors and four of six LMP tumors stained for vHNF1 and E-
cadh (Table 2). One LMP tumor that did not stain with anti-vHNF1
was endometrioid. Among the 38 carcinomas tested, 18 reacted with
anti-vHNF1: 7 of these were clear cell carcinomas, 5 were serous (rep-
resentative examples in Figure 7A), and 1 was mucinous. Four of 7
endometrioid EOCs were vHNF1-positive.

Interestingly, 66% of EOCs tested were reactive with anti–E-cadh
monoclonal Ab, and within these EOCs, 33% were positive for both
vHNF1 and E-cadh (Figure 7B). Within serous histotype, which re-
presents most EOCs, 73% expressed E-cadh and 26% together with
vHNF1. Note that E-cadh–negative tumors could express N-cadh or
cadh-11, as previously reported [23].

In conclusion, vHNF1 appears to be expressed in inclusion cysts,
and it is clearly expressed in clear cell carcinomas and in some serous
carcinomas, but it is not expressed in OSE. Interestingly, vHNF1
expression is significantly associated with E-cadh expression in a sub-
set of samples comprising some cysts as well as in benign and malig-
nant tumors of serous or clear cell histotype, whereas no coexpression
was observed in endometrioid tumors (P = .0024).
Discussion
Here, we demonstrate that vHNF1 may act as an initial regulator

of OSE plasticity and proliferation, thereby contributing significantly
to the changes in differentiation of OSE cells during neoplastic trans-
formation and progression. Indeed, a DN form of the transcription
factor vHNF1 induces EMTwhen expressed in an ovarian carcinoma
cell line (SKOV3), as confirmed by a change in mRNA expression pro-
file resembling that of EMTand by a loss at the protein level of E-cadh
and components of tight junctions. DNvHNF1 expression in SKOV3
ovarian carcinoma cells downregulated Slug expression and function-
ality, and conversely, vHNF1 ectopically expressed in hTERT-IOSE
cells decreased Snail and Slug expression and functionality. Overall,
our results uncover a novel role of vHNF1 in the epithelial differenti-
ation of ovary cells.

The HNF transcription factors have been related mainly to hepa-
tocyte and pancreatic β-cell differentiation, and vHNF1 in particular
seems to be required for maintenance of the differentiation state and
functional activity of mouse pancreatic β-cells. Mutations and/or de-
letions that impair vHNF1 functionality cause major alterations in
Figure 7. vHNF1 is expressed in a subset of normal and trans-
formed E-cadh–expressing ovarian cells. Immunohistochemical
analyses with anti-vHNF1 and –E-cadh Abs on paraffin-embedded
normal and tumor-derived ovarian tissues. The immunohistochemi-
cal analysis is also reported in Table 2. (A) Representative examples
of normal ovarian epithelium (a), an inclusion cyst (b), and two se-
rous EOCs (c and d). Images were obtained with a 20× objective.
Bar, 100 μm. (B) Epithelial ovarian carcinomas analyzed for vHNF1
and/or E-cadh expressions. Anti–E-cadh–negative samples com-
prise other cadh-expressing tumors. Total number of EOCs, n =
38; total number of serous EOCs, n = 19. Vertical bars, percentage
of immunoreactive samples.
Table 2. Expression of vHNF1 and E-cadh Detected by Immunohistochemistry in Ovarian
Tumor Samples.
Ovarian Tumors*
 No. of Cases (n = 49)
 Presence of vHNF1/E-cadh by IHC
+/+
 +/−
 −/+
 −/−
Benign
 5
 4
 —
 1
 —
LMP
 6
 4
 —
 1
 1†
Carcinoma‡:
Serous
 19
 5
 1
 9
 4

Mucinous
 2
 1
 —
 1
 —
Clear cell
 10
 7
 1
 —
 2

Endometrioid
 7
 —
 3
 3
 1
*Commercially available tissue arrays.
†Endometrioid LMP tumor.
‡Mucinous and endometrioid carcinomas comprise a grade I tumor; all other carcinomas were
grades II and III.
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expression of important metabolic genes. Indeed, vHNF1 knock-out
mice die within a few days after gastrulation [19]. In adult mice, β-
cells show impaired glucose tolerance and reduced insulin secretion
when vHNF1 is selectively deleted using Cre recombinase [36]. The
present results suggest for the first time that vHNF1 is one of the
transcription factors governing the epithelial differentiation of OSE.
To evaluate the molecular signature associated with vHNF1 loss-

of-function in SKOV3 cells, we performed an EMT-guided compar-
ative expression profile analysis on the basis of a newly compiled
EMT-related gene database (Table W1). The observed profile is in
agreement with an EMT shift, with a few remarkable exceptions,
such as down-modulation of FN1, ID1, and ID4 and up-regulation
of ITGB6 and SEMA3C. This could simply be caused by cell line
specificity of these molecules. Note that vHNF1 loss-of-function
does not completely revert the malignancy of SKOV3 cells and that
further analysis is needed to determine whether particular molecular
mechanisms regulate the expression of these genes in a tumor type–
specific way. Conversely, several genes characteristic of either EMT
or MET but not yet associated with EOCs were identified as dif-
ferentially expressed. Microarray and immunofluorescence analyses
showed that vHNF1 functionality was associated mainly with genes
that modulate cell adhesion and are ECM-related, which is consistent
with a role for HNF transcription factors in regulating cell adhesion
[37]. The potential usefulness of this information in the context of
clinical screening markers and possible genetic or pharmacologic tar-
geting awaits further validation of the role of vHNF1 and the newly
identified associated genes, together with detailed gene expression
comparisons between OSE and EOC samples.
Consistent with a previous report that only EOC with clear cell

histotype expresses vHNF1 [38], our immunohistochemical analysis
revealed vHNF1 expression in most clear cell EOCs, as well as in
approximately 30% of serous EOCs, which are most EOCs. We
detected heterogeneous expression of vHNF1 associated to E-cadh
expression in 32% of the EOC samples, independently of tumor
grading. These results confirm a role for vHNF1 in the epithelial
phenotype of EOCs. An analysis to define the molecular signature
that characterizes this subset of EOCs, which include mainly the
clear cell and serous histotypes, is ongoing.
Previous studies indicated that the proximal vHNF1 promoter

was methylated in 26% of the EOCs analyzed, but no such methyla-
tion was observed in OSE cells that do not express vHNF1 [39]. In
renal cell carcinomas, TCF2 inactivation was caused by germ line
mutations [17]. Therefore, in vHNF1-negative ovarian carcinomas,
TCF2 gene could have either methylated promoter or inactivating
mutations. We further hypothesize that cysts undergo transformation
if they contain genetic mutations and possibly express vHNF1 con-
ferring a further growth advantage. Epithelial ovarian carcinomas de-
rived from those cysts continue to express vHNF1, but once tumors
progress, epigenetic mechanisms such as methylation of the vHNF1
promoter might be activated, resulting in loss of vHNF1 expression.
One key function of vHNF1 seems to be the negative modulation of
EMT-inducing transcription factors such as Snail and Slug, leading
to the positive modulation of E-cadh and other epithelial proteins.
Previously, vHNF1 has been shown to be involved in METoccurring
during kidney development, whereas kidney fibrosis has been asso-
ciated with the binding of the E-box–binding repressors Snail or Slug
to the promoters of vHNF1 and E-cadh encoding genes [40]. These
results together with ours favor the hypothesis of a delicate reciprocal
transcriptional regulation between E-box repressors and vHNF1. Re-
cently, another embryonic transcription factor, FOXC2, was identified
as a central modulator of the EMT program in metastatic basal-like
breast cancer [41]. These observations, together with ours, support
the hypothesis that embryonic transcription factors are necessary for
execution of transformation or invasion programs in different types
of cancers. Of course, this hypothesis does not exclude that other
mechanisms, such as those involving specific HOX genes, might con-
tribute to determining the morphologic heterogeneity of EOCs [42].

In addition to its role in OSE cell plasticity, vHNF1 seems to con-
tribute to the increased growth potential of normal and transformed
ovarian cells. Indeed, siRNA-mediated silencing of vHNF1 or its
inhibition by a DN mutant was associated with decreased growth
proliferation, whereas de novo expression of vHNF1 increased prolif-
eration. The increase in proliferation could be attributed to the mod-
ulation of cell cycle progression but did not confer unlimited growth
potential to OSE cells (unpublished observation). We can also hy-
pothesize that the vHNF1 confers a growth advantage in vitro so that
ovarian carcinoma cell lines maintain vHNF1 expression, whereas in
tumors the genomic modifications described above lead to the loss of
vHNF1 expression.

Recently, a new model for the pathogenesis of EOCs has been pro-
posed in which ovarian tumors are divided in two types [43]. Type I
tumors, which include low-grade serous, mucinous, endometrioid,
and clear cell carcinomas, are slowly growing and are generally con-
fined to the ovary. Type II tumors are rapidly growing and highly
aggressive. Despite considerable efforts, it is not yet possible to dis-
tinguish these different types of ovarian tumors at early stage and set
up the most successful therapy. In this context, the strong association
of vHNF1 with E-cadh in clear cell and in a subset of serous carci-
nomas could potentially contribute in distinguishing different types
of ovarian tumors, on a more extensive molecular analysis. Epithelial-
mesenchymal transition has been recognized as a potential mecha-
nism for carcinoma progression. The mechanisms governing EMT
in tumor progression recapitulate many of those identified in em-
bryogenesis [10–12]. However, besides EOC with endometrioid his-
totype, EOCs seem to diverge in other ways from the general EMT
scenario. For example, β-ctn does not detectably activate β-ctn/TCF-
responsive genes on progression [44], whereas E-cadh expression is
maintained in advanced EOCs [6,45]. Therefore, increasing knowl-
edge of the molecular mechanisms of METoccurring at first stages of
tumorigenesis and controlled by vHNF1 in EOCs may provide new
and fascinating insights into the biology of this important disease and
likely to identifying early detection markers and to opening potential
avenues for therapeutic intervention.
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Table W1. (continued )
Table W1. List of EMT-Related Genes.
Gene Symbol Name Gene ID
Gene Symbol
 Name
 Gene ID
GRB7 Growth factor receptor–bound protein 7 2886
HBP17 Fibroblast growth factor binding protein 1 9982
Epithelial genes
Actin cytoskeleton organization
HDGF Hepatoma-derived growth factor (high-mobility group 3068
ARHGAP5
 Rho GTPase activating protein 5
 394

protein 1-like)
ARHGDIA
 Rho GDP dissociation inhibitor (GDI) alpha
 396
ITPR1 Inositol 1,4,5-triphosphate receptor, type 1 3708
ARHGEF1
 Rho guanine nucleotide exchange factor (GEF) 1
 9138

KRT14 Keratin 14 3861
DST
 Dystonin
 667

KRT19 Keratin 19 3880
FLNA
 Filamin A, alpha (actin binding protein 280)
 2316

KRT8 Keratin 8 3856
PODXL
 Podocalyxin-like
 5420

MST1R Macrophage stimulating 1 receptor (c-met–related 4486
Apoptosis
tyrosine kinase)
CTNNAL1
 Catenin (cadherin-associated protein), alpha-like 1
 8727

MUC1 Mucin 1, cell surface associated 4582
MAP3K5
 Mitogen-activated protein kinase kinase kinase 5
 4217

NET1 Neuroepithelial cell transforming gene 1 10276
PRKCZ
 Protein kinase C, zeta
 5590

NNT Nicotinamide nucleotide transhydrogenase 23530
SGK
 Serum/glucocorticoid–regulated kinase
 6446

PROCR Protein C receptor, endothelial (EPCR) 10544
Cell adhesion and/or ECM-related

PTPN1 Protein tyrosine phosphatase, non–receptor type 1 5770
ANXA4
 Annexin A4
 307

RARA Retinoic acid receptor, alpha 5914
CD99
 CD99 molecule
 4267

RGS2 Regulator of G-protein signaling 2, 24 kDa 5997
CDH1
 Cadherin 1, type 1, E-cadherin (epithelial)
 999

SEMA3C Sema domain, immunoglobulin domain (Ig), short 10512
CDH16
 Cadherin 16, KSP-cadherin
 1014
basic domain, secreted, (semaphorin) 3C
CLDN1
 Claudin 1
 9076

SMARCC1 SWI/SNF–related, matrix-associated 6599
CLDN7
 Claudin 7
 1366

SRF Serum response factor (c-fos serum response 6722
DSG2
 Desmoglein 2
 1829
element–binding transcription factor)
EVA1
 Epithelial V–like antigen 1
 10205

STAT5A Signal transducer and activator of transcription 5A 6776
FBLP-1
 filamin binding LIM protein 1
 54751

TACSTD1 Tumor-associated calcium signal transducer 1 4072
ILK
 Integrin-linked kinase
 3611

TACSTD2 Tumor-associated calcium signal transducer 2 4070
ITGA3

TCF3 Transcription factor 3 (E2A immunoglobulin 6929
Integrin, alpha 3 (antigen CD49C, alpha 3
subunit of VLA-3 receptor)
3675
enhancer binding factors E12/E47)
ITGA5

TGFB3 Transforming growth factor, beta 3 7043
Integrin, alpha 5 (fibronectin receptor,
alpha polypeptide)
3678
TGM2 Transglutaminase 2 (C polypeptide, 7052
ITGB1
 Integrin, beta 1
 3688

protein-glutamine-gamma-glutamyltransferase)
ITGB5
 Integrin, beta 5
 3693
TJP1 Tight junction protein 1 (zona occludens 1) 7082
ITGB6
 Integrin, beta 6
 3694

TSC22D1 TSC22 domain family, member 1 8848
JUP
 Junction plakoglobin
 3728

VAMP8 Vesicle-associated membrane protein 8 (endobrevin) 8673
KITLG
 KIT ligand
 4254
Cell motility
LAMA3
 Laminin, alpha 3
 3909

ACTN4 Actinin, alpha 4 81
MAP17
 membrane-associated protein 17
 10158

F11R F11 receptor 50848
NID2
 Nidogen 2 (osteonidogen)
 22795

HMMR Hyaluronan-mediated motility receptor (RHAMM) 3161
NRP2
 Neuropilin 2
 8828

JAG1 Jagged 1 (Alagille syndrome) 182
OCLN
 Occludin
 4950

SERPINB5 Serpin peptidase inhibitor, clade B (ovalbumin), 5268
PKP1
member 5

Plakophilin 1 (ectodermal dysplasia/skin
fragility syndrome)
5317
SPP1 Secreted phosphoprotein 1 (osteopontin, bone 6696
SCRIB
 Scribbled homolog (Drosophila)
 23513

sialoprotein I)
Cell cycle
THBS1 Thrombospondin 1 7057
CCND1
 Cyclin D1
 595

TIAM1 T-cell lymphoma invasion and metastasis 1 7074
CDK7
Development and/or differentiation

Cyclin-dependent kinase 7 (MO15 homolog,
Xenopus laevis, cdk-activating kinase)
1022
DSP Desmoplakin 1832
DUSP1
 Dual specificity phosphatase 1
 1843

EGR2 Early growth response 2 (Krox-20 homolog, Drosophila) 1959
HDAC3
 Histone deacetylase 3
 8841

FGF13 Fibroblast growth factor 13 2258
MAFG

GATA3 GATA binding protein 3 2625
V-maf musculoaponeurotic fibrosarcoma
oncogene homolog G (avian)
4097
GATA4 GATA binding protein 4 2626
SFN
 Stratifin
 2810

GATA6 GATA binding protein 6 2627
PLK2
 Polo-like kinase 2
 10769

HELLS Helicase, lymphoid-specific 3070
TOB2
 Transducer of ERBB2, 2
 10766

HNF4A Hepatocyte nuclear factor 4, alpha 3172
YES1

INHBB Inhibin, beta B (activin AB beta polypeptide) 3625
V-yes-1 Yamaguchi sarcoma viral oncogene
homolog 1
7525
MITF Microphthalmia-associated transcription factor 4286
Cell growth and/or maintenance

MSX2 Msh homeobox 2 4488
ATP1A1
 ATPase, Na+/K+ transporting, alpha 1 polypeptide
 476

NUMB Numb homolog (Drosophila) 8650
ATP1A3
 ATPase, Na+/K+ transporting, alpha 3 polypeptide
 478

SCEL Sciellin 8796
ATP1B1
 ATPase, Na+/K+ transporting, beta 1 polypeptide
 481

TCF4 Transcription factor 4 6925
BCL6
 B-cell CLL/lymphoma 6 (zinc finger protein 51)
 604

TCF6 Transcription factor 6–like 7019
BMP4
 Bone morphogenetic protein 4
 652

TGIF TGFB-induced factor (TALE family homeobox) 7050
BPAG1
 Hemidesmosomal plaque protein
 667
Metabolism
BTG2
 BTG family, member 2
 7832

AMD1 Adenosylmethionine decarboxylase 1 262
CTGF
 Connective tissue growth factor
 1490

ATF3 Activating transcription factor 3 467
DAB2

CA2 Carbonic anhydrase II 760
Disabled homolog 2, mitogen-responsive
phosphoprotein (Drosophila)
1601
CHKA Choline kinase alpha 1119
DEFB1
 Defensin, beta 1
 1672

CITED2 Cbp/p300–interacting transactivator, with 10370
FABP1
 Fatty acid binding protein 1, liver
 2168
Glu/Asp–rich carboxy-terminal domain, 2
FOS
 V-fos FBJ murine osteosarcoma viral oncogene homolog
 2353

CTSH Cathepsin H 1512
FOSB
 FBJ murine osteosarcoma viral oncogene homolog B
 2354

CYP1A1 Cytochrome P450, family 1, subfamily A, 1543
GAB1
 GRB2-associated binding protein 1
 2549
polypeptide 1
GC
 Group-specific component (vitamin D binding protein)
 2638

EGR1 Early growth response 1 1958
GDI2
 GDP dissociation inhibitor 2
 2665

EXT1 Exostoses (multiple) 1 2131
GPC3
 Glypican 3
 2719



Table W1. (continued )

Gene Symbol Name Gene ID

FBP2 Fructose-1,6-bisphosphatase 2 8789
INMT Indolethylamine N -methyltransferase 11185
IRF6 Interferon regulatory factor 6 3664
KLF2 Kruppel-like factor 2 (lung) 10365
LMO7 LIM domain 7 4008
NR4A1 Nuclear receptor subfamily 4, group A, member 1 3164
PADI2 Peptidyl arginine deiminase, type II 11240
PC Pyruvate carboxylase 5091
PFTK1 PFTAIRE protein kinase 1 5218
POLR2A Polymerase (RNA) II (DNA directed) polypeptide A,

220 kDa
5430

PTK9 protein tyrosine kinase 9 5756
SERPINB6 Serpin peptidase inhibitor, clade B (ovalbumin),

member 6
5269

SFRS4 Splicing factor, arginine/serine–rich 4 6429
SP2 Sp2 transcription factor 6668
TCF1 Transcription factor 1, hepatic; LF-B1, hepatic

nuclear factor (HNF1), albumin proximal factor
6927

TCF2 Transcription factor 2, hepatic; LF-B3; variant
hepatic nuclear factor

6928

TIMP3 TIMP metallopeptidase inhibitor 3 (Sorsby fundus
dystrophy, pseudoinflammatory)

7078

TJP2 Tight junction protein 2 (zona occludens 2) 9414
ZFP36 Zinc finger protein 36, C3H type, homolog (mouse) 7538
ZNF239 Zinc finger protein 239 8187

Mesenchymal genes
Actin cytoskeleton organization
ACTG1 Actin, gamma 1 71
ACTN1 Actinin, alpha 1 87
CFL1 Cofilin 1 (nonmuscle) 1072
CORO1C Coronin, actin binding protein, 1C 23603
FLNB Filamin B, beta (actin binding protein 278) 2317
PLEK2 Pleckstrin 2 26499
SDC1 Syndecan 1 6382
VIM Vimentin 7431
WASPIP WAS/WASL interacting protein family, member 1 7456

Apoptosis
CASP9 Caspase 9, apoptosis-related cysteine peptidase 842

Cell adhesion and/or ECM-related
BGN Biglycan 633
CD44 CD44 molecule (Indian blood group) 960
CDH15 Cadherin 15, M-cadherin (myotubule) 1013
CDH2 Cadherin 2, type 1, N-cadherin 1000
CDH6 Cadherin 6, type 2, K-cadherin (fetal kidney) 1004
COL15A1 Collagen, type XV, alpha 1 1306
COL1A2 Collagen, type I, alpha 2 1278
COL5A1 Collagen, type V, alpha 1 1289
COL5A2 Collagen, type V, alpha 2 1290
COL6A1 Collagen, type VI, alpha 1 1291
COL6A2 Collagen, type VI, alpha 2 1292
CTNND1 Catenin (cadherin-associated protein), delta 1 1500
DDR2 Discoidin domain receptor family, member 2 4921
DLG5 Discs, large homolog 5 (Drosophila) 9231
FN1 Fibronectin 1 2335
Lamb1 Laminin, beta 1 3912
LGALS3 Lectin, galactoside-binding, soluble, 3 (galectin 3) 3958
PTPNS1 Protein tyrosine phosphatase, non–receptor type

substrate 1
8194

TNC Tenascin C (hexabrachion) 3371
TNXB Tenascin XB 7148
VCL Vinculin 7414
VTN Vitronectin 7448

Cell cycle
ABL1 V-abl Abelson murine leukemia viral oncogene

homolog 1
25

AK1 Adenylate kinase 1 203
BCL3 B-cell CLL/lymphoma 3 602
BTG3 BTG family, member 3 10950
CDC2 Cell division cycle 2, G1 to S and G2 to M 983
CDKN1A Cyclin-dependent kinase inhibitor 1A (p21, Cip1) 1026
CDKN2A Cyclin-dependent kinase inhibitor 2A (melanoma,

p16, inhibits CDK4)
1029

Table W1. (continued )

Gene Symbol Name Gene ID

CDKN2C Cyclin-dependent kinase inhibitor 2C (p18,
inhibits CDK4)

1031

GAS1 Growth arrest–specific 1 2619
PSEN2 Presenilin 2 (Alzheimer disease 4) 5664

Cell growth and/or maintenance
ABCA9 ATP-binding cassette, subfamily A (ABC1),

member 9
10350

ABCC11 ATP-binding cassette, subfamily C (CFTR/MRP),
member 11

85320

AFP Alpha-fetoprotein 174
BMP7 Bone morphogenetic protein 7 (osteogenic protein 1) 655
BSG Basigin (Ok blood group) 682
CAV1 Caveolin 1, caveolae protein, 22 kDa 857
CCK Cholecystokinin 885
CCL2 Chemokine (C-C motif ) ligand 2 6347
CCL8 Chemokine (C-C motif ) ligand 8 6355
CD68 CD68 molecule 968
CTGF Connective tissue growth factor 1490
CXCL1 Chemokine (C-X-C motif ) ligand 1 (melanoma

growth stimulating activity, alpha)
2919

CXCL5 Chemokine (C-X-C motif ) ligand 5 6374
CXCR7 Chemokine (C-X-C motif ) receptor 7 57007
EDG1 Endothelial differentiation, sphingolipid

G-protein–coupled receptor, 1
1901

EPS8 Epidermal growth factor receptor pathway
substrate 8

2059

FZD1 Frizzled homolog 1 (Drosophila) 8321
FZD10 Frizzled homolog 10 (Drosophila) 11211
FZD2 Frizzled homolog 2 (Drosophila) 2535
FZD3 Frizzled homolog 3 (Drosophila) 7976
FZD4 Frizzled homolog 4 (Drosophila) 8322
FZD5 Frizzled homolog 5 (Drosophila) 7855
FZD6 Frizzled homolog 6 (Drosophila) 8323
FZD7 Frizzled homolog 7 (Drosophila) 8324
FZD8 Frizzled homolog 8 (Drosophila) 8325
FZD9 Frizzled homolog 9 (Drosophila) 8326
IFI6 Interferon, alpha-inducible protein 6 2537
GBP3 Guanylate binding protein 3 2635
GNAQ Guanine nucleotide binding protein (G protein),

q polypeptide
2776

GNG11 Guanine nucleotide binding protein (G protein),
gamma 11

2791

GABBR2 gamma-aminobutyric acid (GABA) B receptor, 2 9568
HGF Hepatocyte growth factor (hepapoietin A;

scatter factor)
3082

HIF1 Hypoxia-inducible factor 1 3091
EPAS1 Hypoxia-inducible factor 2 2034
HMGA2 High mobility group AT-hook 2 8091
IGFBP1 Insulin-like growth factor binding protein 1 3484
IGFBP3 Insulin-like growth factor binding protein 3 3486
IGFBP4 Insulin-like growth factor binding protein 4 3487
IGFBP5 Insulin-like growth factor binding protein 5 3488
IL8RB Interleukin 8 receptor, beta 3579
KIFAP3 Kinesin-associated protein 3 22920
MADH4 SMAD family member 4 4089
MEIS1 Meis homeobox 1 4211
MET Met proto-oncogene (hepatocyte growth

factor receptor)
4233

MYBBP1A MYB binding protein (P160) 1a 10514
NTRK3 Neurotrophic tyrosine kinase, receptor, type 3 4916
PCOLCE Procollagen C-endopeptidase enhancer 5118
PDGFA Platelet-derived growth factor alpha polypeptide 5154
PDGFRA Platelet-derived growth factor receptor,

alpha polypeptide
5156

PDGFRB Platelet-derived growth factor receptor,
beta polypeptide

5159

PHGDH Phosphoglycerate dehydrogenase 26227
PKC Paroxysmal kinesigenic choreoathetosis 50818
PMP22 Peripheral myelin protein 22 5376
PTHLH Parathyroid hormone–like hormone 5744
PTPN22 Protein tyrosine phosphatase, non–receptor

type 22 (lymphoid)
26191

PTPN7 Protein tyrosine phosphatase, non–receptor type 7 5778



Table W1. (continued )

Gene Symbol Name Gene ID

PTPRM Protein tyrosine phosphatase, receptor type, M 5797
REL V-rel reticuloendotheliosis viral oncogene

homolog (avian)
5966

RRAS Related RAS viral (r-ras) oncogene homolog 6237
SLC29A1 Solute carrier family 29 (nucleoside transporters),

member 1
2030

SRC V-src sarcoma (Schmidt-Ruppin A-2) viral oncogene
homolog (avian)

6714

STAT1 Signal transducer and activator of transcription 1,
91 kDa

6772

TCF3 Transcription factor 3 (E2A immunoglobulin
enhancer binding factors E12/E47)

6929

TCF8 Transcription factor 8 (represses
interleukin 2 expression)

6935

TGFB1 Transforming growth factor, beta 1
(Camurati-Engelmann disease)

7040

TIEG Kruppel-like factor 10 7071
TLN1 Talin 1 7094
TSPAN-3 tetraspanin 3 10099
TUBA6 Tubulin, alpha 6 84790

Cell motility
ACTB Actin, beta 60
C4A complement component 4A 720
CALD1 Caldesmon 1 800
CTSB Cathepsin B 1508
CTSZ Cathepsin Z 1522
GRN Granulin 2896
MMP10 Matrix metallopeptidase 10 (stromelysin 2) 4319
MMP12 Matrix metallopeptidase 12 (macrophage elastase) 4321
MMP13 Matrix metallopeptidase 13 (collagenase 3) 4322
MMP2 Matrix metallopeptidase 2 (gelatinase A, 72 kDa

gelatinase, 72 kDa type IV collagenase)
4313

MMP7 Matrix metallopeptidase 7 (matrilysin, uterine) 4316
MMP9 Matrix metallopeptidase 9 (gelatinase B, 92 kDa

gelatinase, 92 kDa type IV collagenase)
4318

MSN Moesin 4478
NOTCH2 Notch homolog 2 (Drosophila) 4853
PLA2G7 Phospholipase A2, group VII (platelet-activating

factor acetylhydrolase, plasma)
7941

PLAU Plasminogen activator, urokinase 5328
PLAUR Plasminogen activator, urokinase receptor 5329
S100A2 S100 calcium binding protein A2 6273
S100A3 S100 calcium binding protein A3 6274
S100A4 S100 calcium binding protein A4 6275
S100A6 S100 calcium binding protein A6 6277
S100A8 S100 calcium binding protein A8 6279
S100P S100 calcium binding protein P 6286
SERPINH1 Serpin peptidase inhibitor, clade H (heat shock

protein 47), member 1
871

TIMP1 TIMP metallopeptidase inhibitor 1 7076
Development and/or differentiation
COL3A1 Collagen, type III, alpha 1 (Ehlers-Danlos

syndrome type IV, autosomal dominant)
1281

CYP1B1 Cytochrome P450, family 1, subfamily B, polypeptide 1 1545
DCN Decorin 1634
FGF19 Fibroblast growth factor 19 9965
FLOT1 Flotillin 1 10211
ID1 Inhibitor of DNA binding 1, dominant negative

helix-loop-helix protein
3397

ID3 Inhibitor of DNA binding 3, dominant negative
helix-loop-helix protein

3399

ID4 Inhibitor of DNA binding 4, dominant negative
helix-loop-helix protein

3400

IL11 Interleukin 11 3589
INHBA Inhibin, beta A (activin A, activin AB alpha polypeptide) 3624
ISL2 ISL2 transcription factor, LIM/homeodomain, (islet-2) 64843
LDB2 LIM domain binding 2 9079
LUM Lumican 4060
NEUROD4 Neurogenic differentiation 4 58158
SNAI1 Snail homolog 1 (Drosophila) 6615
SNAI2 Snail homolog 2 (Drosophila) 6591
SPARC Secreted protein, acidic, cysteine-rich (osteonectin) 6678
SPRR1A Small proline-rich protein 1A 6698

Table W1. (continued )

Gene Symbol Name Gene ID

TCF4 Transcription factor 4 6925
TLE1 Transducin-like enhancer of split 1 (E(sp1)

homolog, Drosophila)
7088

TWIST1 twist homolog 1 7291
TWIST2 twist homolog 2 117581
WNT5A Wingless-type MMTV integration site family,

member 5A
7474

WNT5B Wingless-type MMTV integration site family,
member 5B

81029

Metabolism
ACVR1 Activin A receptor, type I 90
ADSS Adenylosuccinate synthase 159
AK3 Adenylate kinase 3 50808
ASNS Asparagine synthetase 440
BHLHB2 Basic helix-loop-helix domain containing, class B, 2 8553
CD63 CD63 molecule 967
FDPS Farnesyl diphosphate synthase 2224
FKBP14 FK506 binding protein 14, 22 kDa 55033
FMO1 Flavin containing monooxygenase 1 2326
GALK1 Galactokinase 1 2584
HSPG2 Heparan sulfate proteoglycan 2 (perlecan) 3339
INSL6 Insulin-like 6 11172
MTHFD2 Methylenetetrahydrofolate dehydrogenase

(NADP+ dependent) 2
10797

NME2 Nonmetastatic cells 2, protein 4831
PCK1 Phosphoenolpyruvate carboxykinase 1 (soluble) 5105
PTGIS Prostaglandin I2 (prostacyclin) synthase 5740
PTGS1 Prostaglandin-endoperoxide synthase 1 (prostaglandin

G/H synthase and cyclooxygenase)
5742

PTGS2 Prostaglandin-endoperoxide synthase 2 (prostaglandin
G/H synthase and cyclooxygenase)

5743

RPS24 Ribosomal protein S24 6229
SLC3A2 Solute carrier family 3 (activators of dibasic and neutral

amino acid transport), member 2
6520

SRM Spermidine synthase 6723
VLDLR Very low density lipoprotein receptor 7436
ZNF275 Zinc finger protein 275 10838

Biological process unknown
ISG15 ISG15 ubiquitin-like modifier 9636
PSTPIP2 Proline-serine-threonine phosphatase interacting

protein 2
9050

UPP1 Uridine phosphorylase 1 7378


