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Abstract
Background: Term identification is the task of grounding ambiguous mentions of biomedical
named entities in text to unique database identifiers. Previous work on term identification has
focused on studying species-specific documents. However, full-length articles often describe
entities across a number of species, in which case resolving the ambiguity of model organisms in
entities is critical to achieving accurate term identification.

Results: We developed and compared a number of rule-based and machine-learning based
approaches to resolving species ambiguity in mentions of biomedical named entities, and
demonstrated that a hybrid method achieved the best overall accuracy at 71.7%, as tested on the
gold-standard ITI-TXM corpora. By utilising the species information predicted by the hybrid tagger,
our rule-based term identification system was improved significantly by up to 11.6%.

Conclusion: This paper shows that, in the context of identifying terms involving multiple model
organisms, integration of an accurate species disambiguation system can significantly improve the
performance of term identification systems.

Background
The exponential growth of the amount of scientific litera-
ture in the fields of biomedicine and genomics has made
it increasingly difficult for scientists to keep up with the
state of the art. The TXM project [1], a three-year project
which aims to produce software tools to aid curation of
biomedical papers, targets this problem and exploits nat-
ural language processing (NLP) technology in an attempt
to automatically extract enriched protein-protein interac-

tions (EPPI) and tissue expressions (TE) from biomedical
text.

A critical task in TXM is term identification (TI), the task of
grounding mentions of biomedical named entities to
identifiers in referent databases. TI can be seen as an inter-
mediate task that builds on the previous component in an
information extraction (IE) pipeline, i.e., named entity
recognition (NER), and provides crucial information as
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input to the more complex module of relation extraction
(RE). The structure of the IE pipeline resembles a typical
curation process by human biologists. For example, when
curating protein-protein interactions (PPIs), a curator
would first mark up the protein mentions in text, and then
identify the mentions by finding their unique identifiers
from standard protein databases such as RefSeq [2], and
finally curate pairs of IDs as PPIs.

TI is a matching and disambiguation process [3], and a pri-
mary source of ambiguity lies in the model organisms of
the terms. In curation tasks, one often needs to deal with
collections of articles that involve entities of a large variety
of species. For example, our collection of articles from
PubMed and PubMed Central involve over 100 model
organisms. Also, it is often the case that more than one
species appear in the same document, especially when the
document is a full-length article. In our dataset, 74% of
the articles concern more than one organism. In many
standard databases, such as RefSeq and SwissProt,
homolog proteins in different species, which often con-
tain nearly identical synonym lists, are assigned distinct
identifiers. This makes biomedical terms even more
polysemous and hence species disambiguation becomes
crucial to TI. For example, querying RefSeq with the pro-
tein mention plk1 resulted in 98 hits. By adding a species
to the query, e.g. mouse, one can significantly reduce the
number of results to two.

The most relevant work to ours are the Gene Normalisation
(GN) tasks [4,5] in the BioCreAtIvE I & II workshops [6,7].
The data provided in the GN tasks, however, were species-
specific, which means that the lexicons and datasets were
concerned with single model organisms and thus species
disambiguation was not required. A few participating sys-
tems, however, integrated a filter to rule out entities with
erroneous species [8,9], which were reported to be help-
ful. Another difference between our task and the BioCreA-
tIvE GN ones is that we carry out TI on entity level while GN

on document level.

It is worth mentioning that the protein-protein interac-
tion task (IPS) in BioCreAtIvE II has taken into account
species ambiguity. The IPS task resembles the work-flow of
manual curation of PPIs in articles involving multiple spe-
cies, and to accomplish the task, one would require a full
pipeline of IE systems, including named entity recogni-
tion, term identification and relation extraction. The best
result for IPS[10] was fairly low at 28.85% F1, which
reflects the difficulty of the task. Some participants of IPS

have reported (e.g., [11]) that resolving species ambiguity
was one of the biggest challenges. Our analysis of the IPS

training data revealed that the interacting proteins in this
corpus belong to over 60 species, and only 56.27% of
them are human.

As noted in previous work [10-14], determining the cor-
rect species for the protein mentions is a very important
step towards TI. However, as far as we know, there has
been little work in species disambiguation and in to what
extent resolving species ambiguity at an entity level can
help TI.

Results and discussion
Species disambiguation
The species tagger was developed on the ITI TXM corpora
[15], which were produced as part of the TXM project [1].
We created two corpora in slightly different domains, EPPI

and TE. The EPPI corpus consists of 217 full-text papers
selected from PubMed and PubMed Central and domain
experts annotated all documents for both protein entities
and PPIs, as well as extra (enriched) information associ-
ated with the PPIs and normalisations of the proteins to
publicly available ontologies. The TE corpus consists of
230 full-text papers, in which entities such as proteins, tis-
sues, genes and mRNAcDNAs were identified, and a new tis-
sue expression relation was marked up.

We used these corpora to develop a species tagging sys-
tem. The biomedical entities in the data were manually
assigned with standard database identifiers, where genes
were assigned with EntrezGene IDs, and proteins and
mRNAcDNAs with RefSeq IDs. Hence it was straightfor-
ward to obtain their species IDs through the mappings
provided by EntrezGene and RefSeq. In more detail, pro-
teins, protein complexes, genes and mRNAcDNAs in both
EPPI and TE datasets were assigned with NCBI Taxonomy
IDs (TaxIDs) [16], to denote their species. The EPPI and TE

datasets have different distributions of species. For exam-
ple, the entities in the EPPI training data belong to 118 spe-
cies with human being the most frequent at 51.98%, and
those in the TE training set are across 67 species and mouse
was the most frequent at 44.67%.

To calculate the inter-annotator-agreement, about 40% of
the documents were doubly annotated by different anno-
tators. The averaged F1 scores of species annotation on the
doubly annotated EPPI and TE datasets are 86.45% and
95.11%, respectively, indicating that human annotators
have high agreement when assigning species to biomedi-
cal entities.

To assess how much species ambiguity accounts for the
overall ambiguity in biomedical entities, we estimated the
averaged ambiguity rates for the protein entities in the TXM

datasets, without and with the species information.

Suppose there are n unique protein mentions in a dataset.
First, we look up the RefSeq database by exact match with

every unique protein mention mi, where i ∈ {0..n - 1}, and
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for each mi we retrieve two lists of identifiers: Li and ,

where Li consists of all identifiers and  only contains

the identifiers whose model organism matches the manu-
ally tagged species of the protein mention. The ambiguity

rates without and with species are computed by 

and , respectively. Table 1 shows the ambiguity

rates on the EPPI and TE datasets.

Using the ITI TXM corpora, we first devised a number of
rule-based species disambiguation systems. It is intuitive
that a species word that occurs near an entity (e.g., "mouse
p53") is a strong indicator of its species. To assess this intu-
ition, we developed a set of rules using heuristics and the
species words detected by a species word tagger (to be
described later).

• PreWd: If the word preceding an entity is a species word,
assign the species indicated by that word to the entity.

• PreWd Sent: If a species word occurs to the left of an
entity and in the same sentence, assign the species indi-
cated by that word to the entity.

• Prefix: If an entity has a species-indicating prefix, e.g.,
mSos-1, then tag the species to that entity.

• Spread: Spread the species of an entity e to all entities in
the same document that have the same surface form with
e. This rule must be used in conjunction with the other
rules.

• Majority Vote: Count the species words in a document
and assign as a weight to each species the proportion of all
species words in the document that refer to the species.
For example, if there are N species words in a document
and Nhuman are associated with human, the human species

weight is calculated as . Tag all entities in the doc-

ument the species with the highest weight, defaulting to

human in the case of a tie. This rule was used by default in
the rule-based TI system, described later in this paper.

Table 2 shows the results of species tagging when the
above rules were applied. As we can see, the precision of
the systems that rely solely on the previous species words
or prefixes is very good but the recall is low. The system
that looks at the previous species word in the same sen-
tence does better as measured by F1. In addition, spread-
ing the species improves both systems but the overall
results are still not satisfactory.

It is slightly counter-intuitive that using a rule such as
'PreWd' did not achieve perfect precision. Closer inspec-
tion revealed that most of the false positives were due to a
few problematic guidelines in the annotation process. For
example,

• "The amounts of human and mouse CD200R ...", where
'CD200R' was tagged as mouse (10090) by the system but
the gold-standard answer was human (9606). This was due
to the fact that the annotation tool was not able to assign
multiple correct species to a single entity.

• "... wheat eIFiso4G ...", where 'eIFiso4G' was tagged as
wheat (4565) but the annotator thought it was Triticum
(4564). In this case, TaxID 4565 is a species under genus
4564, and arguably is also a correct answer. Other similar
cases include Xenopus vs. Xenopus tropicalis, and Rattus
vs. Rattus norvegicus, etc. This is the main cause for the
false positives as our system always predicts species
instead of genus or TaxIDs of any other ranks, which the
annotators occasionally employed.

Furthermore, we split the EPPI and TE datasets into training
and development test (devtest) sets and developed a
machine-learning (ML) based species tagger. Using the
training splits, we trained a maximum entropy classifier
[17] on a number of features such as contextual words and
nearly species words, which will be detailed later.

The results of the ML species tagger are shown in Table 3.
We measure the performance in accuracy instead of F1
because the ML based tagger assigns a species tag to every
entity occurrence, and therefore precision is equal to
recall. We tested four models on the devtest portions of
the EPPI and TE corpora:

• BL: a baseline system, which tags the devtest instances
using the most frequent species occurring in the corre-
sponding training dataset. For example, human is the most
frequent species in the EPPI training data, and therefore all
entities in the EPPI devtest dataset were tagged with human.

′Li

′Li

Lii
n

n
=
−∑ 0

1

′=
−∑ Lii

n

n
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Table 1: Ambiguity in protein names. Ambiguity in protein 
entities, with and without species information, in EPPI and TE 
datasets.

Protein Cnt ID Cnt Ambiguity

EPPI 6,955 184,633 26.55
EPPI species 6,955 17,357 2.50

TE 8,539 103,016 12.06
TE species 8539 12,705 1.49
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• EPPI Model: obtained by training the maxent classifier on
the EPPI training data.

• TE Model: obtained by training the maxent classifier on
the TE training data.

• Combined Model: obtained by training the maxent classi-
fier on a joint dataset consisting of both the EPPI and TE

training corpora.

Finally, we devised a hybrid species tagging system. As we
have shown, the rules 'PreWd' and 'Prefix' achieved very
good precision but low recall, which suggests that when
these rules were applicable, it is highly likely that they
would get the correct species. Based on this observation,
we combined the ML approach and the rule-based
approach in such a way that the rules 'PreWd' and 'Prefix'
were applied on top of ML and to override predictions
made by ML. The hybrid systems were tested on the same
datasets and the results are shown in the right 3 columns
in Table 3. We performed significance tests on the results
in Table 3. First, a Friedman test was used to determine
whether the 7 sets of results were significantly different,
and then pairwise Wilcoxon Signed Rank tests were
employed to tell whether any system performed signifi-
cantly better than others. On both datasets, the 6
machine-learning models significantly outperformed the
baseline (p <0.01). On EPPI devtest dataset, the EPPI mod-
els (with or without rules) and the Combined Models out-
performed the TE models (p <0.05), while on TE dataset,
the TE models and the Combined Models outperformed
the EPPI models (p <0.05). Applying the post filtering rules

did not significantly improve the ML models, although it
appears that adding the rules consistently increased the
accuracy.

Term identification with species disambiguation
Experiments on the ITI TXM corpora
To identify whether species disambiguation can improve
performance of TI, we ran the TI system on the EPPI and TE

datasets in the ITI TXM corpora. We tested the TI systems
with or without help from a number of species tagging
systems, including:

• Baseline: Run TI without species tags. Note that the TI sys-
tem already integrated a basic species tagging system that
uses the Majority Vote rule. Thus this is a fairly high 'base-
line'.

• Gold Species: Run TI with manually tagged species. This is
the upper-bound performance.

• Rule: Run TI with species predicted by the rule-based spe-
cies tagger using rules "PreWd" and "Prefix".

• ML(human/mouse): Run TI with the species that occurs
most frequently in the training datasets (i.e., human for
EPPI and mouse for TE).

• ML(EPPI): Run TI with species predicted by the ML tagger
trained on the EPPI training dataset.

• ML(EPPI)+Rule: Run TI with species predicted by the
hybrid system using both ML(EPPI) and the rules.

Table 2: Results (%) of the rule-based species tagger

EPPI devtest TE devtest

P R F1 P R F1

PreWd 81.88 1.87 3.65 91.49 1.63 3.21
PreWd + Spread 63.85 14.17 23.19 77.84 17.97 29.20
PreWd Sent 60.79 5.16 9.52 56.16 7.76 13.64
PreWd Sent + Spread 39.74 50.54 44.49 31.71 46.68 37.76
Prefix 98.98 3.07 5.96 77.93 2.97 5.72
PreWd + Prefix 91.95 4.95 9.40 82.27 4.62 8.75
PreWd + Prefix + Spread 68.46 17.49 27.87 77.77 21.26 33.39
Majority Vote 44.10 44.10 44.10 49.87 49.87 49.87

Table 3: Results (%) of the machine-learning and hybrid species taggers. Accuracy (%) of the machine-learning based species tagger and 
the hybrid species tagger as tested on the EPPI and TE devtest datasets. An 'Overall' score is the micro-average of a system's accuracy 
on both datasets.

BL EPPI Model TE Model Combined Model EPPI Model+Rules TE Model+Rules Combined Model+Rules

EPPI devtest 60.56 73.03 58.67 72.28 74.24 59.67 73.77
TE devtest 30.22 67.15 69.82 67.20 67.53 70.14 67.47
Overall 48.88 70.77 62.96 70.33 71.66 63.70 71.34
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• ML(TE): Run TI with species predicted by the ML tagger
trained on the TE training dataset.

• ML(TE)+Rule: Run TI with species predicted by the hybrid
system using both ML(TE) and the rules.

• ML(EPPI+TE): Run TI with species predicted by the ML tag-
ger trained on both EPPI and TE training data.

• ML(EPPI+TE)+Rule: Run TI with species predicted by the
hybrid system using both ML(EPPI+TE) and the rules.

We score the systems using top n precision, where n ∈ {1,
5, 10, 15, 20}. The argument for this evaluation scheme is
that if a TI system is not good enough in predicting a single
identifier correctly, a 'bag' of IDs with the correct answer
included would also be helpful. The 'Avg. Rank' field
denotes the averaged position where the correct answer
lies in, and the lower the value is, the better the TI system
performs. For example, a TI system with an 'Avg. Rank' of
1 would be ideal, as it would always return the correct ID
at the top of the list. Note that in the TE data, not only pro-
tein entities, but also genes, mRNAcDNA, and GOMOPs were
tagged, where a GOMOP denotes an entity being either a
gene, or an mRNAcDNA, or a protein.

As shown in Tables 4 and 5, on both datasets, using the
gold standard species much improved accuracy of TI (e.g.,
19.2% on EPPI data). Also, automatically predicted species
tags were proven to be helpful. On the EPPI data, the
ML(EPPI)+Rule outperformed other systems. Note that the
species distribution in the devtest dataset is strongly
biased to human, which explains why the ML(human) sys-
tem performed nearly as well. However, defaulting to
human was not guaranteed to succeed because one would
not be able to know the prior species in a collection of
unseen documents. Indeed, on the TE data, the system
ML(mouse), which uses mouse as default, yielded poor
results.

Experiments on BioCreAtIvE data
To assess the portability of the species tagging approaches,
an "artificial" dataset was created by joining the species-
specific datasets from BioCreAtIvE 1 & 2 GN tasks to form
a corpus consisting of four species. In detail, four datasets
were taken, three from BioCreAtIvE 1 task 1B (i.e., fly,
mouse and yeast) and one from BioCreAtIvE 2 task GN

(i.e., human). Assuming genes in each dataset are species-
specific, we can train/test ML models for species disam-
biguation and apply them to help TI. This task is more dif-
ficult than the original BioCreAtIvE GN tasks due to the
additional ambiguity caused by multiple model organ-
isms. Note that the above assumption is not strictly true
because each dataset may contain genes of other species,
and it would be hard to assess how true it is as abstracts in
the BioCreAtIvE GN datasets are not normalised to an
entity level.

We first carried out experiments on species disambigua-
tion. In addition to the TXM (i.e., the system uses
ML(EPPI+TE)+Rule model) and the Majority Vote taggers, we
trained the species tagger on a dataset comprising of the
devtest sets from the BioCreAtIvE I & II GN tasks. In more
detail, we first pre-processed the dataset and marked up
gene entities with an NER system [11,18], which was
trained on BioCreAtIvE II GM training and test datasets.
The entities were tagged with the species as indicated by
the source dataset where they were drawn from, which
were used as the 'gold' species. Using the same algorithm
and feature set as described previously, a BC model was
trained. As shown in Table 6, except on human, the TXM

model yielded very disappointing results, whereas the BC
model did well overall. This was because the TXM model
was trained on a dataset where fly and yeast entities occur
rarely with only 2% and 5% of the training instances
belonging to these species, respectively, which again
revealed the influence of the bias introduced in the train-
ing material to the ML models.

Table 4: Results (%) of TI on the EPPI dataset. All figures, except 'Avg. Rank', are percentages. This evaluation was carried out on 
protein entities only.

Method Prec@1 Prec@5 Prec@10 Prec@15 Prec@20 Avg. Rank

Baseline 54.31 73.45 76.44 77.90 78.51 5.82
Gold Species 73.52 79.36 80.75 80.75 80.99 1.62

Rule 54.99 73.72 76.45 77.91 78.52 5.79
ML(human) 65.66 76.36 78.82 79.78 80.03 2.58
ML(EPPI) 65.24 76.82 79.01 79.93 80.29 2.39
ML(EPPI)+Rule 65.88 77.09 79.04 79.94 80.30 2.36
ML(TE) 55.87 75.14 78.69 79.85 80.30 2.86
ML(TE)+Rule 56.54 75.47 78.70 79.86 80.31 2.83
ML(EPPI+TE) 64.55 76.48 78.53 79.83 80.38 2.49
ML(EPPI+TE)+Rule 65.03 76.62 78.55 79.84 80.39 2.46
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Using the species disambiguation models, we carried out
TI experiments, using the same procedure as we did on the
TXM data. The results were obtained using the official Bio-
CreAtIvE GN scorers and are presented in Table 7. Perform-
ance of TI assisted by all three species taggers were much
behind that of TI using the gold-standard species, which
shows species-tagging can potentially enhance TI perform-
ance and there is much room for improving the species
disambiguation systems. On the other hand, it was disap-
pointing that the 'Majority Vote' system, which did not use
any external species tagger, achieved the best results, while
TI with the 'BC model' tagger yielded slightly worse results
and the TXM model performed poorly.

One possible reason that the 'Majority Vote' tagger yielded
reasonably good result on the BioCreAtIvE dataset, but
unsatisfactory result on the TXM datasets was due to the
difference in document length in the two corpora: the Bio-
CreAtIvE corpus is comprised of abstracts and the TXM cor-
pora consist of only full-length articles. In abstracts,
authors are inclined to only talk about the main biomed-
ical entities described in the paper, whereas in full articles,
they tend to describe a larger number of entities, possibly
in multiple species, for the purposes of describing related
work or comparison. Recall that the 'Majority Vote' rule
outputs the species indicated by the majority of the spe-
cies words, which would obviously perform better on

abstracts, where more likely only one species is described,
than on full-length articles. Table 8 shows the number of
species per document in the TXM data, where most docu-
ments (i.e., 74%) involve more than one species, in which
cases the 'Majority Vote' would not be able to take obvious
advantage.

Conclusion
We have presented a range of solutions to the task of spe-
cies disambiguation and evaluated their performance on
the ITI TXM corpus, and on a joint dataset from BioCreA-
tIvE I & II GN tasks. We showed that rule-based species tag-
ging systems that exploit heuristics, such as previous
species words or species prefix, can achieve very high pre-
cision but low recall. ML species taggers, on the other
hand, can achieve good overall performance, under the
condition that the species distributions in training and
test datasets are not too distant. Our best performing spe-
cies tagger is a hybrid system that first uses ML to predict
species and then applies certain rules to correct errors.

We also performed TI experiments with help from the spe-
cies tags assigned by human annotators, or predicted by
the automatic species taggers. On all datasets, the gold-
standard species tags much improved TI performance:
19.21% on the EPPI devtest set, 8.59% on the TE devtest set,
and 23.4% on the BioCreAtIvE GN test datasets, which
clearly shows that species information is indeed very
important for TI. On the EPPI and TE datasets, the species

Table 5: Results (%) of TI on the TE dataset. All figures, except 'Avg. Rank', are percentages. There are four entity types in the TE data, 
i.e., protein, gene, mRNAcDNA and GOMOP. The evaluation was carried out on all entity types.

Method Prec@1 Prec@5 Prec@10 Prec@15 Prec@20 Avg. Rank

Baseline 63.24 76.20 77.30 77.94 78.25 1.72
Gold Species 71.82 78.03 78.34 78.40 78.41 1.29

Rule 63.45 76.21 77.30 77.95 78.25 1.72
ML(mouse) 58.76 75.40 77.25 77.92 78.24 1.90
ML(EPPI) 66.59 76.53 77.23 77.76 78.12 1.68
ML(EPPI)+Rule 66.85 76.54 77.24 77.76 78.12 1.67
ML(TE) 66.12 76.25 77.32 77.81 78.11 1.70
ML(TE)+Rule 66.37 76.25 77.32 77.81 78.11 1.70
ML(EPPI+TE) 65.78 76.14 77.28 77.84 78.12 1.71
ML(EPPI+TE)+Rule 66.03 76.14 77.29 77.84 78.12 1.70

Table 6: Results (%) of species tagging on the BioCrAtIvE joint 
dataset. Accuracy (%) of the species disambiguation systems as 
tested on the BioCreAtIvE I & II test data. The 'BC model' was 
trained on the BioCreAtIvE devtest data, the 'TXM model' was 
trained on the TXMEPPI and TE training data, and the 'Majority 
Vote' was the default species tagging system in the TI system.

human fly mouse yeast

Majority Vote 82.35 78.43 71.69 85.12
BC model 70.23 89.24 75.41 87.64
TXM model 93.35 3.27 31.89 3.49

Table 7: Results (%) of TI on the BioCrAtIvE joint dataset. 
Performance of TI with or without the automatically predicted 
species on the joint BioCreAtIvE GN test dataset.

System Precision Recall F1

Gold 70.1 63.3 66.5
Majority Vote 46.7 56.3 51.0
TXM model 37.8 46.5 41.7
BC model 45.8 56.1 50.4
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predicted by the best-performing hybrid system improved
TI by 11.57% and 3.61%, respectively. On the combined
dataset from BioCreAtIvE GN tasks, however, it did not
work as well as expected.

Methods
Detecting species words
Words referring to species, such as human, are important
indicators of the species of the nearby entities. We devel-
oped a rule-based program that detects species words,
which were used to help the species identification sys-
tems.

The species word tagger is a lexical look-up component
which applies to tokenised text and marks content words
such as human, murine and D. melanogaster with their cor-
responding species TaxIDs. In addition, rules written in an
lxtransduce grammar [19] developed at the LTG group at
Edinburgh University are used to identify species prefixes
(e.g., 'h' for human, 'm' for mouse). For example, the term
mSos-1 would be assigned with a TaxID for mouse. Note
that a species "word" may contain several words, for
example, "E. coli". Please see [20] for more details on the
species word tagger.

Machine learning based species tagging
We trained a maximum entropy classifier [17] on the fol-
lowing set of features, with respect to each entity occur-
rence. The parameter n was empirically developed using
the training datasets.

• leftContext The n word lemmas to the left of the entity,
without position (n = 200).

• rightContext The n word lemmas to the right of the entity,
without position (n = 200).

• leftSpeciesIDs The n species IDs, located to the left of the
entity and assigned by the species word tagger (n = 5).

• rightSpeciesIDs The n species IDs, located to the right of
the entity and assigned by the species word tagger (n = 5).

• leftNouns The n nouns to the left of the entity (with order
and n = 2). This feature attempts to capture cases where a
noun preceding an entity indicates species, e.g., mouse pro-
tein p53.

• leftAdjs The n adjectives to the left of the entity (with
order and n = 2). This feature intends to capture cases
where an adjective preceding an entity indicates species,
e.g., murine protein p53.

• leftSpeciesWords The n species word forms, identified by
the species word tagger, located to the left of the entity (n
= 5).

• rightSpeciesWords The n species word forms, identified by
the species word tagger, located to the right of the entity
(n = 5).

• firstLetter The first character of the entity itself. Some-
times the first letters of entities indicate their species, e.g.,
hP53.

• documentSpeciesIDs All species IDs that occur in the arti-
cle in question.

• useStopWords If this feature is switched on then filter out
the words that appear in a pre-compiled stop-word list
from the above features. The list consists of frequent com-
mon English words such as prepositions (e.g., in).

• useStopPattern If this feature is switched on then filter out
the words consisting only of digits and punctuation char-
acters.

The TI system
The TI system is composed of a matcher which determines
a list of candidate identifiers and a ranker that assigns a
confidence value to each identifier that is used to rank the
candidates in order with the most likely identifiers occur-
ring first. The matcher is based largely on the rule-based
system described in [3], but has been put into a more flex-
ible framework that allows for defining and customising
the rules in a configuration file. In addition, the system
has been expanded to perform TI on additional entity
types. The rules for each entity were developed using the
training data and a visualisation system that compared the
synonym list for the target identifiers with the actual
entity mentions and provided visual feedback on the true
positives and false positives resulting from candidate rules
sets. Examples of some of the rules that can be incorpo-
rated into the system are listed below. A confidence value
is assigned to each of the rules using heuristics and passed
to the ranking system.

1. LowerCase: Convert the entity mention to lowercase and
look up the result in a lower case version of the entity term
database.

2. Norm: Normalise the mention and look up the result in
a normalised version of the term database, where normal-

Table 8: # of species per document in the TXM data

# Species # of Docs % of Docs

1 96 26.20
2 121 32.79

3+ 153 41.19
Page 7 of 9
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ising a string involves converting Greek characters to Eng-
lish (e.g., α → alpha), converting to lowercase, changing
sequential indicators to integer numerals (e.g., i, a, alpha
→ 1, etc.) and removing all spaces and punctuation. For
example, rab1, rab-1, rabα, rab I are all normalised to rab1.

3. Prefix: Add and/or remove a set of prefixes from the
entity mention and look up the result in the entity term
database. The actual prefixes and whether to add or
remove them are specified in the configuration file.

4. Suffix: Add and/or remove a set of suffixes from the
entity mention and look up the result in the entity term
database. The actual suffixes and whether to add or
remove them are specified in the configuration file.

5. Porter: Compute the Porter stem of the entity mention
and looked up the synonym in a Porter stemmed version
of the entity term database.

The ranking system currently works by defining a set of
confidence indicators for each entity, computing the con-
fidence for each indicator and then multiplying each indi-
vidual confidence together to determine the overall
identifier confidence. The following indicators are cur-
rently used by the system.

1. Match: The confidence as determined by the matcher.

2. Species: The confidence that the species of the identifier
is the correct species.

3. Reference Count: Based on the number of literature ref-
erences databases associated with each identifier,
obtained from EntrezGene and RefSeq. The higher the ref-
erence count, the higher the confidence.

4. Primary Name: Based on a determination that the entity
mention is the primary name for the identifier. This is
based both on a name provided by the lexicon and a name
derived from the synonym list.

Among these, one of the most critical indicators is the spe-
cies confidence. By default, this confidence is set to the
weight assigned to the species by the Majority Vote tagger.
When the species of an entity is tagged by an external spe-
cies tagger or by human annotators, the default confi-
dence can be overridden. This setting allows us to
integrate automatic species taggers, such as the ones
described in the previous section, for achieving better TI

performance. For example, suppose we want to employ
the Hybrid species tagger. To compute the species confi-
dence, first the hybrid tagger is used to predict the most
likely species and the Majority Vote tagger is run at the
same time. If the species of an identifier matches the spe-

cies assigned by the hybrid tagger, the species confidence
is set to the weight generated by the hybrid tagger. Other-
wise, the confidence is set to the weight generated by the
Majority Vote tagger.
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