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Abstract
Histoplasma capsulatum is the most common cause of invasive fungal pulmonary disease worldwide.
The interaction of H. capsulatum with a host is a complex, dynamic process. Severe disease most
commonly occurs in individuals with compromised immunity, and the increasing utilization of
immunomodulators in medicine has revealed significant risks for reactivation disease in patients with
latent histoplasmosis. Fortunately, there are well developed molecular tools and excellent animal
models for studying H. capsulatum virulence and numerous recent advances have been made
regarding the pathogenesis of this fungus that will improve our capacity to combat disease.
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1. Introduction
Fungal pathogens continue to gain clinical importance largely due to the increasing number of
immunocompromised individuals worldwide. The dimorphic fungus Histoplasma
capsulatum var. capsulatum is a model pathogen for the study of invasive mycotic disease. H.
capsulatum is primarily acquired via aerosol exposure with the inhalation of microconidia or
hyphal fragments. It has been estimated that H. capasulatum is responsible for ~500,000
infections in the USA each year, making it the most prevalent pulmonary fungal pathogen [1].
H. capsulatum produces a broad spectrum of disease ranging from a mild influenza-like illness
to a disseminated form that may involve virtually any tissue. The fungus is endemic worldwide,
but there are regions with notably high incidences of infection [2], such as areas along the Ohio
and Mississippi River Valleys in the USA and in Rio de Janeiro State in Southeastern Brazil.

Although the majority of symptomatic infections follow primary exposures to H.
capsulatum, reactivation of latent infection can result in significant disease, particularly in the
setting of immunosuppression such as with individuals chronically receiving steroids or
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patients on chemotherapy [3]. Individuals with advanced HIV disease are also at significant
risk for severe infection due to reactivation of latent lesions or primary disease, and
disseminated disease occurs in 95% of individuals with AIDS [4]. Also, initiation of HAART
in patients with prior infection with H. capsulatum can result in an immune reconstitution
inflammatory syndrome [5]. Furthermore, reactivation disease can develop in liver transplant
recipients with disease originating from latent infections in the transplanted organs [6].
Additionally, reactivation histoplasmosis has increasingly occurred in patients receiving anti-
cytokine therapies, especially inhibitors of TNF- α [reviewed in [7]]. Hence, disease severity
and the manifestations of histoplasmosis are significantly impacted by the competence of the
host immune response.

2 The host-fungal interface
The outcome of infection with H. capsulatum is dependent on dynamic interactions between
innate immunity, adaptive immunity and fungal virulence factors [8]. Control of H.
capsulatum infection is largely based on activation of cellular immunity in concert with innate
responses, as progressive disease with dissemination predominantly occurs in the absence of
intact cellular immunity [9]. Interestingly, there is recent experimental evidence demonstrating
that susceptibility to H. capsulatum strongly depends on genetic predisposition [10].

T cells and phagocytes are essential to host resistance against H. capsulatum [9,11]. Protective
immunity is characterized by the induction of cytokine production by T cells, particularly IFN-
γ and TNF-α, which subsequently activate phagocytic cells. The primary effector cells in host
resistance to H. capsulatum are macrophages. However, the role of macrophages in
histoplasmosis is complex, since these cells also provide a protective environment for H.
capsulatum as the fungus survives and replicates in the phagolysosomes of macrophages. In
contrast, dendritic cells can kill ingested H. capsulatum yeast cells [12] and dendritic cells
presenting H. capsulatum antigens can stimulate specific CD8+ T cells to effectively control
fungal infection [13].

TNF-α production is induced rapidly after primary infection and neutralization of TNF-α
increases the fungal burden and mortality of mice infected with H. capsulatum [14,15].
Inhibition of TNF-α results in the generation of antigen specific CD4+CD25+ T cells that
interfere with effective immunity in mice [16]. The experimental findings correlate with the
clinical findings that inhibitors of TNF-α greatly increase the risk for reactivation of latent
histoplasmosis resulting in severe diseases [7].

Mice deficient in IFN-γ have accelerated mortality [17]. Similarly, patients with defects in
IFN-γ signaling are at risk for severe histoplasmosis [18]. Adjuvant therapy with IFN-γ can
improve the outcome of murine histoplasmosis [19] and has been used successfully in a child
with a defect in his IFN-γ receptor [18].

H. capsulatum induces the production of antibodies, which historically has provided a means
for non-culture based methods of diagnosis [20]. Notably, antibody has been shown to affect
H. capsulatum pathogenesis in an animal model [21]. Supporting a role of antibody in
histoplasmosis, mice lacking B cells have accelerated mortality after experimental reactivation
histoplasmosis [22].

3.H. capsulatum and our molecular toolbox
H. capsulatum is mycelial in the environment, whereas the organism exists as a yeast-like,
unicellular fungus that reproduces by budding at human physiological temperatures. The
mechanisms controlling the switch from the mycelial to the yeast form of H. capsulatum are
complex, but are largely dependent on the shift in temperature and availability of nutrients
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[reviewed in [23]]. The fungus is a prototypical intracellular pathogen that survives within
phagolysomes by regulating the intracellular milieu of macrophages [reviewed in [24]].

In addition to dimorphism, several virulence determinants of H. capsulatum have been
characterized. Perhaps the best studied is the heat shock protein 60 that serves as the ligand for
H. capsulatum binding to CR3 on macrophage, which initiates the fungus’ intracellular
parasitism of these cells [25]. H. capsulatum heat shock proteins are upregulated during the
mycelia-yeast transition and are broadly involved in chaperoning of proteins. The M and H
antigens of H. capsulatum have long been utilized as serological markers of histoplasmosis
[20]. The M antigen, also known as Catalase B, is a constitutively expressed protein posited
to play a role in counteracting the oxidative defense reaction mechanism of host phagocytic
cells [26]. The H antigen is a secreted beta-glucosidases purportedly involved in remodeling
of the cell wall and nutrient acquisition [27]. Initially identified in a differential hybridization
screen, yeast phase specific protein 3 (YPS3) is a cell surface and secreted protein of uncertain
function that has been associated with virulence since silencing of the YPS3 gene significantly
attenuates virulence in vitro and during murine infection [28]. H. capsulatum secretes a calcium
binding protein (CBP) during yeast-phase growth that is essential for growth in calcium
limiting conditions, such as encountered in vivo, and required for virulence during murine
infection [29]. Although certain strains of H. capsulatum have lost alpha-(1,3)- glucans from
their cell surface during microevolution events and have maintained virulence, strains that
display alpha-(1,3)-glucans on their cell surface are severely attenuated if the production of
this glucan is disrupted. Also, deletion or silencing of alpha-(1,3)-glucan synthase [30] or alpha-
(1,4)-amylase [31] interferes with alpha-(1,3)-glucans and the resulting mutants have
significantly reduced virulence. Interestingly, alpha-(1,3)-glucans inhibit the recognition of H.
capsulatum from host effector cells by blocking the beta-glucan receptor dectin-1 [32]. H.
capsulatum produces melanin in its cell wall [33] that protects the fungus from antifungal drugs
[34] and the pigment is also thought to inhibit damage from host defenses, including host
derived free radicals and microbicidal peptides [35].

Several studies have described genetic and/or genomic heterogeneity among H. capsulatum
isolates based on restriction fragment length polymorphisms (RFLP), arbitrary-primer PCR
analysis, ribosomal DNA sequencing and other gene sequencing comparisons (reviewed in
[36]). Molecular characterization studies have identified seven genetically distinguishable
phylogenetic species that diverged as much as 13 million years ago. For example, there are
two discrete genetic lineages in North America, Histoplasma class I (NAm I) and
Histoplasma class II (NAm II) that also differ significantly in virulence [37]. Currently, the
sequencing of the genome of H. capsulatum is underway at Washington University for NAm
II (http://genome.wustl.edu/genome.cgi?GENOME=Histoplasma%20capsulatum) and at the
Broad Institute for NAm I
(http://www.broad.mit.edu/annotation/genome/histoplasma_capsulatum/Home.html). The
sequence data may clarify the genomic basis for the difference in virulence and interactions
with the host immune system, and serves as a rich resource for molecular work on this pathogen.

The development of molecular genetic tools in H. capsulatum is essential for elucidating
important questions, such as the mechanisms for mycelia to yeast phase transition, survival in
macrophages, and regulation of virulence associated factors. Although, H. capsulatum is a
perfect fungus with a characterized sexual cycle, laboratory strains cultured in vitro rapidly
lose the ability to mate [38], significantly complicating the application of classic recombination
studies. Also, the sexual mould form requires BSLIII conditions. The first H. capsulatum
mutants were URA5 auxotrophs created using UV radiation [39]. Subsequent transformation
experiments for genetic complementation showed that the bacterial plasmid constructs
containing the Podospora anserina URA5 gene usually integrated randomly, and often tandem
amplifications or rearrangements were present. Analysis of introduced foreign DNA revealed
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that H. capsulatum actively modifies transforming plasmids, adding guanosine rich
hexanucleotide repeats to the ends of the linear DNA fragments [40]. Subsequent developments
exploited the autonomous replication potential of the presented foreign DNA and telomeric
shuttle vectors were constructed for genetic complementation in uracil auxotrophs [41]. The
first gene targeting experiment deleted the URA5 gene in H. capsulatum [42]. The bacterial
hygromycin resistance gene (hph) was used to delete the target gene, allowing positive
selection. However, the transformation experiments showed a very low (1.4 × 10-3)
homologous recombination frequency. To prevent the high frequency of illegitimate
integration, a two-step gene knock-out strategy has been develop using telomeric linear
plasmids that enable the creation of homologous recombinant mutants [29]. More recently,
double stranded RNA induced RNA interference has been successfully used for target gene
expression silencing in numerous eukaryotes [30]. In addition to introducing foreign DNA by
electroporation and biolistic procedures, an Agrobacterium tumefaciens mediated transfection
method has proven to be the most efficient method for DNA transformation in H.
capsulatum [43]. In particular, the A. tumefaciens T-DNA technique readily allows for forward
genetic screens and can be a powerful approach to identify virulence associated genes.

4. Potential for a vaccine
There is a general consensus among medical mycologist that there is sufficient disease due to
H. capsulatum to merit the development of a vaccine. The knowledge that immunization of
mice with sublethal inocula of H. capsulatum induces protective immunity to subsequent lethal
challenge suggests that an effective human vaccine can be achieved. Since the 1970’s we have
known that immunization with H. capsulatum ribosomes confers protective responses [44,
45]. However, major advances in vaccinology for histoplasmosis came with the finding that
recombinant heat shock protein 60 from H. capsulatum induces vigorous protective immune
responses that primarily depend on Vβ 8.1/8.2+ CD4+ T cells [46,47]. Interestingly,
immunization with a second heat shock protein of 70 kDa does not result protective cellular
responses [48]. More recently, it has been shown that CD8+ T cells can confer protection
following immunization with heat shock protein 60 in the absence of CD4+ cells, and that
CD8+ T cells can be efficiently stimulated by dendritic cells [13]. The findings are significant
since they indicate that it may be possible to induce protective responses in individuals with
altered immunity, including individuals with advanced HIV infection.

Although heat shock protein 60 has been the major focus of vaccine development for H.
capsulatum, additional targets have been identified. For example, protection from pulmonary
infection can also be achieved in mice with immunization with recombinant H antigen [49].
Immunization with purified cell free antigen mixtures from H. capsulatum can protect mice
from systemic infection [50]. Protective immunity is also achievable with recombinant H.
capsulatum Sec31 [51]. Futhermore, efforts are underway to define pan-fungal vaccine targets.
A hybrid histidine kinase that is a global regulator of mycelia-yeast morphogenesis has been
identified in the major dimorphic fungi, including H. capsulatum, and gene deleted strains may
be used for vaccines [52]. A second potential method for a universal fungal vaccine is the
utilization of beta-glucans [53]. Hence, there are several exciting avenues for the pursuit of a
safe and effective vaccine for histoplasmosis.

5. Antibody therapy
We have shown that antibody can modify the pathogenesis of experimental histoplasmosis
[21]. Although the protective effects of IgM isotype monoclonal antibodies (mAbs) that target
histone 2B on the fungal cell wall were modest, survival significantly improved when antibody
was used concomitantly with amphotericin B. We have more recently identified protective
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mAbs to the M antigen and heat shock protein 60 and the IgG isotype mAbs that target these
proteins appear to be more effective therapeutics for histoplasmosis [54].

Recently, we found that negative costimulation pathways play a critical role in H.
capsulatum pathogenesis [55]. The PD-1/PD-L interaction inhibits T cell activation and it has
been exploited by a variety of viruses, parasites, and bacteria to attenuate antimicrobial
immunity and enhance survival in the host [56]. Using our experimental murine infection model
with H. capsulatum, we determined that PD-L1 is upregulated on alveolar and peritoneal
macrophages as well as on all mononuclear cells in the lungs and splenocytes. The absence of
negative co-stimulation significantly alters the fate of mice challenged with H. capsulatum,
where all mice deficient in PD-1 and 70% of mice receiving antibody to block PD-1 survived
an otherwise lethal infection [55].

6. Summary
H. capsulatum is a fungus with a worldwide distribution that is one of the most common
systemic mycoses of humans. Despite the availability of broad spectrum antifungal agents and
intensive care units, the mortality rate from this fungus continues to be unacceptably high.
Recent developments including the availability of genomic information, methods for
generating gene deficient strains, and increased understanding of host responses to infection
and vaccination are providing important insights that will lead to improved care of patients
with histoplasmosis.
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TABLE 1
MOLECULAR TOOL BOX BY DATE DEVELOPED FOR USE IN H.
CAPSULATUM

Selectable markers
 1988 URA5 [39]
 1998 Hygromycin [42]
Transformation methods
 1990 PEG-LiAc [57]
 1998 Electroporation [42]
 2002 Agrobacterium tumerfaciens [43]
Episomal plasmids
 1993 Telomeric plasmid shuttle vector pWU44 [40]
Reporter genes
 1998 lacZ [42]
 2000 gfp [58]
 2006 CRP1 [59]
Gene disruption
 2000 CBP1 [29]
Microarray
 2003 Partial genomic microarray [60]
RNA interference
 2004 AGS1 [30]
 2006 AMY1 [31]
 2007 YPS3 [28]
Single chain variable antibody fragments (scFv)
 2007 nonimmune library of scFv of immunoglobulin human genes displayed on the surface of M13 filamentous phages [61]
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