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Abstract
This work is the fourth in a series of papers on the thermodynamically constrained averaging theory
(TCAT) approach for modeling flow and transport phenomena in multiscale porous medium systems.
The general TCAT framework and the mathematical foundation presented in previous works are
built upon by formulating macroscale models for conservation of mass, momentum, and energy, and
the balance of entropy for a species in a phase volume, interface, and common curve. In addition,
classical irreversible thermodynamic relations for species in entities are averaged from the microscale
to the macroscale. Finally, we comment on alternative approaches that can be used to connect species
and entity conservation equations to a constrained system entropy inequality, which is a key
component of the TCAT approach. The formulations detailed in this work can be built upon to
develop models for species transport and reactions in a variety of multiphase systems.
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1 Introduction
This paper is the fourth in a series of efforts intended to yield complete, rigorous, closed models
that describe transport phenomena in multiscale porous medium systems using the
thermodynamically constrained averaging theory (TCAT) approach. The first paper [18]
provides an overview of the general TCAT approach, which is built on averaged conservation
and thermodynamic equations that constrain an entropy inequality. The second paper provides
the mathematical fundamentals and theorems that are used to generate needed macroscale
equations [25]. The third paper illustrates the application of the method for single-fluid-phase,
single-species flow in a porous medium [19]. In the present work, we develop additional
fundamental components of the theory to enable the subsequent building of rigorous, closed
models for multispecies systems.
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The composition of a phase is of central importance for modeling many porous medium
systems. Example applications include saltwater intrusion; contaminant fate, transport, and
remediation; irrigation and fertilization; aquifer storage and recovery of treated drinking water;
and analysis of the effects of nuclear waste disposal. Models used to describe such systems are
typically based upon the advective-dispersive equation, assuming a Fickian form of the
dispersion process [11]. These models are typically posited directly at the macroscale and are
not usually thermodynamically constrained. It is also commonplace for the variables that
appear in such macroscale equations to lack precise definitions and connections to microscale
quantities.

Of further significance is the general consensus that heterogeneity at the macroscale, typical
of most natural systems, leads to the limited usefulness of the advective-dispersive equation
for many problems of interest [e.g. 7–9]. However, we draw a distinction between the
formulation of macroscale models and the upscaling of these macromodels to an even larger
scale where the form of the model, and precise meaning of the parameters, should not be
expected to be consistent with the underlying macroscale model [26]. Thus multiple levels and
types of upscaling are ultimately of concern for many situations of interest.

The TCAT approach ensures a precise connection to both microscale quantities and
thermodynamic constraints, which are in turn used to guide the development of macroscale
closure relations. The TCAT approach differs in another important respect from typical model
formulation approaches: it includes specific conservation and balance equations for interfaces
and common curves. Given the importance of problems that involve composition, the extension
of the TCAT framework to compositional macroscale systems is a reasonable next step in the
evolution of this model formulation approach. This extension will require conservation and
balance equations for species in entities and averaged thermodynamic relations, which have
not yet appeared in the literature.

The overall goal of this work is to advance components needed to formulate TCAT-based
macroscale models to describe compositional multispecies, multiphase porous medium
systems. The specific objectives of this work are: (1) to develop species conservation and
balance equations for phase volumes, interfaces, and common curves; (2) to formulate
macroscale thermodynamic relations for compositional systems based upon averaged
microscale relations; (3) to outline a flexible constraint approach for connecting conservation
equations to a system entropy inequality to yield a range of different models; and (4) to discuss
ways in which the fundamental tools developed in this work can be utilized in the formulation
of closed macroscale models of compositional multiphase porous medium systems.

2 System Definition
We define multispecies, multiphase systems using set notation. This allows for the
development of general conservation and balance equations and compact formulations of
certain forms of the entropy inequality used in the TCAT approach. As with previous work in
this series [19], we describe the set of entities ε as the regions within the domain Ω, which can
include phase volumes, interfaces, common curves, and common points. The full set of entities
is given by

(1)

where I is the index set of entity qualifiers or identifiers. Qualifiers are super-scripts (for
macroscale quantities) and subscripts (for microscale quantities) that denote an entity of
interest. Entities consist of phase volumes, interfaces, common curves, and common points. In
some instances, it is convenient to consider only the members of one of these types of entities.
To facilitate this, the qualifiers identifying one type of entity lie in the index set of phase volume
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qualifiers, IP; interface qualifiers, II; common curve qualifiers, IC; or common point qualifiers,
IPt. The individual entity types can be combined such that I = IP ∪ II ∪ IC ∪ IPt. For example,
for a system composed of three phases, denoted as w, n, and s

(2)

(3)

(4)

(5)

The members of these sets are used as qualifiers (subscripts for microscale quantities and
superscripts for macroscale quantities) with a quantity of interest to associate that quantity with
a particular entity (phase, interface, common curve, or common point).

The connected entity set is also an important concept as it defines all the entities in contact
with a particular entity Ωι, such as the interface entities that bound a particular phase entity.
This set is defined by

(6)

where the closure of the entities is defined as  is the boundary of Ωι, and Icι is the
index set corresponding to εcι so εcι = {Ωκ|κ ∈ Icι}. εcι is the set of entities that form an internal
boundary for entity Ωι.

For compositional systems, it is necessary to describe the species present in the system, which
we define as the set S with index set Is. Correspondingly, the set of species in entity Ωι is Sι
with index set Isι. It follows that S = ∪ι∈ISι and Is = ∪ι∈IIsι.

3 Conservation and Balance Equations
Conservation of mass, momentum, and energy and balance of entropy equations have been
derived for phase volumes, interfaces, and common curves based upon averaging of microscale
equations and localization approaches [17]. In the averaging approach, microscale equations
are typically integrated over a representative region in space and simplified using transport and
divergence theorems. Such a procedure can be applied for each entity type and quantity of
concern. Both significant manipulation and care are required if precise definitions of all
variables in terms of microscale quantities is a desired result; such a connection is a goal of
this work. The sections that follow detail the formulation of a full set of macroscale
conservation and balance equations for species in entities. These conservation and balance
equations are building blocks needed to formulate complete, closed, macroscale models. These
models are general in form and under-determined, which is indicative of the closure problem
that the TCAT approach is used to resolve.

3.1 Energy for a Phase Volume
For reasons that will become clear in the following section, we first consider the conservation
of energy for a species in a phase volume. The approach to be employed is to start from the
accepted microscale conservation of energy equation for a species and average this equation
to the macroscale. Then the macroscale equation is simplified using available theorems to yield
a final, general conservation equation.

The point microscale conservation of energy equation for a species i in phase volume entity ι
may be written as
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(7)

for

(8)

where Eiι is the internal energy density (the internal energy of species i in entity ι per volume
of entity ι), t is time, ρι is the mass density (the mass of entity ι per volume of entity ι), ωiι is
the species i mass fraction (the mass of species i per total mass of entity ι), viι is the velocity
vector for species i in entity ι, tiι is the stress tensor associated with species i in entity ι, qiι is
the heat flux vector associated with species i in entity ι, giι is an acceleration vector impacting
species i in entity ι due to an external force (e.g., gravity), hiι is the heat source density associated
with species i in entity ι, eTiι is the total energy density gained by species i within entity ι due
to internal energy exchange, work due to the presence of all other species that exist in entity
ι, and chemical reactions. These intra-entity exchange processes are accounted for,
respectively, by the three terms on the right of Eq. (8). The fact that the phase and species
qualifiers are subscripts denotes that the quantities being considered are microscale quantities.

Eq. (7) can be put into total energy form by relating the acceleration potential to the acceleration
vector and performing some straightforward manipulations. With this as our goal, the relation
between the acceleration vector, giι, and its potential, ψiι, can be expressed as

(9)

A sum of three time derivatives that is equal to zero by the product rule may be added to the
left side of this equation to yield

(10)

Rewriting the right side of this equation by application of the product rule, we obtain

(11)

The microscale mass conservation equation for a species in a phase volume is

(12)

Combination of Eq. (11) and Eq. (12) gives

(13)

which may be substituted into Eq. (7) to give a total energy equation

(14)

or

(15)

where
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(16)

Our objective is to upscale Eq. (15) from the microscale to the macroscale to obtain a
conservation of energy equation for a species in a phase volume. There are multiple approaches
to accomplish this objective. We will average Eq. (15) directly to the macroscale using the
averaging operator defined by [25]

(17)

where i is a property to be averaged to the macroscale, the subscripts on the operator
correspond to the domains of integration, and the weighting function, respectively, and
Ωι,Ωκ ∈ εP ∪ εI ∪ εC. If the weighting function subscript is omitted, it is assumed to be equal
to unity.

To extend Eq. (17) to cases in which Ωι ∈ εPt and/or Ωκ ∈ εPt, the integrals over a common
point domain are replaced by discrete sums, for example

(18)

where IPtι is the index set of all microscale points in the representative elementary volume
(REV) that describes Ωι, and Ωιl is a single qualified point such that Ωι = ∪l∈IPtι Ωιl.

We will encounter four types of macroscale variables: intrinsic averages of the form
(19)

mass averages of the form

(20)

species mass averages of the form

(21)

and double-barred averages such as fι ̿, which require a special definition for each occurrence
due to their non-standard form. In the preceding definition equations, f is considered a general
property; and superscripted quantities with specific adornments denote the specific type of
averaged macroscale quantities.

Application of the averaging operator defined by Eq. (17) to Eq. (15) gives

(22)

Eq. (22) is an expression involving integrals of differential quantities, which in general are not
easily measurable quantities. Instead, we wish to derive macroscale conservation equations
that involve conservation of macroscale quantities averaged from the microscale. Put another
way, we wish to reverse the order of integration and differentiation to yield more accessible
models that are still exact statements of conservation principles. To accomplish this goal, we
rely upon available theorems [1,21,27], namely

Theorem 1 (D[3,(3,0),0])
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(23)

Theorem 2 (T[3,(3,0),0])

(24)

where nι is the outward normal vector from phase volume ι and nι · vκ is both the normal
component of the velocity of the κ interface and the normal component of the velocity of the
material in the κ interface. The summation in these equations indicates that the surface
integrations are performed over all interfaces between the ι phase and all other phases that
come into contact with the ι phase (i.e., the interfaces which form the members of the connected
set Icι).

Evaluating some of the averaging operators in Eq. (22), applying Theorems 1 and 2, and
rewriting the product of the acceleration potential and reactions in macroscale mass-averaged
form, we obtain

(25)

where

(26)

(27)

(28)

Note that the total energy may be written as

(29)

which may be expanded to

(30)

and simplified to

(31)

where

(32)

Now consider the divergence term in Eq. (25), which can be expanded to
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(33)

or

(34)

Note that

(35)

(36)

which allows for

(37)

The fluctuation product term may be expanded as

(38)

and simplified to

(39)

Combining Eq. (25), Eq. (37), and Eq. (39) yields

Miller and Gray Page 7

Adv Water Resour. Author manuscript; available in PMC 2009 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(40)

where

(41)

and

(42)

The summation term in Eq. (40) that accounts for the exchange of energy across the connected
set of entities can be put in a more convenient form. For the phase volume being considered
here, the connected entity set involves interfaces between the phase being considered and all
other phases with which it may come into contact. Energy may be transfered due to mass
exchange, interfacial stress, and heat transfer. Interfacial stress also results in a transfer of
momentum across an interface. Mass exchange across an interface also gives rise to interfacial
contributions to both momentum and mass exchange. Because of the repeated appearance of
certain exchange terms, it is desirable to seek a notational form that conveniently allows for
the reuse of key quantities.

Expansion of the boundary exchange terms from Eq. (40) gives

(43)

Part of the first term on the right side of Eq. (43)) can be expressed as a product of a macroscopic
quantity and a mass exchange term across an interface giving

(44)

Expanding the total energy in the second term on the right side of this equation gives

Miller and Gray Page 8

Adv Water Resour. Author manuscript; available in PMC 2009 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(45)

Simplifying Eq. (45)) yields

(46)

Rearranging Eq. (46) to separate out a macroscale multiple of the momentum exchange terms
gives

(47)

Since Eq. (47) contains macroscale products of mass and momentum exchange terms, we can
introduce the shorthand notation
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(48)

where

(49)

(50)

and

(51)

 represents mass exchange from the κ entity to the i species in the ι entity per unit volume

per unit time,  represents momentum transfer from species in the κ entity to the i species
and ι entity due to stress and deviation from mean processes per unit volume per unit time;

 represents transfer of energy from species in the κ entity to the i species in the ι entity
resulting from heat energy and deviation from mean processes per unit volume per unit time,
and δij is the Kronecker delta function. Additionally, when dim Ωι > dim Ωκ

(52)

These definitions of  and  always apply when ι is a phase volume entity, and these
quantities represent the fractional contribution of stress and heat energy transfer from species
in the κ entity that impacts the i species in the ι entity. We will examine the conditions on these
coefficients for ι referring to an interface or common curve subsequently.

Thus the total energy equation for a species in a phase volume becomes

(53)

where

(54)

or in material derivative form
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(55)

where the material derivative is

(56)

and the rate of strain tensor is defined as

(57)

3.2 Mass and Momentum for a Phase Volume
Continuum mechanical equations must satisfy the axiom of objectivity, which means that all
velocities must be referenced to a common frame of reference. Conservation equations must
remain valid under a change in the reference velocity. Here we develop the macroscale mass
and momentum conservation equations for a phase volume following the approach in [22] that
was applied to microscale equations.

If we adjust all velocities in Eq. (55) by subtracting a constant reference velocity V then we
obtain

(58)

Expanding terms and combining quantities such that terms as they originally appeared in Eq.
(55) are evident gives
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(59)

The vector V can be made a factor in collecting terms such that Eq. (59) can be written in the
form

(60)

where εiι, Piι, and ℳiι are each independent of V. Since V is an arbitrary constant vector, the
null vector is a valid choice. This implies εiι = 0, which we also know to be the case because
this condition is identical to the conservation of energy equation as given by Eq. (55). With
this condition imposed, Eq. (60) reduces to

(61)

Since V is an arbitrary vector, it can be chosen to be non-zero and orthogonal to Piι. Satisfaction
of Eq. (61) then requires ℳiι = 0. Making use of this constraint, we see that since V need not
be orthogonal to Piι, Piι itself must also equal 0.

These considerations imply a species conservation of momentum equation of the form

(62)

and a species conservation of mass equation of the form

(63)

where

(64)
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3.3 Entropy for Phase Volume
A microscale balance of entropy equation for a species in a phase volume may be written as

(65)

where ηiι is the entropy of species i in the ι entity per unit volume, φiι is the non-advective
entropy flux vector associated with species i in entity ι, biι is the entropy source for species i
in entity ι, and Λiι is the entropy production rate associated with species i in entity ι. Since the
entropy balance equation will be expressed in terms of the system for the applications of interest
in this work, the contributions to entropy production for species i from other species are
included in Λiι. This is a convention that leads to a shorter equation; we emphasize that the
entropy balance subsequently employed is summed over all species and entities.

Application of the averaging operator to Eq. (65) gives

(66)

Evaluating the averaging operator, applying Theorems 1 and 2, simplifying, and making use
of the material derivative gives

(67)

where

(68)

and

(69)

The quantity  represents the transfer of entropy from the κ entity to the i species in the ι
entity due to processes other than phase change per unit volume per unit time.

3.4 Interfaces, Common Curves, and Common Points
Because the TCAT approach includes entities other than phase volumes, such as interfaces,
common curves, and common points, conservation and balance equations for species in these
other entities are needed as well. These equations may be derived using different approaches.
For example, one could start with the corresponding microscale conservation or balance
equation for a species in an entity and average it up to the macroscale or use a localization
approach [17]. Alternatively, one could average the microscale equation for a conservation of
energy of a species in an entity to the macroscale, apply the axiom of objectivity, and deduce
a conservation of mass and momentum equation from the species energy equation, as was done
for phase volumes.

Following this latter approach, the microscale conservation of total energy for a species i in an
interface ι is
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(70)

where the del operator and partial time derivative in the surface are defined, respectively, as
(71)

(72)

where the surface unit tensor is I′ = I − nαnα for a surface defined by , nα is the unit

outward normal vector to Ωα, Isκ is the index set of all species in the κ entity,  represents
the fraction of the stress energy transferred from the j species in the κ entity to the ι entity that

impacts the i species in the ι entity, and  represents the fraction of the heat energy transferred
to the j species in the κ entity to the ι entity that impacts the i species in the ι entity. Because
stress energy and heat energy transfer are not confined to the same species in each entity and
overall conservation must be preserved, it follows that

(73)

We will apply the averaging operator given by Eq. (17) of the form 〈·〉Ωι,Ω for ι ∈ II, the index
set of all interfaces, to Eq. (70). The result can be simplified using two averaging theorems for
surfaces [16,21]

Theorem 3 (D[2,(3,0),0])

(74)

and

Theorem 4 (T[2,(3,0),0])

(75)

where  is the outward unit normal vector from phase volume Ωα, nι is
the outward unit normal vector from the common curve bounding Ωι that is tangent to interface
Ωι, and we employ the following definition

(76)

Performing a set of manipulations similar to those detailed for a phase volume we obtain the
macroscale conservation of energy equation for species i in interface ι of the form

Miller and Gray Page 14

Adv Water Resour. Author manuscript; available in PMC 2009 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(77)

where

(78)

(79)

and

(80)

The definitions given by Eq. (78)–Eq. (80) can be compared to those given by Eq. (49)–Eq.
(51), and two significant differences can be noted. First, a consistent convention is used in
which the integration is performed about the lower dimensional entity and the conserved
quantity being transferred is evaluated in the higher dimensional entity at the boundary. Second,
because of the convention used, when the exchange of a conserved quantity involves an entity
that is of greater dimension than the dimension that the overall conservation equation is being
written for, then contributions to stress and heat energy must be accounted for due to the
fractional effect of all species in the higher dimensional entity. For the interface case being
considered here, the exchange terms between the phase volumes and the interface include such
multiple species contributions, which are reflected in the above definitions. Specifically, this

is accounted for by the  and  terms, which do not reduce to δij for this case.

The microscale conservation of total energy equation for a species i in a common curve ι is

(81)

where
(82)
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(83)

We will also apply the averaging operator given by Eq. (17) of the form 〈·〉Ωι,Ω for ι ∈ IC, the
index set of all common curves, to Eq. (81). The result will make use of the following two
averaging theorems [21]

Theorem 5 (D[1,(3,0),0])

(84)

and

Theorem 6 (T[1,(3,0),0])

(85)

where ι ∈ IC, nι is the unit normal vector tangent to common curve Ωι, eι is the unit vector
tangent to common curve Ωι oriented positive outward, and

(86)

Performing a similar set of manipulations to those detailed for a phase and employed in
analyzing an interface, we obtain the macroscale conservation of energy equation for species
i in common curve ι of the form

(87)

where analogous conventions to those used for exchange terms in Eq. (77) also apply to Eq.
(87).

A comparison of Eq. (55), Eq. (77), and Eq. (87) reveals that these equations are of a similar
form, differing only in the terms that involve the exchange of energy across the boundaries of
the respective entities. With appropriate definitions, these equations can be put in the identical
form given by

(88)

where
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(89)

(90)

These exchange terms hold in general for any set of entities, with the proviso that for exchanges
that involve common points the averaging operator reduces to a discrete sum as described by
Eq. (17) and Eq. (18).

Eq. (88) can be used along with the axiom of objectivity to derive momentum and mass
conservation equations for interfaces and common curves in the same manner that Eq. (62))
and Eq. (63) were derived for phases. We obtain the general macroscale conservation of
momentum equation for species i in entity ι

(91)

where

(92)

and the general macroscale conservation of mass equation for species i in entity ι

(93)

Eq. (91)–Eq. (92)) apply for species i in any general entity ι where ι refers to a phase, interface,
or common curve. We assume that common points will be relatively unimportant for most
applications and thus we ignore everything but the exchange terms for these entities. If one
wished to develop full conservation equations for common points, additional averaging
theorems would be employed to upscale from the microscale to the macroscale.

A general macroscale balance of entropy equation can be derived as well for species i in entity
ι and is of the form

(94)

where

(95)
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The same comments that were made regarding exchange terms for general conservation
equations for common points apply to the balance of entropy for a set of common points.

4 Thermodynamics
4.1 Overview

In the TCAT approach, thermodynamic identities are used to connect the conservations
equations to the entropy inequality, which is in turn used to guide the formulation of closed
models. Choices exist for the form of the thermodynamics used to develop these identities
[22,24]. These choices involve the type of thermodynamics used, which has been discussed
previously. The simplest form of thermodynamics that is suitable to our needs is classical
irreversible thermodynamics (CIT), described in [10], which was relied upon in deriving closed
models for single-fluid-phase flow [19]. While several other choices exist [18], we will restrict
our comments herein to CIT. If CIT proves to be inadequate for a system of concern and a
more complicated thermodynamic basis is desired, then the notions considered in this section
would need to be revisited.

The other choice that must be made is the specific form of the thermodynamics within a given
type. Specifically, internal energy can be considered on either a species in an entity or an entity
basis, which implies summation over all species. Even if the system consists of multiple
species, either approach is still possible. For simplicity, we will restrict our consideration of
multispecies systems to those cases in which entity-based expressions for internal energy are
adequate. If this proves to be too restrictive, even if CIT is still appropriate, then relationships
for the internal energy of individual species would need to be developed at the macroscale.
This restriction on entity-based forms of internal energy has implications for the forms of the
conservation of energy equation and the properties of the Lagrange multipliers used to augment
the entropy inequality and produce a constrained entropy inequality. These considerations are
discussed in §5.

With these choices in mind, we focus on two specific thermodynamical aspects that will be
important in deriving TCAT models: (1) averaged macroscale expressions that relate material
derivatives of internal energy to material derivatives of entropy, mass, and geometric measures
for near equilibrium conditions; and (2) a set of thermodynamically based equalities that must
hold at equilibrium. The following two sections detail these two classes of equalities and will
be relied upon to produce closed multispecies, multiphase models in future work.

4.2 Material Derivatives of Internal Energy
A set of general macroscale expressions for the material derivative of the internal energy of an
entity in a multispecies, multiphase system are needed to connect an appropriate set of
conservation equations to the system entropy inequality for general TCAT models. The TCAT
approach relies upon averaging the microscale thermodynamic relations to the macroscale. The
general procedure to accomplish such a formulation was introduced by Gray [15] for single-
species entities, while Gray and Schrefler [20] considered a single-species solid phase in detail.
Gray and Miller [19] used these conditions to produce a closed TCAT model. What has not
yet been accomplished is to average multispecies microscale CIT expressions to the
macroscale, which is the current focus. Because the focus of foreseeable TCAT modeling work
will be on developing models that do not require the species energy of an entity, we consider
only the material derivative of internal energy for an entity. Furthermore, because we do not
consider conservation equations for common points; we are only concerned with deriving
expressions for phase volumes, interfaces, and common curves. Within phase volumes,
different expressions are needed for fluids and solids, due to fundamental differences in the
thermomechanical behavior of these two types of materials.
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First, consider the microscale fundamental thermodynamic equation for a fluid phase volume
[2,6,23]

(96)

where ι is the internal energy of the entity, ι is the entropy of the entity,  is the mass, i is a
species qualifier and ι specifies a fluid phase volume, or ι ∈ If for If the index set of fluid phase
volumes. Normalizing by the volume yields a fundamental equation of the form

(97)

For CIT the Euler equation for the fluid phase volume can be written at the microscale as

(98)

Applying the averaging operator to both sides of Eq. (98) gives

(99)

Evaluation of this averaging operator requires some care and multiple approaches are possible
to separate the factors of terms containing products. We consider this expression term by term.
First, we define the macroscale internal energy per unit volume to be

(100)

which is the usual definition. Next consider the average of the product of temperature and
entropy and define

(101)

where

(102)

(103)

The average of the product of mass fraction, density, and chemical potential can be written as

(104)

where
(105)

(106)

(107)

Thus the derived macroscale form of the Euler equation for internal energy in a multispecies
system becomes

(108)
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In fact, the definitions of θι ̿ and μiι̅ were determined based on the objective of obtaining a form
for Eq. (108) that is similar to microscale Eq. (98).

The differential of the Euler equation at the microscale may be obtained from Eq. (97) as

(109)

Comparison of this expression with that obtained as the differential of Eq. (98) provides the
microscale Gibbs-Duhem equation

(110)

Perfectly analogous manipulations to those used to obtain the last two equations are not, in
general, possible at the macroscale. Eq. (97) expresses the dependence of the microscale energy
function on the entropy density and the mass densities of each of the chemical species. Since
these densities may not be constant within an averaging volume, a corresponding expression
for macroscale energy as a function only of macroscale densities may not exist. When the
variations of the macroscale densities within the averaging volume are negligible, the
macroscale thermodynamic expressions for the differential of energy and for the Gibbs-Duhem
equation will correspond, term by term, to their microscale counterparts. Here, we seek the
more general forms of differentials of energy that allow for microscale variability of
thermodynamic properties within an averaging volume.

The differential of the macroscale Euler equation (108) may be expressed as

(111)

Averaging Eq. (110) gives

(112)

Subtraction of Eq. (112) from Eq. (111) gives

(113)

The differential here may be replaced by the general macroscale material derivative so that for
a fluid phase-volume entity

(114)

If the system is spatially homogeneous at the microscale in θι, μiι, or pι, then the corresponding
time derivative involving the difference between the microscale precursor and the macroscale
average will vanish. Even if the system is not microscopically spatially homogeneous, the
integral terms involving the time derivatives may be zero. In general however, these extra terms
represent a difference between formulations based upon averaged microscale thermodynamics
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and formulations based upon thermodynamics posited directly at the macroscale. In many cases
these terms may be negligible; in other instances, not.

Eq. (114) can be used directly when a single momentum equation is employed for the fluid
phase. In that instance, vι ̅ is the phase velocity that is under consideration. However, if one
chooses to formulate momentum equations for each species in the fluid phase, the velocities
that appear in the momentum equation are viι̅. For this case, the velocities in the material
derivatives must be the species velocities. We therefore will make use of the relation

(115)

to rearrange Eq. (114) to

(116)

The material time derivative of the CIT formulation averaged from the microscale to the
macroscale (ACIT) for a solid phase volume can be derived in a manner similar to that detailed
for the fluid phase volume, and expressed in terms of products terms with deformation rate
tensors or relative velocities using notions detailed in [20], giving

(117)

where Cs is the Green’s deformation tensor, js is the Jacobian, ∇Xx is the deformation gradient
[12] where X are the material coordinates and x are the spatial coordinates, the solid surface
is denoted by Ωss = {Ωκ, ∀κ ∈ Ics}, and subscripts denote microscale quantities while
superscripts denote macroscale quantities. The Lagrangian stress tensor σs is defined as a partial
derivative of the internal energy with respect to the Green’s deformation tensor. This particular
stress tensor is equal to one half the second Piola-Kirchhoff stress tensor.

It will be reasonable to neglect dispersion within the solid phase so that the velocities of all
species will be equal in that phase. Nevertheless, in general, when a momentum equation is to
be formulated for each species, we will need the thermodynamic expression for the solid phase
to be written in terms of species velocities rather than the phase velocity. This may be obtained
from Eq. (117) as:
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(118)

Following the general ACIT species formulation detailed above for phase volumes and
restricting to an interface as detailed in Gray [15] yields the general material derivative
thermodynamic equation for an interface

(119)

for

(120)

and

(121)

where  is the outward unit normal vector from phase volume Ωα, and γ
is the interfacial tension.

The thermodynamics of interfaces at the macroscale requires restriction of microscale
quantities to the interface and averaging of these quantities to the macroscale. Because of this,
the material derivatives within the averaging operators are restricted to the interface at the
microscale.
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For utility with a set of momentum equations for the momentum of each species in the interface
rather than for the velocity of the interface as a whole, Eq. (119) is re-expressed in the form

(122)

Following the general ACIT species formulation detailed above for phase volumes and
restricting to a common curve as detailed in Gray [15] yields the general material derivative
thermodynamic equation for a common curve

(123)

where

(124)

and

(125)
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where γ is the curvilinear tension. The thermodynamics of a common curve at the macroscale
requires restriction of microscale quantities to the common curve and averaging of these
quantities to the macroscale. Because of this, the material derivatives within the averaging
operators are restricted to the interface at the microscale.

For use with the species based momentum equations, the thermodynamic condition may be
rearranged to

(126)

4.3 Equilibrium Conditions
The conditions that dictate when the system of interest is at equilibrium are very useful for
description of the system away from equilibrium. In fact, to close our system, we will use
expansions around the equilibrium state to describe the dynamics. Our approach will be to first
obtain the conditions for equilibrium at the microscale. Then, consistent with our averaging of
microscale conservation equations and thermodynamic expressions to the macroscale, we will
average the microscale equilibrium results to the macroscale.

Boruvka and coworkers [3–5,13] have provided an analysis of microscale equilibrium using a
variational approach. By making use of the fact that the energy is a minimum at equilibrium,
they established relationships among variables that must hold at equilibrium. They
concentrated on systems composed of multiple fluid phases. Here, we will extend those studies
by considering a multiphase system in which one of the phases is a solid. We will also obtain
the macroscale equilibrium conditions as averages of their microscale precursors.

Within an averaging volume, there are phase volumes, interfaces, common curves, and
common points. We will be making use of the variations of all of these quantities within the
volume. The variational expression for a phase volume property fι is [14]

(127)

where δ is a spatial variation involving both a quantity of interest and its microscale coordinates,
δ ̅ is the variation of the quantity at the macroscale, δ ̿ is a fixed-point microscale variation, and
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ξ is a microscale position vector. Eq. (127) may be used with insight when fι is a thermodynamic
property that does not depend on position. However, the strain tensor Cs depends on the
deformation of the solid. Thus, it will prove convenient to make use of the relation between
the general microscale variation and the fixed-point variation as given by

(128)

For an interfacial property, the variational expression is

(129)

where nα is a unit vector normal to the surface ι positive outward from the surface
. The variation δ ̿′ is a fixed-point variation with respect to surface coordinates

and ∇′· is a surface divergence. Because we are working with properties within an averaging
volume, fι has dimensions of quantity per averaging volume while fι has dimensions of quantity
per unit area.

For a common curve, the variational equation is

(130)

and nι is a unit vector tangent to the common curve, eι is a unit vector tangent to the common
curve at the common point oriented outward from the common curve. The divergence along
the curve is denoted as ∇″·, and the variation at the fixed point on the curve is δ̿″.

To obtain information about the equilibrium state, we minimize the functional

(131)

The first sum is over the internal plus potential energy. This total energy should be a minimum
at equilibrium. We know, however, that this minimum is obtained when the entropy is a
maximum and with mass being conserved.

The other sums in the expression for F impose these conditions. The coefficient T is a constant
used in constraining the energy variation to occur at maximum entropy. The coefficients Miι
are constants that multiply amounts of mass to ensure that the total mass of each species is
unchanged during a variation around equilibrium. These coefficients are chosen subject to the
mass conservation constraint that if a species i can be transferred between two entities α and
β then Miα = Miβ. The variation of F around equilibrium is zero so the variation of Eq. (131)
is

(132)

The expressions for the energy of the fluid phase per unit volume of the phase are

(133)

where If is the index set of fluid phase volumes.

The solid phase energy per volume of solid is given by
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(134)

The interfacial energy per unit area is

(135)

where γι is the interfacial tension. In selecting this form, we are not considering highly curved
interfaces. The common curve energy per unit length is

(136)

where γι is the curvilinear tension.

Substitution of the definitions of the variations into Eq. (132) followed by algebraic
combinations of corresponding terms yields conditions of equilibrium based on the fact that
all coefficients of independent variations must be zero. Manipulations are similar to those in
Gray and Schrefler [20] and Gray and Miller [19], so the details are not presented here. The
microscale thermodynamic equilibrium conditions obtained are

(137)

(138)

(139)

where the solid phase Cauchy stress tensor is

(140)

It is worth reiterating that if species i can be transferred between any two entities ι and κ then
Miι = Miκ at equilibrium. Additional equilibrium constraints relate to the mechanical balances
at the boundaries between and among entities. We constrain the solid phase surface to be
smooth such that tangents to the surface do not undergo any discontinuous changes in direction.
Thus, an interface or common curve that involves the solid phase is mechanically different
from one that involves only fluid phases. On the interfaces that involve the solid phase, we
have the following conditions

(141)

(142)

where ι ∈ IIs, IIs is the index set of interfaces that include an intersection with the solid phase
volume, , and Ωα is a fluid phase volume that contacts the solid phase.

On fluid-fluid interfaces, we have the condition
(143)

where ι ∈ II/s, , and II/s is the index set of all interfaces that do not
include an intersection with the solid phase volume, which is the set of fluid-fluid interfaces.

For common curves involving an intersection of the solid phase volume and two fluid phase
volumes, the equilibrium conditions are
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(144)

and
(145)

where

is the index set of common curves that include an intersection with the solid phase volume,
δC is a Dirac delta function corresponding to the common curve, ϕκ is the contact angle from
the boundary of the solid phase volume to the Ωκ interface, κNι is the normal curvature of the
common curve, κGι is the Gaussian curvature of the common curve, and following our usual
convention nλ is the unit vector that is tangent to the Ωλ interface and oriented outward from
the common curve Ωι.

For common curves involving the intersection of three fluid phase volumes, the equilibrium
condition is

(146)

where ι ∈ IC/s, IC/s is the index set of common curves that do not include an intersection with
the solid phase volume; the common curve ; the three fluid-fluid
interfaces are defined as ; and
nι is the unit vector tangent to the common curve.

For common points involving an intersection of the solid phase volume and three fluid phase
volumes, the equilibrium conditions are

(147)

and
(148)

where ι ∈ IPts; IPts is the index set of common points that include an intersection with the solid
phase volume; the common point ; the corresponding
common curves are

; and δPt is a Dirac delta function corresponding to the common point.

For common points involving an intersection of four fluid phase volumes, the equilibrium
condition is

(149)

where ι ∈ IPt/s; IPt/s is the index set of common points that do not involve an intersection with
a solid phase volume; the common point ; and the
corresponding common curves are

.

Averaging of these equilibrium constraints to the macroscale is straightforward, perhaps with
the exception of the constraints on the solid surface. Because this surface is constrained to be
smooth, the macroscale normal equilibrium condition is obtained as an integral of the various
terms over the entire surface. We obtain
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(150)

where interfaces are of the form , common curves are of the form
, common points are of the form

; the type of entity being summed over is determined by
the respective index set of interfaces, common curves and common points all of which involve
an intersection with the solid phase volume; the fluid-fluid interface is , and
the common curve consisting of the intersection of the three fluid phases is

.

5 Constraint Approaches
The TCAT approach relies upon a system EI to guide the development of closure relations. To
be of use for this purpose, it is necessary to incorporate the conservation equations for which
closure relations are sought. This incorporation is accomplished by arranging conservation
equations such that they are equal to zero, multiplying them by a Lagrange multiplier, and
summing them with the system EI. The resultant expression lacks a connection between
material derivatives of entropy and material derivatives of the conserved quantities. To make
this connection, thermodynamic expressions relating the material derivative of internal energy,
entropy, mass, and volume and related intensive quantities are arranged to equate to zero,
multiplied by a Lagrange multiplier, and summed to the system EI as well, yielding an
augmented EI (AEI). For the general case of multispecies flow in a multiphase system, the AEI
is

(151)

Eq. (151) is a general AEI and simpler versions may be used in many cases. For example under
most circumstances, it will be allowable to consider an entity-based, rather than species-based,
entropy balance and conservation of energy. If this decision is made, then the thermodynamic
expressions relating the material derivatives of energy, entropy, and other quantities would
typically assume a corresponding form. For such a case, a resultant formulation would be

(152)

(153)

(154)

(155)

(156)

resulting in an AEI of the form
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(157)

The AEI given by Eq. (157) retains the species forms of the mass and momentum equations
for all entities. However, other choices are possible. For example, a species summed version
of the momentum equation could be used following a similar approach that was used to combine
the energy and entropy equations. The consequence of such an action would be that the
difference in the mass-averaged species and entity velocities would require a closure
approximation in the species summed momentum equation, while the species stress tensors
would be combined such that a closure relation would be needed only for the entity based stress
tensors. It is also possible to consider cases in which species are not of concern in certain
entities. For example, an inert solid phase could be considered in which composition effects
are relatively unimportant and could thus be ignored. The point of these examples is that a
variety of models can be derived from the TCAT approach through the selection of different
forms of the AEI as obtained by judicious selection of conditions relating the Lagrange
multipliers. Additional work will be needed to compare such models and determine the
appropriate level of detail for any given case.

6 Discussion
The preceding work details the formulation of important components needed to advance more
sophisticated TCAT models than those formulated to date. In particular, the multiphase species
conservation and the entropy balance equations for phase volumes, interfaces, and common
curves are now complete. The averaged forms of CIT for these entities has been formulated as
well, and the conditions that must hold at equilibrium have further been detailed.

These components can be used to formulate a range of models, such as species transport in
single-fluid-phase systems, multiphase flow, and multiphase flow and species transport.
Because these fundamental components will not change as a function of the application of
concern, these results can be used for any of these applications without modification. The
TCAT framework that has been developed and the components detailed herein thus form the
basis upon which hierarchies of models of various levels of sophistication can be built. This
leaves the important future work to focus on model closure methods and detailed validation
by comparison to microscale experimental observations and highly resolved simulations.

Further theoretical work is certainly possible, which would require the derivation of additional
modeling components. We would advocate such approaches if models built upon the existing
theoretical components proved to be inadequate. Advances that might warrant consideration
would include the following:

• species internal energy form of ACIT—the averaged thermodynamics in this work is
based upon the internal energy for an entity; an extension to this approach would be
to develop the averaged thermodynamics for a species-entity combination; such an
approach might prove to have utility in the future for more sophisticated models than
those considered to date;

• alternative averaged thermodynamic basis—TCAT requires a thermodynamic
representation at the microscale be averaged to the macroscale; to date we have relied
upon classical irreversible thermodynamics; other approaches are possible and may
be required to describe certain systems; such work would lead to alternative forms
for the relationship between the material derivatives of internal energy, entropy,
densities, entity measures, and other quantities that are intensive quantities at the
microscale;
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• consideration of systems that containmore than two separated length scales—the work
accomplished to date has considered a microscale and a macroscale, with the intent
being to develop macroscale models that are connected to the microscale; systems of
concern may include additional scales of interest, which will require modifications to
the basic TCAT methodology developed to date; and

• even more fundamentally, the lack of existence of an REV for certain systems of
interest would require a detailed theoretical investigation of the underlying
conservation equations; we acknowledge that many natural systems of concern have
such characteristics and ultimately this issue should be considered, but doing so is
beyond the scope of our current endeavors.

7 Summary and Conclusions
The development of TCAT models for complex multispecies, multiphase systems requires a
significant amount of machinery: conservation and entropy balance equations for phase
volumes, interfaces, common curves, and common points; thermodynamic expressions for
material derivatives; knowledge of equilibrium conditions; and theorems needed to change
scales for differential and integral operators and restrict operators to surfaces and curves.
Understanding of the details of this mathematical machinery and model building blocks is
necessary for those wishing to develop models using the TCAT approach.

This work builds upon previous work in this series by deriving conservation and balance
equations needed to consider species transport in complex multiphase systems, formulating
ACIT in species forms for the entities of concern, and detailing the derivation and final form
of equilibrium conditions for the entities of concern in species form.

The building blocks established in this work will be essential ingredients in the derivation of
a wide range of more sophisticated TCAT models, which will include species transport and
multiphase systems. With the details of how these components were derived established in this
work, it will be possible to simply borrow the final results when deriving new TCAT models,
which will streamline future work, while still providing a means to examine the details of any
part of the work for those wishing to develop their own models.

The fundamentals outlined in this work are not the final word. TCAT models can be extended
in a variety of ways. Some of these extensions include consideration of alternative
thermodynamic forms both in terms of the thermodynamic basis and the averaged forms
derived; multiple length scale systems; non-local systems; and other higher order effects, such
as an alternative treatment of common points.
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Notation
Roman letters

b  
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entropy source density

C  
Greens’ deformation tensor

d  
rate of strain tensor

E  
internal energy density

ET  
total energy density

ε  
the set of entities

εC  
the set of common curve entities

εI  
the set of interface entities

εP  
the set of phase volume entities

εPt  
the set of common point entities

ε  
conservation of energy equation

 
internal energy

εc  
connected set of entities

e  
unit vector tangent to a common curve and oriented positive outward

eiι  
microscale intra-entity internal energy transfer rate from all other species in entity
ι to the i species per unit measure of the ι entity

eTiι  
total macroscale energy transfered intra-entity from all other species in entity ι
to the i species per unit measure of the ι entity

 
total macroscale energy transfered intra-entity from all other species in entity ι
to the i species per unit measure of the ι entity

F  
thermodynamic functional to be minimized

f  
general variable
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f  
general vector variable

f′  
general microscale vector tangent to an interface

f″  
general microscale vector tangent to a common curve

g  
acceleration vector due to an external force, such as gravity

h  
heat source density

I  
identity tensor

I′  
surface identity tensor

I  
index set of entities

IC  
index set of common curve entities

ICs  
index set of common curve entities that include an intersection with the solid
phase volume

IC/s  
index set of common curve entities that do not include an intersection with the
solid phase volume

Ic  
index set of connected entities

If  
index set of fluid phase volumes

II  
index set of interface entities

IIs  
index set of interface entities that include an intersection with the solid phase
volume

II/s  
index set of interface entities that do not include an intersection with the solid
phase volume

IP  
index set of phase volume entities

IPt  
index set of common point entities

IPtι  
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index set of all microscale points in the REV that describes Ωι

IPts  
index set of common point entities that include an intersection with the solid
phase volume entity

IPt/s  
index set of common pont entities that do not include and intersection the solid
phase volume entity

Is  
index set of species

Isι  
index set of species in entity ι

js  
solid-phase Jacobian

KE  
macroscale kinetic energy per unit mass due to microscale velocity fluctuations

 
mass

M  
variational constant subject to mass conservation constraint

ℳ  
conservation of mass equation

 
transfer of mass of species i in the κ entity to the i species in the ι entity per unit
volume per unit time

 
transfer of energy from the κ entity to the ι entity due to inter-entity mass transfer
of species i per unit volume per unit time

 
transfer of momentum from the κ entity to the ι entity due to inter-entity mass
transfer of species i per unit volume per unit time

 
transfer of entropy from the κ entity to the ι entity due to inter-entity mass transfer
of species i per unit volume per unit time

nι  
outward unit normal vector from entity ι

P  
conservation of momentum equation

i  
general microscale property

p  
fluid pressure
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piι  
microscale intra-entity momentum transfer rate from all other species in entity
ι to the i species per unit measure of the entity

piι̿  
macroscale intra-entity momentum transfer rate from all other species in entity
ι to the i species per unit measure of the entity

 
transfer of energy from species in the κ entity to the i species in the ι entity
resulting from heat transfer and deviation from mean processes per unit volume
per unit time

q  
non-advective heat flux density vector

riι  
microscale intra-entity reaction rate resulting in the production of species i in
entity ι from all other species per unit measure of the entity

riι  
macroscale intra-entity reaction rate resulting in the production of species i in
entity ι from all other species per unit measure of the entity

S  
entropy balance equation

 
entropy

S  
set of all species

T  
constant used to constrain a variation to occur at maximum entropy

T  
CIT-based thermodynamic equation for material derivative of internal energy

 
transfer of momentum from species in the κ entity to the i species in the ι entity
due to stress and deviation from mean processes per unit volume per unit time

 
transfer of energy from species in the κ entity to the i species in the ι entity due
to work and deviation from mean processes per unit volume per unit time

t  
stress tensor

t  
time

V  
volume

V  
constant reference velocity
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v  
velocity

W  
weighting function in averaging operator

X  
material coordinate position vector

x  
position vector in the solid phase

 
fraction of heat energy transferred from species in the κ entity to the ι entity that
impacts the i species in the ι entity

 
fraction of stress transferred from species in the κ entity to the ι entity that impacts
the i species in the ι entity

 
fraction of entropy transferred from species in the κ entity to the ι entity that
impacts the i species in the ι entity

Greek letters

Γ  
boundary of domain of interest

γ  
interfacial tension

δ  
spatial variation involving a quantity and its microscale coordinates

δ ̅  
variation of a quantity at the macroscale

δ ̿  
fixed-point spatial variation

δ ̿′  
fixed-point spatial variation with respect to surface coordinates

δ ̿″  
fixed-point spatial variation with respect to curvilinear coordinates

δij  
Kronecker delta function

ει  
measure of quantity of entity ι per macroscale volume

η  
entropy density

θ  
temperature
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κGι  
Gaussian curvature of the ι common curve entity

κNι  
normal curvature of the ι common curve entity

Λ  
entropy production rate density

λ  
vector of Lagrange multipliers

λ  
Lagrange multiplier

μ  
chemical potential

ξ  
microscale position vector

ρ  
mass density

σ  
Lagrangian stress tensor for the solid phase

 
transfer of entropy from species in the κ entity to the i species in the ι entity per
unit volume per unit time

ϕι  
contact angle between the solid phase and the ι interface

φ  
entropy density flux vector

ψ  
acceleration potential (e.g., gravitational potential)

Ω  
spatial domain

Ω̅  
closed spatial domain

Ωss  
solid surface spatial domain

ω  
mass fraction of a species in an entity

Subscripts and superscripts

ε  
energy equation qualifier (subscript)

i  
general index denoting a species (subscript and superscript)
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j  
general index (subscript)

k  
general index denoting a species (subscript and superscript)

l  
general index (subscript)

ℳ  
mass equation qualifier (subscript)

P  
momentum equation qualifier (subscript)

s  
index that indicates a solid phase (subscript and superscript)

T  
thermodynamic equation qualifier (subscript)

α  
entity qualifier (subscript)

β  
entity qualifier (subscript)

γ  
entity qualifier (subscript)

δ  
entity qualifier (subscript)

ι  
entity qualifier (subscript and superscript)

κ  
entity qualifier (subscript and superscript)

λ  
entity qualifier (subscript)

μ  
entity qualifier (subscript)

ν  
entity qualifier (subscript)

Other mathematical symbols

¯  
closure of set (overline)

〈 〉  
averaging operator

Diι̅/Dt  
material derivative as defined by Eq. (56)
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∂′/∂t  
partial derivative of a point on a potentially moving interface as defined in Eq.
(72)

∂″/∂t  
partial derivative of a point on a potentially moving common curve as defined
by Eq. (83)

∇′  
microscale surficial del operator on an interface as defined in Eq. (71)

∇″  
microscale curvilinear del operator on a common curve as defined by Eq. (82)

Abbreviations

ACIT  
averaged classical irreversible thermodynamics

AEI  
augmented entropy inequality

CIT  
classical irreversible thermodynamics

EI  
entropy inequality

n  
entity index corresponding to the non-wetting phase volume

ns  
entity index corresponding to the non-wetting-solid interface

REV  
representative elementary volume

s  
entity index corresponding to the solid phase volume

TCAT  
thermodynamically constrained averaging theory

w  
entity index corresponding to the wetting phase volume

wn  
entity index corresponding to the wetting-non-wetting interface

wns  
entity index corresponding to the wetting-non-wetting-solid common curve

ws  
entity index corresponding to the wetting-solid interface
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