

org Lett. Author manuscript, available in Fivic 2008 November 2.

Published in final edited form as:

Org Lett. 2008 August 21; 10(16): 3477–3479. doi:10.1021/o1801257j.

A Highly Stereoselective Synthesis of Chiral α -Amino- β -Lactams Via the Kinugasa Reaction Employing Ynamides

Xuejun Zhang, Richard P. Hsung * , Hongyan Li, Yu Zhang, Whitney L. Johnson, and Ruth Figueroa

Division of Pharmaceutical Sciences and Department of Chemistry, 777 Highland Avenue, University of Wisconsin, Madison, WI 53705-2222

Abstract

A highly stereoselective synthesis of chiral α -amino- β -lactam through an ynamide-Kinugasa reaction is described. In addition, a mechanistic model is illustrated here to rationalize the observed diastereoselectivity, which depends on both the initial [3 + 2] cycloaddition step and the subsequent protonation for which both are highly selective.

Since Staudinger's first preparation, 1 β -1 actams have captured the attention of synthetic and medicinal communities for nearly a century. $^{2-6}$ Rendered famous by penicillin, those substituted with α -amino groups are among the most sought after β -1act ams. Consequently, an impressive array of stereoselective approaches toward chiral α -amino- β -1actams has been reported. $^{4-6}$ While the Kinugasa reaction 7,8 represents an elegant approach toward β -1actams, it has remained relatively unexplored until recently, and this is particularly true in the development of enantioselective protocols. $^{9-11}$ With such immense significance, we recognized the unique potential of an ynamide-Kinugas a reaction. As shown in Scheme 1, reactions of chiral ynamides 1^{12-13} with nitrones in a Kinugasa manner would not only lead to a stereoselective manifold for constructing β -1 actams, but also more importantly, provide a direct synthesis of chiral α -amino- β -1actams [see 4]. We report here a highly stereoselective ynamide-Kinugas a reaction.

The feasibility of an ynamide-Kinugasa reaction was readily established employing ynamide $\bf 5$ [Scheme 2]. With 0.2 equiv CuCl and 4.0 equiv Cy₂NMe, the reaction of $\bf 5$ with *N*-benzylidene-*N*-phenyl nitrone proceeded effectively in CH₃CN at rt to give β -lactam cis- $\bf 6a^{14}$ in 73% yield as the major isomer. X-Ray structural analysis unambiguously revealed that the relative stereochemistry between the α - and β -carbons is cis. This suggests that the minor isomer(s) could be cis- $\bf 6b$ and/or trans- $\bf 6a/6b$ with $\bf a/b$ isomers differing at the β -carbon stereochemistry.

The scope of this reaction is distinctly diverse. As shown in Table 1, we found several interesting features: (1) Sterically more encumbered auxiliaries retard the reaction rate [entries 2 and 3 versus 1]; (2) CuI is also feasible as a catalyst and can be more effective than CuCl [entries 3, 6, 8, and 13]; and (3) the minor isomer **b** was assigned as trans initially based on proton coupling constants ¹⁵ [entries 5–7, 11, and 13] and was confirmed later via nOe experiments [vide infra].

An immediate application of this reaction is the preparation of chiral α -amino- β -lactams [Scheme 3]. Toward this goal, we prepared *cis*-**27a** in 44–62% yield from **11** with an **a:b** ratio of in the range of 10:1–19:1. Hydrogenation with Boc-protection followed by oxidative removal of the PMP group in *cis*-**27a** using CAN provided chiral α -amino- β -lactam **29**. An α -epimerization of *cis*-**27a** via refluxing in toluene in the presence of DBU for 40 h afforded *trans*-**27a**, which could be converted to the isomeric α -amino- β -lactam **31** through the same sequence used for *cis*-**27a**.

During the isolation of cis-27a, we were able to attain a clean sample of the minor isomer trans-27b and confirmed its relative stereochemistry between the α -and β -carbons using nOe experiments. ¹⁴ We also isolated a small sample of cis-27b and spectroscopically observed a trace amount of trans-27a. Neither had been seen in other reactions. The assignment of cis-27b was confirmed through α -epimerization to trans-27b using DBU. ¹⁴ With these assignments, this ynamide-Kinugasa reaction became very intriguing from a stereochemical perspective. A unified mechanistic model is proposed in Scheme 4.

Based on the assumption that the more reactive of the two π -bonds is the one conjugated with the nitrogen lone-pair [all in red], the Cu(I)-promoted nitrone-[3 + 2] cycloaddition via intermediate **A** could diverge into two pathways that would determine the β -carbon stereochemistry. The preferred pathway would involve the approaching nitrone with its vinyl hydrogen [in red] being syn to H_A on the chiral auxiliary and the larger R group [chex in blue] anti to H_A to minimize steric interactions. This pathway would lead to intermediate **B** [skipping respective intermediates **2** and **3** shown in Scheme 1], and while **B** could undergo protonation at the more open bottom face away from the phenyl rings, it would lead to the *trans*-isomera that was not observed from most of these reactions. Therefore, we reason that a facially selective protonation takes place instead via intermediate **C** on the top face to give *cis*-**27a** because **C** is more stable than **B** given the presence of allylic strain.

On the other hand, the less favorable cycloaddition pathway would involve the larger R group approaching syn relative to H_A on the auxiliary, and should lead to minor isomers \mathbf{b} via related intermediate \mathbf{D} . We believe a facially selective protonation also occurs here in \mathbf{D} to provide trans-27 \mathbf{b} as the most dominant minor isomer. Intriguingly, B3LYP-6-31G* calculations reveal that trans-27 \mathbf{a} is ~ 2.50 kcal mol-1 more stable than cis-27 \mathbf{a} , and trans-27 \mathbf{b} is ~ 4.86 kcal mol-1 more stable than cis-27 \mathbf{b} . This implies that for the major reaction pathway, a facially selective protonation gives the kinetic product cis-27 \mathbf{a} , whereas a selective protonation in the minor reaction pathway gave the more stable trans-27 \mathbf{b} . Re-subjecting cis-27 \mathbf{b} to the same reaction conditions did not lead to any α -epimerization or observation of trans-27 \mathbf{b} . Therefore, despite being more stable, trans isomers are not likely derived from α -epimerizations of their respective cis isomers.

We have described here a highly stereoselective ynamide-Kinugas a reaction and featured its application as a stereoselective manifold for constructing chiral α -amino- β -lactam. A proposed model reveals that the observed selectivity requires both the initial cycloaddition and subsequent protonation to be stereoselective.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgement

Authors thank NIH [GM066055] for support and Dr. Victor Young and Ben Kucera [University of Minnesota] for X-ray analysis.

References

- 1. Staudinger H. Liebigs Ann. Chem 1907;356:51.
- 2. Page, MI. The Chemistry of β -Lactams. New York: Blackie Academic and Professional; 1992. G, I., editor. The Organic Chemistry of β -Lactams Georg. New York: VCH; 1993.
- 3. (a) Masaretti OA, Boschetti CE, Danelon GO, Mata EG, Roveri OA. Curr. Med. Chem 1995;1:441.Neuhaus, FC.; Georgopadaku, NH. Emerging Targets in Antibacterial and Antifungal Chemotherapies; Sutcliffe, J. Georgopadaku, NH., editor. new York: Chapman and hall; 1992. Morin, RB.; Gorman, M., editors. The Chemistry and Biology of β-Lactams Antibiotics. New York: Academic Press: 1982.
- 4. For reviews on synthetic approaches, see: (a) Miller M. J Acc. Chem. Soc 1986;19:49. (b) Hart DJ, Ha DC. Chem. Rev 1989;89:1447. (c)GhosezLMarchand-BrynaertJTrostBFlemmingIComp. Org. Syn1991Vol 5OxfordPergamonp85 (d) Van der Steen FH, Van Koten G. Tetrahedron 1991;47:7503. (e) Hegedus LS. Acc. Chem. Soc 1995;28:299. (f) Ojima I. Acc. Chem. Soc 1995;28:383. (g) Ojima I, Delaloge F. Chem. Soc. Rev 1997;26:377. (h) DeKimpeNKatritzkyARReesCWScrivenEFVPadwaAComp. Heterocycl. Chem1996II Vol 1B1BOxfordPergamon (i) Palomo C, Aizpurua JM, Inaki G, Oiarbide M. Eur. J. Org. Chem 1999:3223. (j)BrugginkASynthesis of β-Lactams Antibiotics. Chemistry, Biocatalysis and Process Integration2001NetherlandsKluwer, Dordrecht (k) Taggi AE, Hafez AM, Lectka T. Acc. Chem. Res 2003;36(10) (l) France S, Weatherwax A, Taggi AE, Lectka T. Acc. Chem. Res 2004;37:592. [PubMed: 15311958]
- For Rh-catalyzed asymmetric manifolds, see: (a) Doyle MP, Pieters RJ, Tauton J, Pho HQ, Padwa A, Hertzog DL, Precedo L. J. Org. Chem 1991;56:820. (b) Anada M, Watanabe N, Hashimoto S. Chem Commun 1998:1517. (c) Davioli P, Moretti I, Prati F, Alper H. J. Org. Chem 1999;64:518.
- 6. For asymmetric Staudinger reactions, see: (a) Taggi AE, Hafez AM, Wack H, Young B, Ferraris D, Lectka T. J. Am. Chem. Soc 2002:6626. [PubMed: 12047183] (b) Hafez AM, Dudding T, Wagerle TR, Shah MH, Taggi AE, Lectka T. J. Org. Chem 2003;68:5819. [PubMed: 12868913] (c) Hodous BL, Fu GC. J. Am. Chem. Soc 2002;124:1578. [PubMed: 11853423] Also see: (d) Tomioka K, Fujieda H, Hayashi S, Hussein MA, Kambara T, Nomura Y, Kanai M, Koga K. Chem. Commun 1999:715.
- 7. Kinugasa M, Hashimoto S. J. Chem. Soc. Chem. Commun 1972:466.
- 8. For reviews, see: (a)EvansDAKleinbeckFRüpingMChristmannMBräseSAsymmetric Synthesis The Essentials2007WeinheimWiley-VCH, Verlag GmbH & Co. KGaA72 (b) Pal, Ghosh SC, Chandra K, BVasak A. Synlett 2007:2321. (c) Marco-Contelles. J. Angew. Chem. Int. Ed 2004;42:2198. Also see: (c) Okuro K, Enna M, Miura M, Nomura M. J. Chem. Soc. Chem. Commun 1993:1107. (d) Ding LK, Irwin WJ. J. Chem. Soc. Perkin Trans 1976;1:2382.
- 9. For recent asymmetric accounts, see: (a) Lo MM-C, Fu GCJ. Am. Chem. Soc 2002;124:4572. (b) Shintani R, Fu GC. Angew. Chem. Int. Ed 2003;115:4216. (c) Ye M-C, Zhou J, Huang Z-Z, Tang Y. Chem. Commun 2003:2554. (d) Ye M-C, Zhou J, Tang Y. J. Org. Chem 2006;71:3576. [PubMed: 16626144] (e) Coyne AG, Muller-Bunz H, Guiry PJ. Tetrahedron: Asymmetry 2007;18:199.
- 10. For an earliest account, see: Miura M, Enna M, Okuro K, Nomura M. J. Org. Chem 1995;60:4999.
- 11. For stereoselective approaches, see:(a) Pal R, Basak A. Synlett 2007:1585. (b) Pal R, Basak A. Chem. Commun 2006:2992. (b) Basak A, Ghosh SC, Bhowmick T, Das AK, Bertolasi V. Tetrahedron Lett 2002;43:5499. (c) Basak A, Mahato T, Bhattacharya G, Mukherjee B. Tetrahedron Lett 1997;38:643.
- 12. For reviews on ynamides, see:(a) Zificsak CA, Mulder JA, Hsung RP, Rameshkumar C, Wei L-L. Tetrahedron 2001;57:7575. (b) Mulder JA, Kurtz KCM, Hsung RP. Synlett 2003:1379. (c) Katritzky AR, Jiang R, Singh SK. Heterocycles 2004;63:1455.
- 13. For recent references on chemistry of ynamides, see:(a) Oppenheimer J, Johnson WL, Tracey MR, Hsung RP, Yao P-Y, Liu R, Zhao K. Org. Lett 2007;9:2361. [PubMed: 17489599] (b) You L, Al-Rashid ZF, Figueroa R, Ghosh SK, Li G, Lu T, Hsung RP. Synlett 2007:1656. (c) Hashimi ASK, Salathe R, Frey W. Synlett 2007:1763. For a special issue dedicated to the chemistry of ynamides, see: *Tetrahedron-Symposium-In-Print*: (d) Chemistry of Electron-Deficient Y namines and Y namides. Tetrahedron 2006;62(Issue No16)
- 14. See Supporting Information
- 15. The range of proton couple constants for our *cis*-β-lactams is 5.0–5.6 Hz, and it is 2.0–2.4 Hz for *trans*-β-lactams

Scheme 1. An Ynamide-Kinugasa Reaction

Scheme 2. Establishing the Feasibility and Stereochemistry.

Scheme 3. Synthesis of Chiral α -Amino- β -Lactams.

Scheme 4. A Proposed Mechanistic Model.

Zhang et al.

NIH-PA Author Manuscript

entry	ynamides	α-amino-β-lactams		yield [%] ^a	dr: [a:b] ^b
- 0 E	, x e	Ha, a harmonia harmon	12: R = Ph 13: R = i-Pr 14: R = CHPh ₂	80 36 28°.d	≥95:5 ≥ 95:5 nd ^e
4 °C 9	r rr	o vi		77 71 72csf	≥95:5 90:10 93:7
7 8	r r		18: X = O 19: X = S	61^{c} 60^{c} .8	82:18 ≥95:5
9 10	L L	divide the state of the state o	20: $X = CI$ 21: $X = CO_2EI$	65 63	>95:5 >95:5
11 12 13	R L L		22: $R = Bn$; $R^1 = Ph$ 23: $R = Ph$; $R^1 = Ph$ 24: $R = Ph$; $R^1 = c$ -hex	$\begin{array}{c} 59h \\ 60h \\ 60c, i, h \end{array}$	91:9 ≥95:5 92:8
14	10 Ph		25	61	≥95:5
1.5		Physical Phy	26	_{4°2} 09	>95:5

 $[^]a$ Reaction conditions are as shown in Scheme 2 unless otherwise indicated. All are isolated yields.

 $[^]bdr$ is determined using $^1{\rm H}$ NMR. All isomers-a are cis . The minor isomer-b is trans.

 $^{^{\}rm C}$ 0.2 equiv of CuI was used, and the reaction was run at 0 $^{\circ}{\rm C}$ to rt.

 $[^]d$ With 0.2 equiv of CuCl, the yield was 13%.

end: Not determined.

 $f_{\rm With~0.2~equiv~of~CuCl}$, yield was 71% and dr = 91.9.

 $^{^{\}it g}$ With 0.2 equiv of CuCl, yield was 48% and dr=86:14.

^hPMP: para-methoxyphenyl.

 $^{^{}i}$ With 0.2 equiv of CuCl and 4.8 equiv of Hünig's base, yield was 54% and dr = 87:13.