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Abstract

A highly stereoselective synthesis of chiral a-amino-p-lactam through an ynamide-Kinugasa reaction
is described. In addition, a mechanistic model is illustrated here to rationalize the observed
diastereoselectivity, which depends on both the initial [3 + 2] cycloaddition step and the subsequent
protonation for which both are highly selective.

Since Staudinger’s first preparation, 1 B-1 actams have captured the attention of synthetic and
medicinal communities for nearly a century. 2-6 Rendered famous by penicillin, those
substituted with a-amino groups are among the most sought after -lact ams. Consequently,
an |mpresswe array of stereoselective approaches toward chiral a-amino-p-lactams has been
reported. 4-6 \While the Kinugasa reaction’ 8 represents an elegant approach toward p-lactams,
it has remained relatively unexplored until recently, and this is particularly true in the
development of enantioselective protocols. 9-11 with such immense significance, we
recognized the unique potentlal of an ynamide-Kinugas a reaction. As shown in Scheme 1,
reactions of chiral ynamides 1 12-13 \ith nitrones in a Kinugasa manner would not only lead
to a stereoselective manifold for constructing p-1 actams, but also more importantly, provide
a direct synthesis of chiral a-amino-pB-lactams [see 4]. We report here a highly stereoselective
ynamide-Kinugas a reaction.

The feasibility of an ynamide-Kinugasa reaction was readily established employing ynamide
5 [Scheme 2]. With 0.2 equiv CuCl and 4.0 equiv CyoNMe, the reaction of 5 with N-
benzylidene-N-phenyl nitrone proceeded effectively in CH3CN at rt to give p-lactam
cis-6al4 in 73% yield as the major isomer. X-Ray structural analysis unambiguously revealed
that the relative stereochemistry between the a- and B-carbons is cis. This suggests that the
minor isomer(s) could be cis-6b and/or trans-6a/6b with a/b isomers differing at the B-carbon
stereochemistry.

The scope of this reaction is distinctly diverse. As shown in Table 1, we found several
interesting features: (1) Sterically more encumbered auxiliaries retard the reaction rate [entries
2 and 3 versus 1]; (2) Cul is also feasible as a catalyst and can be more effective than CuCl
[entries 3, 6, 8, and 13]; and (3) the minor isomer b was assigned as trans initially based on
proton coupling constants 15 [entries 5-7, 11, and 13] and was confirmed later via nOe
experiments [vide infra].
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An immediate application of this reaction is the preparation of chiral a-amino-p-lactams
[Scheme 3]. Toward this goal, we prepared cis-27a in 44-62% yield from 11 with an a:b ratio
of in the range of 10:1-19:1. Hydrogenation with Boc-protection followed by oxidative
removal of the PMP group in cis-27a using CAN provided chiral a-amino-f-lactam 29. An -
epimerization of cis-27a via refluxing in toluene in the presence of DBU for 40 h afforded
trans-27a, which could be converted to the isomeric a-amino-p-lactam 31 through the same
sequence used for cis-27a.

During the isolation of cis-27a, we were able to attain a clean sample of the minor isomer
trans-27b and confirmed its relative stereochemistry between the a-and p-carbons using nOe
experiments.14 We also isolated a small sample of cis-27b and spectroscopically observed a
trace amount of trans-27a. Neither had been seen in other reactions. The assignment of
cis-27b was confirmed through a-epimerization to trans-27b using DBU.14 with these
assignments, this ynamide-Kinugasa reaction became very intriguing from a stereochemical
perspective. A unified mechanistic model is proposed in Scheme 4.

Based on the assumption that the more reactive of the two n-bonds is the one conjugated with
the nitrogen lone-pair [all in red], the Cu(l)-promoted nitrone-[3 + 2] cycloaddition via
intermediate A could diverge into two pathways that would determine the p-carbon
stereochemistry. The preferred pathway would involve the approaching nitrone with its vinyl
hydrogen [in red] being syn to Ha on the chiral auxiliary and the larger R group [chex in blue]
anti to Ha to minimize steric interactions. This pathway would lead to intermediate B [skipping
respective intermediates 2 and 3 shown in Scheme 1], and while B could undergo protonation
at the more open bottom face away from the phenyl rings, it would lead to the trans-isomer-
a that was not observed from most of these reactions. Therefore, we reason that a facially
selective protonation takes place instead via intermediate C on the top face to give cis-27a
because C is more stable than B given the presence of allylic strain.

On the other hand, the less favorable cycloaddition pathway would involve the larger R group
approaching syn relative to Ha on the auxiliary, and should lead to minor isomers b via related
intermediate D. We believe a facially selective protonation also occurs here in D to provide
trans-27b as the most dominant minor isomer. Intriguingly, B3LYP-6-31G* calculations
reveal that trans-27a is ~ 2.50 kcal mol-1 more stable than cis-27a, and trans-27b is ~ 4.86
kcal mol-1 more stable than cis-27b. This implies that for the major reaction pathway, a facially
selective protonation gives the kinetic product cis-27a, whereas a selective protonation in the
minor reaction pathway gave the more stable trans-27b. Re-subjecting cis-27b to the same
reaction conditions did not lead to any a-epimerization or observation of trans-27b. Therefore,
despite being more stable, trans isomers are not likely derived from a-epimerizations of their
respective cis isomers.

We have described here a highly stereoselective ynamide-Kinugas a reaction and featured its
application as a stereoselective manifold for constructing chiral a-amino-p-lactam. A proposed
model reveals that the observed selectivity requires both the initial cycloaddition and
subsequent protonation to be stereoselective.
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