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Abstract
Death receptors induce apoptosis through either the Type I or Type II pathway. In Type I cells, the
initiator caspase-8 directly activates effector caspases such as caspase-3, whereas in Type II cells,
the death signal is amplified through mitochondria thereby activating effector caspases causing cell
death. Recently, there have been advances in elucidating the early events in the CD95 signaling
pathways and how posttranslational modifications regulate CD95 signaling. This review will focus
on recent insights into the mechanisms of the two different types of CD95 signaling pathways, and
will introduce miRNAs as regulators of death receptor signaling.
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1. Introduction
Apoptosis can be executed either through the extrinsic or intrinsic pathway [1]. The intrinsic
pathway, which involves the release of a number of factors from mitochondria including
cytochrome c, can be activated by a diverse set of stressors. Upon release, cytochrome c
interacts with the adapter protein Apaf-1, dATP and caspase-9 to form the apoptosome
complex, which subsequently activates caspase-3, leading to cell death [2]. Other factors that
are released from the mitochondria that promote apoptosis include Apoptosis Inducing Factor
(AIF) [3], Smac/Diablo [4,5], endonuclease G [6] and Omi/HtrA [7].

The extrinsic pathway is activated when death receptors are engaged by their cognate ligands.
Death receptors are members of the TNF superfamily and include CD95 (Fas/APO-1), TNF-
R1 and the TRAIL receptors, DR4 and DR5. All death receptors carry a conserved cytoplasmic
domain of about 80 amino acids called the death domain (DD) which is crucial for initiating
apoptotic signals. The most well characterized death receptor with respect to the mechanism
of apoptosis induction is CD95. Activation of CD95, either by its cognate ligand (CD95L) or
by agonistic antibodies, initiates a process of receptor clustering and consequent triggering of
apoptotic signals. In some cells CD95 induces apoptosis by activating the effector caspases
directly (Type I cells). In other cells (Type II cells) CD95 induces apoptosis by amplifying the
death signal through the mitochondrial, "intrinsic," pathway [8,9]. Upon CD95 stimulation,
sequential recruitment of the adapter molecule FADD (Mort1), pro-forms of caspase-8 and
caspase-10, and c-FLIP to the CD95 DD result in the formation of the death-inducing signaling
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complex (DISC) [10]. In the DISC, aggregation of procaspase-8 leads to proteolytic cleavage
and activation. In Type I cells, large amounts of active caspase-8 are released and directly
activate caspase-3 without the involvement of the mitochondria. In Type II cells, very little
active caspase-8 is produced at the DISC. The amount of caspase-8 produced, however, is
sufficient to cleave the BH3 containing protein "BH3-interacting domain death agonist" (Bid)
to generate truncated Bid (tBid) [11,12]. tBid translocates to the mitochondria and induces the
release of mitochondrial factors that lead to apoptosis. The mitochondrial pathway can be
blocked by the expression of antiapoptotic members of the Bcl-2 family [13]. Therefore, the
amount of DISC formed at the activated CD95 and the ability of Bcl-2/Bcl-xL to inhibit
apoptosis induced through CD95 can be used to distinguish Type I from Type II cells [8,14].

2. Early events in the Type I and Type II CD95 signaling pathways
Very early signaling events of CD95 when CD95L binds to the preassociated CD95 in Type I
cells can be summarized as follows [15,16]:

1. Formation of CD95 microaggregates with a low level of DISC formation are detected
as SDS-stable CD95 aggregates by SDS-PAGE.

2. Recruitment of CD95 into lipid rafts to form higher order CD95 oligomers.

3. Receptor clustering or capping and formation of large lipid raft platforms.

4. Internalization of CD95 and migration of internalized CD95 into an endosomal
compartment.

5. Recruitment of large amounts of DISC components to endosomal vesicles to form a
high-molecular weight DISC (hiDISC).

The initial events in CD95-mediated signaling after CD95 stimulation differ between Type I
and II cells. In Type I cells, upon CD95 stimulation FADD is efficiently recruited in an actin
filament-dependent manner [15] and allows the recruitment of other components of the DISC
such as caspase-8, caspase-10 and c-FLIP. Type II cells, by contrast, exhibit decreased FADD
recruitment and decreased DISC formation [10] resulting in very little active caspase-8
generation, albeit sufficient for cleaving Bid. In Type I cells some CD95 has been shown to
be present in lipid rafts. However, in Type II cells CD95 is not found in the rafts [17–19] until
it is recruited to the raft membrane fractions following CD95 stimulation [17,18,20].
Redistribution of CD95 into lipid rafts also occurs after costimulation of lymphocytes through
CD28 and CD95 [18] and by TCR restimulation in primary activated CD4+ T cells through
the action of the Rho GTPases Rac1 and Rac2 [19,21], which have been shown to sensitize
Type II cells to CD95-induced apoptosis. A summary of the differences between Type I and
Type II cells is shown in Table 1.

Activated CD95 forms higher order oligomers [22] and these forms can be visualized as SDS
and β-mercaptoethanol stable aggregates [23,24]. Recent studies have shown that formation
of SDS-stable aggregates and recruitment to lipid rafts involves palmitoylation of the
membrane proximal cysteine 199 of CD95. Treatment with the palmitoylation inhibitor 2-
bromopalmitic acid prevented the formation of SDS-stable aggregates [25,26] suggesting that
palmitoylation allows CD95 to be efficiently recruited to the rafts. In Type I cells, aggregated
CD95 is then internalized through an endosomal pathway that involves clathrin-coated pit-
mediated endocytosis. Tyrosine 291 within the consensus AP-2 binding motif found in the
intracellular domain of CD95 was found to be important for CD95 internalization. The
internalization step is dependent on actin filaments as it can be inhibited by latrunculin A (Ltn
A). In Type II cells, however, there is no indication that CD95 is internalized into endosomes,
and consistent with this, treatment with Ltn A does not inhibit CD95-mediated apoptosis in
Type II cells [10,16].
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In the past decade, many studies have shown that CD95 also activates nonapoptotic pathways
[27] that link CD95 to various nonapoptotic functions including proliferation [28,29],
differentiation [30], inflammation [31,32] and tumorigenesis [33,34]. CD95 activates various
nonapoptotic pathways including NF-κB and MAP kinases [30,33]. CD95 utilizes the DISC
components to engage non-apoptotic pathways and there is good evidence that CD95 activates
the canonical NF-κB pathway through activation of the IκB kinase (IKK) complex [33,35].
However, the mechanism by which the nonapoptotic and apoptotic pathways are differentially
activated at the receptor level is still unknown. Recently, it was shown that if Y291 in the AP-2
binding motif is mutated to prevent CD95 from internalizing, CD95 engagement induces
activation of NF-κB and ERK but not apoptosis [16]. Furthermore, when the palmitoylation
site C199 of CD95 was mutated, CD95 was unable to form SDS-stable CD95 aggregates,
internalization was strongly reduced, and apoptotic pathways were blocked. However, the
nonapoptotic pathways were still intact [25]. These studies show that inhibition of receptor
internalization enables the activated CD95 to enhance signaling pathways that activate
nonapoptotic pathways. Figure 1 summarizes recent advances in our understanding of the
proapoptotic and apoptosis-independent activities of CD95.

3. Different sensitivities of Type 1 and Type II cells to antitumor drugs
Previously, we determined apoptosis sensitivity to soluble CD95L and DISC formation among
58 cell lines from the National Cancer Institute anticancer drug screening panel of 60 cancer
cell lines representing 9 different human cancers (NCI60), and found that 22 of these cells were
CD95 sensitive. Of these 22 cell lines, half were classified as Type I and the other half as Type
II [10]. A comprehensive microarray analysis of the gene expression profiles of the NCI60 cell
lines had shown that the cells clustered into two distinct branches, one expressing an epithelial
and the other a stromal/mesenchymal gene signature [36]. These two branches of the NCI60
cells may reflect two different stages of tumor development. Interestingly, most of the Type I
cells fell into the stromal/mesenchymal branch (supercluster 1, SC1) and the Type II cells were
found in the epithelial branch (supercluster 2, SC2). Gene array data on the expression of 8,000
distinct human genes in the NCI60 cell lines were obtained from the NCI and a COMPARE
analysis was performed. Among the genes that were more abundant in Type I cells were CD95
and many actin-regulating genes, which is consistent with the requirement for actin filaments
in apoptosis of Type I cells [10]. By using the public NCI Developmental Therapeutics Program
anticancer drug screening database, which holds data on more than 42,000 publicly available
compounds, Type I cells were found to have selective cell death sensitivity to actin-binding
reagents. In contrast Type II cells were found to be much more sensitive to tubulin-binding
compounds. Thus, Type I and Type II cells can be distinguished by their sensitivity to actin-
or tubulin-binding drugs (Table 1), which suggests that the differences between Type I/SC1
and Type II/SC2 cells are not limited to CD95 signaling.

4. Let-7, a miRNA that separates Type I and Type II cells
Micro (mi)RNAs are a class of noncoding RNAs of 18–24 nucleotides (nt) that
posttranscriptionally regulate protein expression. The first miRNA to be identified, lin-4, was
discovered in 1993 by Victor Ambros and colleagues in a genetic screen for genes that control
developmental timing in Caenorhabditis elegans [37]. Subsequently, it was shown that lin-4
encodes a 22 nt small RNA that negatively regulates lin-14, a gene that is necessary for
differentiation of specific cell lineages [37]. In recent years, the known roles of miRNAs have
expanded from their initially identified functions in development to various biological activities
including proliferation, cell death, and differentiation (reviewed in [38–40]). The dysregulation
of various miRNAs is associated with many diseases including cancer. Currently, more than
500 human miRNAs are known to exist and computational analysis predicts up to 30% of
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human protein coding genes to be regulated by miRNAs [41], making miRNAs one of the
largest classes of gene regulators.

MiRNAs are initially transcribed by RNA polymerase II (pol II) as long primary transcripts
known as primary-miRNAs (pri-miRNAs). Pri-RNA transcripts are generally several kilobases
in length, and are capped and polyadenylated like other pol II transcripts [42]. A significant
number of miRNAs are located within introns of protein-coding RNAs [43] as well as in the
exons and introns of non-coding RNAs [44]. The pri-miRNA contains one or more stem loop
structures of 60–80 bases within which the miRNA resides. The stem loop is a double stranded
RNA structure with imperfect base-pairing. This structure is recognized and cleaved in the
nucleus by an RNase III enzyme, Drosha and its cofactor DGCR8 [45]. Pri-miRNAs are cleaved
to form precursor-miRNAs (pre-miRNA) which contain a two nt 3’ overhang that is recognized
by the nuclear export factor, exportin-5, allowing rapid export to the cytoplasm [46]. Further
processing of the pre-miRNA by Dicer, another RNase III enzyme, generates the mature
miRNA that is incorporated into the RNA-induced silencing complex (RISC). MiRNAs direct
the RISC to target specific mRNAs, which are either subsequently cleaved or translationally
silenced. The mode of negative regulation of the mRNA is determined by the extend of
complementarity between the miRNA and target mRNA. When the miRNA and target site in
the 3’UTR of the target mRNA exhibit imperfect base-pairing, which is common with
mammalian miRNAs, regulation is by translational repression [47]. However, in case of perfect
complementarity between miRNA and mRNA, the target mRNA is degraded by RISC [48].

Because of the role miRNAs play in differentiation processes we recently tested whether
miRNAs could be differentially expressed between Type I and Type II cells. We subjected 10
Type I and 10 Type II cell lines to a miRNA gene array analysis and found that members of
the let-7 family were preferentially expressed in Type II cells [49]. Further analysis showed
that let-7 was generally expressed more highly in SC2 cells when compared to SC1 cells,
irrespective of CD95 sensitivity. Since let-7 plays an important role during embryonic
development, this suggests that let-7 expression could influence the differentiation state of
tumor cells and their sensitivity to CD95L and chemotherapeutic drugs.

Let-7 is one of the first identified miRNA families [50,51] originally discovered in C.
elegans [52]. Let-7 is highly conserved in animals from worm to humans and is important for
embryonic development [53]. Let-7 expression is low in early embryonic stages, upregulated
late during embryonic development and highly expressed in differentiated tissues [54,55].
Downregulation of let-7 has been shown in various cancers including head and neck, lung,
colon and ovarian cancer. Its expression levels serve as a prognostic marker for various cancers
[49,56–58]. Let-7 is considered to be a tumor suppressor in lung cancer through regulation of
the oncogene, Ras [57]. Recently, four groups have shown that high mobility group A2
(HMGA2) is another direct target of let-7 [49,59–61]. HMGA2 is an architectural transcription
factor that binds to DNA and is involved in chromatin remodeling. HMGA2 is an early
embryonic gene that is undetectable in most differentiated tissues but is highly expressed in
various cancers including neuroblastoma, thyroid, pancreatic and lung cancer [62–65]. Because
1) let-7 is expressed late in embryonic development and its direct target, HMGA2, is an
embryonic gene, and 2) let-7 is preferentially expressed in SC2 of the NCI60 cells which
represent more mesenchymal/stromal cells, and 3) let-7 is downregulated in cancer in which
dedifferentiation is an essential process, it is likely that the physiological targets of let-7 are
embryonic genes. We recently hypothesized that during carcinogenesis embryonic genes in
adult tissues that are normally repressed by let-7 are relieved from let-7 control and can be re-
expressed, promoting dedifferentiation of tissues leading to cancer progression [66]. Consistent
with that hypothesis are data that demonstrated that the most undifferentiated stage in breast
cancer, the cancer stem cell, is devoid of let-7 expression [67].
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5. miRNAs regulating apoptosis sensitivity
The discovery of miRNAs that mediate post-transcriptional silencing of specific target genes
has shed light on how noncoding RNAs can play important roles in essential processes such
as proliferation, differentiation, and also in apoptosis. Readers are referred to several recent
reviews for detailed descriptions of the function and biogenesis of miRNAs [39,48,51,68,69].
In the following we will review selected miRNAs that regulate pro- and anti-apoptotic genes
involved in the apoptotic pathways.

5.1 miRNA with anti-apoptotic functions
First observations on regulation of cell death by miRNAs were made in Drosophila. Bantam,
which was originally identified as a gene that causes overgrowth of wing and eye tissue, was
demonstrated to be a miRNA [70]. Bantam was shown to promote proliferation and inhibit
apoptosis by targeting the proapoptotic gene, hid [71]. Another Drosophila miRNA, miR-14,
which was identified in a screen for genes that alter cell death in the eye, was demonstrated to
inhibit apoptosis, possibly by regulating an effector caspase, Drice, which carries a putative
miR-14 target site in its 3'UTR [72]. In addition inactivation of members of the miR-2 family,
miR-2/6/11/13/308, in Drosophila embryos by injection of antisense oligoribonucleotides
complementary to the miRNAs caused widespread cell death. These miRNAs were
demonstrated to post-transcriptionally repress the proapoptotic proteins Reaper, Grim, Hid and
Sickle [73].

In mammalian cells, several miRNAs were recently reported to be involved in cell death.
MiR-21 is a miRNA that was described as having anti-apoptotic function. MiR-21 was initially
found during a study screening for miRNAs involved in cell growth and apoptosis in which it
was found that inhibition of miR-21 led to a profound increase in cell growth [74]. Up-
regulation of miR-21 is frequently associated with solid cancers including breast and pancreatic
cancer [60,75,76]. Involvement of miR-21 in apoptosis was shown in glioblastoma in which
inhibition of miR-21 caused activation of effector caspases and increased cell death [77].
Furthermore, suppression of miR-21 together with TRAIL treatment was shown to
synergistically kill gliomas in vitro and in vivo [78]. Studies have shown that PTEN,
tropomyosin and most recently, Programmed Cell Death 4 (PDCD4) are direct targets of
miR-21 [79–81].

Additional miRNAs with anti-apoptotic function include miR-17-5p and miR-20a both of
which are part of the miR-17–92 cluster that is often overexpressed in cancer including B cell
lymphoma [82–85]. The miR-17–92 cluster, which consists of 7 miRNAs, is transcribed as a
polycistronic unit driven by c-myc expression [84,86]. In lung cancer cells that overexpress
miR-17–92, inhibition of these two miRNAs with antisense oligonucleotides was shown to
induce apoptosis [83], which may be partly due to the relief of suppression of its target, E2F1
[87]. Although E2F2 and E2F3 are also negatively regulated by miR-17-5p and miR-20a, E2F1
is more strongly affected [88]. The antiapoptotic activity of miR-17–92 miRNAs has been
proposed to reflect the distinct physiological roles of different E2Fs in apoptosis [89]. Unlike
E2F2 or E2F3, E2F1 has been particularly associated with apoptosis in addition to its function
as an activator of cell cycle [90]. E2F1−/− mice exhibit defects in apoptosis [91], and forced
expression of E2F1 in vitro causes apoptosis in various cell types [92]. E2F1 is activated by
the ATM/ATR DNA damage signaling pathway [93] and regulates the expression of various
caspases [94] and other pro-apoptotic proteins [95] through direct and indirect transcriptional
mechanisms. Although E2F2 and E2F3 are also downregulated by miR-17–92 based on
reporter assays, the effect on E2F1 is much stronger [88]. Therefore, the miR-17–92 cluster
has been proposed to inhibit apoptosis mostly by decreasing E2F1 levels [88,96].
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5.2 miRNAs with proapoptotic functions
Due to the way that miRNAs work, a particular miRNA is likely to have multiple targets. This
allows miRNAs to regulate distinct, but functionally connected activities such as apoptotic and
antiproliferative functions, or survival and proliferation. MiRNAs with proapoptotic function
are often linked to antiproliferative activity. MiR-34 represents a clear example of a miRNA
with such a dual function. A key player in the intrinsic apoptotic pathway is p53, a transcription
factor activated by diverse forms of cellular stress [97]. Earlier studies indicated that the
primary action of p53 in apoptosis is to regulate the activity of the Bcl-2 family proteins through
transcription-dependent and independent functions [98]. Recently, five studies correlating
miRNA expression profiles with p53 status in various systems independently identified the
miR-34 family (miR-34a,b,c) as transcriptional targets of p53 [76,99–102]. Studies were
focused on determining if miR-34 was sufficient or necessary for the two main p53 functions,
growth arrest and apoptosis. Ectopic expression of miR-34 in primary and tumor-derived cell
lines led to significant cell cycle arrest, recapitulating the p53 growth arresting effect [100].
This likely occurs through the regulation by miR-34 of p53 cell cycle targets which include
cyclin-E2 (CCNE), cyclin dependent kinase 4 (CDK4), hepatocyte growth factor receptor (c-
Met), cyclin dependent kinase 6 (CDK6), and E2F3 [99,100]. Furthermore, overexpression of
miR-34a increased apoptosis in several tumor cell lines [76,101,102]. Consistent with this,
inactivation of miR-34 by high affinity locked nucleic acid (LNA) antisense miRNA
oligonucleotides was shown to inhibit p53-mediated apoptosis in cells exposed to genotoxic
stress [99,101]. Bommer et al identified Bcl-2 as a miR-34 target involved in apoptosis that is
regulated by targeting of its 3‘UTR [99].

MiR-15a and miR-16-1 represent another class of miRNAs that regulate apoptosis. These
miRNAs are located on chromosome 13q14, which is a region frequently deleted in B-cell
chronic lymphocytic leukemia [103]. Cimmeno et al showed that the expression of these two
miRNAs inversely correlated with Bcl-2 protein levels in samples from chronic lymphocytic
leukemia patients, and identified a conserved target site for miR-15a and miR-16-1 in the
3’UTR of Bcl-2 [104]. Furthermore, overexpression of these miRNAs reduced Bcl-2 protein
levels, activated the intrinsic apoptosis pathway, and caused cell death.

Another Bcl-2 family member that is regulated by miRNAs is Mcl-1. Mcl-1 exerts its protective
role by binding to the proapoptotic proteins Bim, Bid, Bik, Noxa and Puma [105], as well as
Bak [106]. Mcl-1 overexpression results in resistance to TRAIL-induced apoptosis, whereas
Mcl-1 suppression leads to sensitization of cells to apoptosis [107]. Mcl-1 is upregulated in
some cancers [108] including cholangiocarcinoma [109], but is downregulated in aggressive
chronic lymphocytic leukemia, colon and breast cancer [110–112]. MiR-29 expression reduces
Mcl-1 protein levels and thereby sensitizes cells to TRAIL-induced apoptosis. Conversely,
inhibition of miR-29 by LNA-modified antisense oligonucleotides increased Mcl-1 levels and
reduced the apoptosis inducing activity of TRAIL, demonstrating that miR-29 is an endogenous
regulator of Mcl-1 [113].

6. miRNAs that modulate death receptor-induced apoptosis
Recently, a screen for modulators of the TRAIL apoptotic pathway was performed on a miRNA
library containing about 200 synthetic miRNAs [114]. A breast cancer cell line, MDA-
MB-453, was transfected with these miRNAs, and forty-eight hours post-transfection, cells
were treated with TRAIL. Relevant miRNAs were identified based on their ability to alter
susceptibility to TRAIL-induced apoptosis, which was assessed by monitoring caspase-3
activity. Thirty-four of these miRNAs caused a change in caspase activity. Using the miRBase
Target database (http://microrna.sanger.ac.uk/cgibin/targets/v3/download.pl) a subset of these
34 miRNAs was selected and several interesting candidates were found. Among them,
miR-144, miR-182 and miR-155 were predicted to target caspase-3. MiR-145 and miR-216
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had DR4 and DR5 as predicted targets. MiR-182 and miR-96 were predicted to target FADD,
the adaptor molecule that binds to the death receptors. MiR-7 was predicted to target BAD,
and let-7c was predicted to target CD95L. However, most of these target identifications are
based on predictions and await functional validation.

7. Conclusions
It is now well established that death receptor-sensitive cells respond to death ligands either
through the Type I or Type II pathway. Recent studies advanced the understanding of the early
events in these two pathways. Studies demonstrated the mechanism by which recruitment of
activated CD95 receptor from the plasma membrane to lipid rafts can lead to efficient clustering
of receptor aggregates and internalization leading to the generation of strong apoptotic signals.
These events, however, are not needed for triggering nonapoptotic pathways. Therefore, the
dynamic of CD95 membrane localization and internalization is critical for balancing apoptotic
and nonapoptotic pathways in driving cells either to undergo cell death or to perform other
functions. MiRNAs are a new class of regulators which function in various essential processes
including apoptosis. Future studies will be directed at elucidating how miRNAs affect death
receptor signaling, and determining the mechanism of how let-7 causes changes in the
differentiation of cancer.
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Figure 1.
Signaling pathways of CD95. When CD95 is strongly activated in Type I cells, CD95 forms
clusters and palmitoylation at C199 allows efficient recruitment of CD95 into lipid rafts. In
the rafts, further receptor clustering or capping occurs and large lipid raft platforms are formed.
CD95 is then internalized through clathrin-mediated endocytosis, which can be inhibited by
siRNAs against the AP-2 adaptor complex or the clathrin heavy chain (CHC). In the endosomal
compartment, large amounts of DISC are recruited to CD95, thereby inducing apoptosis. When
CD95 is weakly activated, or when recruitment of CD95 to lipid rafts to form higher order
CD95 oligomers is impaired by inhibition of palmitoylation, or when internalization is blocked,
only a low level of DISC with markedly reduced receptor aggregation is formed. This formation
allows efficient activation of nonapoptotic pathways such as NF-κB and members of the MAPK
family without apoptosis induction. Lnt A, latrunculin A; 2-BrPA, 2-bromopalmitic acid; CHC,
clathrin heavy chain; hiDISC, high-molecular weight DISC; SB, SB203580; PD, PD98059;
UO, UO126; SP, SP600125.
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Table 1
Differences between Type I and Type II cells

Phenotype Type I Type II

CD95 expression1 High High
Potential for CD95 apoptosis sensitivity2 High High
CD95 apoptosis kinetics2 Fast Fast
Constitutive localization of CD95 in lipid rafts3 Yes No
Recruitment of CD95 to lipid rafts upon stimulation3 No Yes
DISC formation2 High Low
hiDISC formation on endosomes5 Yes No
Cytochrome c release from mitochondria2 Yes Yes
Protection from apoptosis by Bcl-2/Bcl-xL

2 No Yes
Apoptosis is actin-dependent6 Yes No
Apoptosis sensitivity to soluble CD95 ligand7 No Yes
Sensitivity to actin disrupting drugs7 Low Low
Sensitivity to Taxanes7 Low High
Sensitivity to C2-ceramide8 No High
Inhibition of apoptosis by activating PKC8 Low Yes
Expression of let-79 High

1
[8,10]

2
[8]

3
[17–19]

4
[15,16]

5
[25]

6
[115]

7
[10]

8
[14]

9
[49].

Cytokine Growth Factor Rev. Author manuscript; available in PMC 2009 June 1.


