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Abstract
Dynamic Contrast Enhanced MRI (DCE-MRI) is today one of the most popular methods for
tumor assessment. Several pharmacokinetic models have been proposed to analyze DCE-MRI.
Most of them depend on an accurate arterial input function (AIF). We propose an automatic and
versatile method to determine the AIF. The method has two stages, detection and segmentation,
incorporating knowledge about artery structure, fluid kinetics, and the dynamic temporal property
of DCE-MRI. We have applied our method in DCE-MRIs of four different body parts: breast,
brain, liver and prostate. The results show that we achieve average 89.5% success rate for 40
cases. The pharmacokinetic parameters computed from the automatic AIF are highly agreeable
with those from a manually derived AIF (R2=0.89, P(T<=t)=0.19) and a semiautomatic AIF
(R2=0.98, P(T<=t)=0.01).
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1 Introduction
In the U.S. for 2008 the American Cancer Society estimates 565,650 deaths due to cancer
along with 437,180 new cases of cancer detected [1]. Excluding basal and squamous skin
cancer, breast cancer has the highest incidence rate among women and is the second leading
cause of cancer deaths in women after lung cancer [1]. In men prostate cancer has the
highest incidence rate among men and is the leading cause of cancer death in men. Locating,
identifying, and knowing the state of cancer tumors early is the best way to improve future
prognosis.

Dynamic contrast enhanced MRI (DCE-MRI) is today one of the most popular methods for
tumor assessment. Tumor growth beyond a certain size depends on the development of a
vascular supply that meets the increased metabolic demand of neoplastic tissue. Studies
show that tumor malignancy is highly correlated with increased vascularity. DCE-MRI
allows the visualization of tumor vasculature.

The simplest pharmacokinetic model is the one-compartment model where it is assumed that
all contrast agents are administered into a single blood vessel compartment [2]. Later a two-
compartment model describing contrast agent exchange between the blood vessels and
surrounding interstitium as a bi-directional process was proposed [3]. Most of these models
such as the General Kinetic Model [4] are based on the indicator dilution theory and require
the Arterial Input Function (AIF) to de-convolute with in order to find the concentration of
blood (contrast agent) flowing into tissue. These models can [4] quantitatively characterize
the permeability of tissue by calculating tracer dynamic parameters such as the extravasation
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rate (Ktrans), reflux rate (kep), and the extravascular extracellular distribution volume (ve).
Examining these parameters can be used to monitor the effects of therapy on tumor and
normal tissue. These models are currently being used in trials to examine breast, liver, brain,
and prostate tumors at our institute [4,5,6].

Automating the process of finding the AIF can save valuable human-operator time. It also
removes the inherent inter-operator variability when choosing an AIF and reduces the
variability when comparing changes in pharmacokinetic parameters in follow-up studies
during treatment therapy.

There are several methods already developed that automatically extract an AIF from DCE-
MRIs. Most of them pick an AIF by looking at various characteristics of image voxel’s
time-intensity curves, such as peak height, peak width, take-off time, and initial slope [7].
Parker et al. [8] proposed another method to automatically extract an AIF from various parts
of the body in DCE-MRI; using a known characteristic of artery voxel time curves, high
peak height, it chooses the top 5% of voxels that enhance the brightest and uses them to
generate the AIF. However, this method may have some inaccuracy because voxels of an
artery are not necessarily being used obtain an AIF. Also this method makes use of only 2d
information and is not completely automatic because it requires an operator to pick one axial
slice on which to find an AIF.

In this paper we propose a new method that automatically extracts an AIF in DCE-MRI by
automatically segmenting the voxels of a major artery in 3d and using the averages of their
time-intensity curves to define the AIF. The AIF can then be exported and used in
pharmacokinetic models to calculate tumor permeability parameters. This method is
versatile, able to extract an AIF from DCE-MRI of different body parts: brain, breast, liver,
and prostate. We automatically detect the aorta near the breast and liver, the superior sagittal
sinus in the brain and the iliac artery near the prostate and use them to computer AIF.

2 Materials and methods
2.1 Imaging Protocol

There are currently four different IRB approved DCE-MRI imaging protocols in our
institution used to examine different human body parts: breast, brain, liver and prostate, as in
Fig 3.

In general the DCE-MRI image acquisition protocols were done using a 3D SPGRE
sequence. The TR and TE are consistent with temporal and spatial resolution that varies
between clinical studies (different body parts).

Axial Images were acquired 4–8 mm in slice thickness. The dynamic data sets were acquired
during and after injection of 0.1mmol/Kg (typically between 12 and 20cc) of Gd-DTPA
contrast at a rate of .2–3 cc/sec for a temporal resolution from 5–30 seconds; the values
depend on imaging protocol used.

2.2 Flow chart
The flow chart of our AIF determination method is summarized in Fig. 1. It has a detection
stage and a segmentation stage. A height filter is applied on the DCE-MRI to keep voxels
with signal intensity greater than a threshold. Then a slope filter keeps only the voxels with a
fast enough wash-in. A 2d blob labeling process is used to form distinguishable 2d-
connected regions. The 3D overlapping region that is most cylindrical in shape is detected as
the vessel. A refined slope filter and region growing algorithm is then conducted to segment
the vessel. The AIF is calculated from the vessel’s intensity curves.
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2.3 Artery Detection
In the detection phase, each voxel’s time intensity curve is examined. Major arteries have
large amount of Gd-DTPA contrast agent flowing through them, causing the image voxels
of the major arteries to brighten more than most other voxels. The peak height of an AIF is
generally higher than the peak height of most others. Thus, a height filter is used to filter out
voxels with small peak curves. The filter is written as,

(1)

where tp is the time to peak, and μ is the mean peak value of all voxels in the image. The
voxels passing the height filter are shown in Fig 2a.

The second filter is based on the fact that the signal intensity of major artery voxels
brightens quickly from a fast wash-in of gadolinium contrast agent. This is represented by a
steep uptake slope, thus a slope filter is used to keep the voxels with a slope greater than a
threshold. The signal enhancement ratio of every time point is defined as

(2)

where R(t) is the ratio of signal enhancement from baseline to time t, S0 is the baseline
signal which is computed as the average signal of the first three time points. The uptake
slope is then computed as,

(3)

where tp is the signal peak time which is initially set to a time depending on the imaging
protocol and body part. If the slope is greater than a preset threshold θ1, then it is kept as
major artery candidate. The voxels passing the slope filter are shown in Fig 2b.

After the two filters, a blob labeling process is run on the remaining voxels to form
distinguishable 2d connected components (we call them blobs) from the candidate voxels in
each axial slice. A size filter is used to keep only blobs that are big enough to possibly be
part of the major artery (Fig. 2c). For each blob, the average peak time is calculated, and the
earliest 20% time-to-peaks are averaged and set as the estimated major artery time-to-peak
tp′. The slope filter is repeated using the estimated tp′. The next step is to calculate the
compactness and circularity of each of the remaining blob as follows,

(4)

here P is the perimeter of the blob and A is the area.

The 2d blobs are then propagated in transverse direction to form 3d blobs. 2d blobs that
overlap each other in axial slices above or below are considered to be part of the same object
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in 3d. The cylindricality of each 3d object is calculated by summing across the axial slices
the circularity of each 2d blob belonging to the same 3d object.

(5)

CZ is the circularity of the object on the axial slice z. The most cylindrical object is selected
as the artery to determine AIF. We recompute the new time-to-peak (tp″) using the detected
artery and use it for the rest of the slope calculations. The center of the detected artery is
used as the seed for the artery segmentation algorithm in the second stage.

2.4 Artery Segmentation and AIF determination
The detected artery is then segmented using a region growing technique. The slope is
recalculated using the refined time-to-peak tp″. A refined slope filter using a slightly lower
slope threshold (θ2) is conducted to ensure that the entire major artery is segmented.

Then on the middle axial slice we run the region growing algorithm using the seed obtained
in the detection stage to segment the artery. The region growing is then propagated to every
other axial slice using the center of the segmented artery on the previous slice as the seed.
The segmented main artery is shown in Fig 2d.

For each axial slice of the object, the average time-intensity curve of voxels in the artery is
computed as the AIF. To accommodate for possible flow artifacts, the AIF in the axial slice
with the highest peak is omitted and the AIF that has the second highest peak is used for
calculation in the pharmacokinetic models.

2.5 Setting the parameters and thresholds
There are several parameters in our method. The first one is time-to-peak tp. tp is the time
over which to calculate the uptake slope. This parameter is initially set depending on the
image protocol used. Initially tp=6, 4, 9 and 7 for breast, liver, brain and prostate
respectively. tp, is later adaptively refined twice using the detected blobs and arteries.

The next parameter is the artery size threshold. A 2d blob region can not be too big or too
small to be considered as potentially being part of the artery. The aorta near the breast and
liver is larger than the superior sagittal sinus in the brain and iliac artery near the prostate so
the breast and liver images are set to have a higher size threshold. The minimum size
threshold is set to 50, 50, 30, and 20 voxels for the breast, liver, brain, and prostate
respectively. The max size threshold is set to 1500 voxels.

The other 2 parameters are the slope thresholds used in the two stage slope filters. The first
slope threshold θ1, is used to remove unwanted voxels in the artery detection phase. The
second slope threshold θ2, is set lower than the first one to ensure the whole artery is
segmented. The breast and liver DCE-MRI are set to a higher slope threshold than the brain
and prostate. The reason for this is the breast and liver have a bigger artery (aorta) and more
blood flow which allows faster contrast uptake in the breast and liver compared to the iliac
artery near the prostate and the superior sagittal sinus in the brain. The default value of θ1 =
0.6, 0.9, 0.2 and 0.2 breast, liver, brain and prostate respectively, and that of θ2 = 0.6, 0.9,
0.2 and 0.1
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3 Experiments and Results
3.1 Data sets

We have randomly selected 10 DCE-MRI studies for each body part in our experiments.
Table 1 lists the study specifications, including number of axial slices, number of time
points, time interval between images, and injection rate. Among the 10 breast studies, 5 have
invasive breast cancer, 2 are invasive ductal carcinoma cases and 3 are some type of
cancerous tumor.

3.2 Segmentation success rate
We conducted experiments to evaluate the segmentation success rate. We checked the
automatic artery segmentation on every axial slice and compared it with an operator manual
segmentation. The automatic artery segmentation is determined to be a success if more than
80% of the artery segmentation agrees with each other. Table 2 shows the summary of
success rate for the 4 different DCE-MRI studies. Examples of successful segmentation are
shown in Figure 3.

3.3 Comparison of pharmacokinetic parameters
To further validate our method, we used the automatically determined AIF to compute
pharmacokinetic parameters (Ktrans, kep, and ve) of the Generic Kinetic Model using a
software called Cine Tool (GE Medical Systems) [4]. In addition to the automatically
determined AIF, we also obtained AIFs from a manual segmentation of the artery on the
same slice and two semi-automatic segmentations of the artery on the same and a different
slice. For manual segmentation, the user manually traces the border of the artery. For
semiautomatic segmentation, the user picks a seed point inside the artery and a region
growing algorithm is run to segment the entire vessel (Cine Tool). Figure 4 shows examples
of the four vessel segmentations, AIFs, and parameter maps. We used the 10 breast DCE-
MRI cases for this experiment. For each case, we selected a biopsy-verified tumor region
and evaluated the Ktrans, kep, and ve values of the tumor. Table 3 summarizes the differences
between the tumor permeability kinetics values calculated using the four AIFs.

We further conducted paired t-tests comparing the average GKM Ktrans of the tumor region
shown in Figure 4. Table 4 summarizes the comparison. The Ktrans values from the
automatic AIF and the manually derived AIF are correlated though without statistical
significance which is likely due to one outlier in the data set, giving validity that using the
automated AIF can accurately calculate pharmacokinetic parameters. Comparison of Ktrans
values derived from our automatic method and the semi-automatic AIF are statistically
similar. The Ktrans values calculated from semi-automatic AIFs on different slices are also
statistically similar (P=0.02); however, their difference is bigger than the difference between
automatic AIF and the semi-auto on the same slice (P=0.01). This indicates that there is
more variation when a different slice is used to generate the AIF than when picking a
slightly different AIF on the same slice. Our automatic method will pick the same axial slice
every time when choosing the AIF, making it more consistent than when two different
operators possibly pick different axial slices to get the AIF on the same study.

4 Conclusion and Discussion
We have proposed a versatile and robust method to automatically segment a major artery in
various parts of the body to generate an AIF in DCE-MRI.

The manual and automatic artery segmentations are similar; however, small deviations in
voxels used for the AIF can cause a change of GKM values up to 45%. Although there is
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variability, the GKM values calculated from the automatically derived AIF still reflect an
estimate of the expected high tumor permeability. This shows validity that the automatically
derived AIF can be used to calculate important values of pharmacokinetic models to assess
tumors.

Our automatic method performed well in segmenting the aorta near the breast and liver. In
some studies there was some over-segmentation when the aorta is close to the heart. The
method had errors segmenting the major vessel in the brain in 3 out of the 10 studies due to
over-segmentation of the branches off the main vessel. The prostate images were of worse
quality and when the ureter runs adjacent to the iliac arteries, the method has a higher
chance of failing by also segmenting the ureter. In the liver cases our method had the least
problems in segmenting the artery. This is due to various factors; there were almost no
motion artifacts; the aorta does not move even though surrounding organs may be moving,
the aorta does not bend next to the liver; and there are no enhancing anatomical structures
adjacent to the aorta.

We must point out that our method is not yet completely automatic for some cases. The two
slope filter thresholds may needed to be adjusted manually to achieve optimal results. We
are investigating adaptive techniques to fully automate these parameter settings.
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Fig. 1.
Flow Chart of AIF Determination Method
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Fig. 2. Illustration of AIF determination
(a) Height Filter, (b) Initial Uptake Slope Filter, (c) 2d Blob regions, (d) Segmented Image.
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Fig. 3.
Automatic artery segmentation colored in red on DCE-MRI of (a) breast, (b) brain, (c)
prostate, and (d) liver.
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Fig. 4.
For each Row: (1st Row) Aorta segmentation, (2nd Row) AIF, (3rd Row) Color map of
Ktrans values of a tumor ROI. Each Column: (a) Automatic segmentation on axial slice 11,
(b) Manual Segmentation on axial slice 11, (c) Semi-Automatic Segmentation on axial slice
11 using Cine Tool, (d) Semi-Automatic Segmentation on axial slice 15 using Cine Tool.
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Table 2

Segmentation success rate.

Success rate (%) Std (%) Worst (%) Best (%)

Breast 95.5 11.5 70 100

Prostate 82.9 18.9 40 100

Liver 98.3 3.5 91. 7 100

Brain 81.3 18.9 50 100

Average 89.5 13.2 62.9 100
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Table 3

Average percentage difference in GKM values compared to GKM values calculated using the semi-
automatically determined AIF.

% Difference Manual Automatic Semi-Auto on different axial slices

Ktrans 13.6±15.1 16.7±8.7 15.8±18.1

kep 11.9±9.6 9.08±10.4 18.9±10.9

ve 6.2±8.0 9.0±8.5 9.4±9.5

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2008 November 25.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Chen et al. Page 14

Table 4

Comparison of Ktrans values of one tumor, chi-squared and t-test.

Correlation Manual vs. Auto Semi-Auto vs. Auto Semi-Auto on different slices

R2 0.89 0.98 0.95

P(T<=t) 0.19 0.01 0.02
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