
203

ORIGINAL RESEARCH

Correspondence: Rachel Karchin, Ph.D., Assistant Professor, Department of Biomedical Engineering, 
Institute for Computational Medicine, Johns Hopkins University, 208A Clark Hall. 3400 N. Charles Street, 
Baltimore, MD 21218. Tel: 410-516-5578; Fax: 410-516-5294; Email: karchin@karchinlab.org

Copyright in this article, its metadata, and any supplementary data is held by its author or authors. It is published under the 
Creative Commons Attribution By licence. For further information go to: http://creativecommons.org/licenses/by/3.0/.

Classifying Variants of Undetermined Signifi cance in BRCA2 
with Protein Likelihood Ratios
Rachel Karchin1, Mukesh Agarwal2, Andrej Sali3, Fergus Couch2 and Mary S. Beattie4,5

1Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins 
University. 2Mayo Clinic College of Medicine, Department of Laboratory Medicine and Pathology. 
3Departments of Biopharmaceutical Sciences and Pharmaceutical Chemistry, and California Institute 
for Quantitative Biomedical Research, University of California San Francisco. 4Familial Cancer 
Risk Core Facility and Cancer Risk Program, University of California San Francisco. 5Department 
of Medicine, University of California San Francisco.

Abstract
Background: Missense (amino-acid changing) variants found in cancer predisposition genes often create diffi culties when 
clinically interpreting genetic testing results. Although bioinformatics has developed approaches to predicting the impact 
of these variants, many of these approaches have not been readily applicable in the clinical setting. Bioinformatics approaches 
for predicting the impact of these variants have not yet found their footing in clinical practice because 1) interpreting the 
medical relevance of predictive scores is diffi cult; 2) the relationship between bioinformatics “predictors” (sequence con-
servation, protein structure) and cancer susceptibility is not understood.

Methodology/Principal Findings: We present a computational method that produces a probabilistic likelihood ratio predic-
tive of whether a missense variant impairs protein function. We apply the method to a tumor suppressor gene, BRCA2, 
whose loss of function is important to cancer susceptibility. Protein likelihood ratios are computed for 229 unclassifi ed 
variants found in individuals from high-risk breast/ovarian cancer families. We map the variants onto a protein structure 
model, and suggest that a cluster of predicted deleterious variants in the BRCA2 OB1 domain may destabilize BRCA2 and 
a protein binding partner, the small acidic protein DSS1. We compare our predictions with variant “re-classifi cations” pro-
vided by Myriad Genetics, a biotechnology company that holds the patent on BRCA2 genetic testing in the U.S., and with 
classifi cations made by an established medical genetics model [1]. Our approach uses bioinformatics data that is independent 
of these genetics-based classifi cations and yet shows signifi cant agreement with them. Preliminary results indicate that our 
method is less likely to make false positive errors than other bioinformatics methods, which were designed to predict the 
impact of missense mutations in general.

Conclusions/Signifi cance: Missense mutations are the most common disease-producing genetic variants. We present a fast, 
scalable bioinformatics method that integrates information about protein sequence, conservation, and structure in a likeli-
hood ratio that can be integrated with medical genetics likelihood ratios. The protein likelihood ratio, together with medical 
genetics likelihood ratios, can be used by clinicians and counselors to communicate the relevance of a VUS to the indi-
vidual who has that VUS. The approach described here is generalizable to regions of any tumor suppressor gene that have 
been structurally determined by X-ray crystallography or for which a protein homology model can be built.

Keywords: breast cancer, risk assessment, mutagenesis, cancer susceptibility genes, bioinformatics and computational 
biology, missense variants

Introduction
The promise of “personalized medicine” using genetic testing to assist with estimation of disease risk, 
brings with it the reality of receiving test results that are diffi cult to interpret. Many sequence variants 
in cancer predisposition genes are of uncertain clinical signifi cance. This creates a clinical problem 
for individuals desiring individualized risk assessment and for providers recommending risk reducing 
strategies [2, 3]. Missense mutations, which arise from a single DNA base substitution and cause 
an amino acid substitution in the ensuing protein, represent the most common of all known 
disease producing genetic variants (Human Gene Mutation Database, http://www.hgmd.cf.ac.
uk/ac/index.php). With the current availability of comprehensive genetic testing for many genes, and 
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with the future prospect of sequencing whole 
genomes in individuals, it is essential to under-
stand how missense mutations affect protein 
function and whether individual missense muta-
tions predispose to disease.

For most comprehensive genetic tests, there 
are three possible results: positive (known 
disease-associated mutation), negative (no known 
disease-associated mutation found) and Variant 
of Undetermined Signifi cance (VUS: sequence 
variant found, but association with disease is 
unclear). In the case of genetic testing for suscep-
tibility to hereditary breast and ovarian cancer, 
considerable differences in risk [4–6] and very 
different approaches to prevention [7] would 
result if a VUS is presumed to be deleterious or 
neutral. Considering the population presenting 
for BRCA testing in the U.S., the chance of 
receiving VUS results is approximately 5% in 
Caucasians and up to 30% in non-Caucasians [2].

In 2004, Goldgar et al. developed an integrated 
model [8] to evaluate VUS, combining epidemio-
logical observations with data from sequence 
analysis. This model combines several independent 
likelihood ratios that model familial segregation, 
co-occurrence of a VUS with a known deleterious 
mutation, sequence conservation and amino-acid 
change severity. Taken together, the likelihood 
ratios provide an estimate of the odds of causality 
for a single VUS. An odds in favor of causality of 
over 1000:1 is considered pathogenic and an odds 
against causality of more than 100:1 is considered 
neutral. Subsequent research has incorporated a 
modifi ed Grantham analysis component into the 
model [9], and has also incorporated histopatho-
logical and immunohistochemical (IHC) data as 
well as loss of heterozygosity studies [2].

For families at high risk of hereditary breast and 
ovarian cancer, standard of care practices recom-
mend genetic testing for mutations in BRCA1 and 
BRCA2 (National Comprehensive Cancer Net-
work. Clinical Practice Guidelines in Oncology, 
Genetic/familial high risk assessment: breast and 
ovarian cancer http://www.nccn.org/profession-
als/physician_gls). Of these two genes, BRCA2 is 
larger, and recent data suggests that BRCA2 muta-
tions, on a population level, may be more prevalent 
than BRCA1 mutations [10]. The spectrum of 
cancers associated with BRCA2 mutations likely 
includes other cancers as well, such as pancreatic, 
prostate, stomach, melanoma, gallbladder, and bile 
duct cancers [11, 12].

We have previously shown that supervised 
learning algorithms, developed in the computa-
tional machine learning community, can be useful 
in predicting when a VUS in the breast cancer 
C-terminal (BRCT) domains of BRCA1 causes 
impaired protein function, and that such predictions 
are consistent with available genetic information 
for selected VUS [13]. These algorithms are 
capable of integrating multiple properties predic-
tive of how a VUS will impact protein structure 
and function, including sequence conservation, 
amino-acid change severity and importantly, 
impact on the local protein structure environment. 
This method used a consensus vote of three differ-
ent supervised learning algorithms to make predic-
tions. However the output was not a likelihood 
ratio that could be included in estimates of overall 
causality odds, the quantity of interest from a 
clinical standpoint.

Here we have developed a method of transform-
ing the output of one supervised learning algo-
rithm, a support vector machine [15], into a 
likelihood ratio that can be combined with other 
independent predictors to aid the classifi cation of 
previously undetermined variants in BRCA2. Cur-
rently we do not have a gold standard for BRCA 
VUS prediction, which makes it diffi cult to evalu-
ate the performance of prediction models. A gold 
standard carefully classifi es data, has face validity 
from its users, and has literature as well as the “test 
of time” to support its utility. We suggest that in a 
fi eld where there is not yet a gold standard, it is 
useful to look for consensus between predictors 
that use information from independent sources. 
Thus we compare our method to other computa-
tional biology methods, according to their consen-
sus with two models based on medical genetics 
(Table 1, Table 2).

Methods

Supervised learning
The protein likelihood scores are built “on top of ” a 
support vector machine supervised learning algo-
rithm [15–17]. We fi rst trained a support vector 
machine to predict whether missense variants in the 
BRCA2 DNA-binding domains are deleterious or 
neutral (e1071 R package [18] radial basis kernel 
with parameters g = 0.0625, c = 1.0) . There are two 
phases to support vector machine learning and pre-
diction (Fig. 1). In the fi rst phase, the algorithm is 
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shown a training set of missense changes whose class 
is known and learns a separating decision “surface”. 
As described previously [19], each missense change 
is represented by 16 predictive properties that 
describe sequence conservation of the position 
where the amino acid substitution occurs, the residue 
solvent accessibility, geometry of the protein back-
bone at the position, the amount of strain induced on 
protein conformation by the substitution, and 
physiochemical properties of amino acid residues. 
In the second phase, the decision surface is used to 
predict whether missense changes whose class is not 
known are deleterious or neutral, and each prediction 
is transformed into a protein likelihood ratio.

Training set
We use a collection of missense changes engi-
neered in a structure-function study of TP53 as a 

training set. The study compared the transactivation 
activity of 2314 TP53 missense mutants to wild-
type [20]. Mutant constructs were tested for trans-
activation of a reporter gene downstream of eight 
known TP53 transcriptional enhancer sites. Data 
was downloaded from the IARC TP53 website 
(http://www-p53.iarc.fr) and we identifi ed 618 
“extreme phenotype” missense mutants that were 
incapable (398 total) or capable (220 total) of 
activating transcription for all eight of the tran-
scriptional enhancers tested in the assay. These 618 
mutants are in the core DNA-binding domain 
of TP53 where 97% of both germline and 
somatic missense changes have been observed 
(http://www-p53.iarc.fr). Because the non-
functional mutants predominate in this training set, 
we use “class weights” when training the support 
vector machine to avoid building a model that 
overpredicts deleterious mutations. Class weights 

Table 1. Validation set of variants classifi ed by Myriad Genetics and the medical genetics method of the 
“integrated likelihood ratio”[1] is used to compare four computational biology missense variant function prediction 
methods with the Protein Likelihood Ratio. Incorrect predictions are colored in red. D = Deleterious, N = Neutral, 
X = insuffi cient confi dence to predict, Myriad = Myriad Genetics (Salt Lake City, Utah), ILR = Integrated Likelihood 
Ratio, PLR = Protein Likelihood Ratio. SIFT (http://blocks.fhcrc.org/sift/SIFT.html), POLYPHEN (http://genetics.
bwh.harvard.edu/pph/), PMUT (http://mmb2.pcb.ub.es:8080/PMut/), AGVGD (http://agvgd.iarc.fr/).

 Predicted classes from four
 computational biology methods
Variant Class Validation source PLR SIFT POLYPHEN PMUT AGVGD
I2627F D ILR D D D D D
E2663K D ILR D D D D D
D2665G N ILR N D D D D
D2723G D ILR D D D D D
K2729N N ILR X N D D D
G2748D D ILR D D D D D
R2842H N ILR X D D D D
R2888C N ILR N N N D N
V2908G N ILR X D D D D
K2950N N ILR N D N N D
R2973C N ILR D D D D X
R3052Q N ILR X D D D D
V3079I N ILR N N N N N
Y3092C N ILR D D D D D
Y3098H N ILR/Myriad X N N N N
D3170G N ILR X N N D N
I2490T N Myriad N D D N D
T2515I N Myriad N D D D N
D2665G N Myriad N D D D D
A2717S N Myriad N N N N N
D2723H D Myriad D D D D D
V2728I N Myriad N N N N N
S2835P N Myriad N N N N N
E2856A N Myriad N N D D N
I2944F N Myriad N D D D D
T3013I N Myriad N N N D N
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(wD for non-functional mutants ,wN for functional 
mutants) were set to wD = 1.3 and wN = 1.7 to 
downweight the majority class and upweight the 
minority class, according to the proportions that 
they are found in the training set and to ensure that 
the original sum of class weights was unchanged 
(in the “unweighted” case, each class has a default 
weight of 1.0), so that wD + wN = 2 and 0.35 wD = 
0.65 wN . 

Testing set
We downloaded all missense variants in the 
C-terminal DNA-binding domains of BRCA2 
collected in the Breast Information Core (BIC) 
database (http://research.nhgri.nih.gov/bic/, 
31-Jan-2007 update). The C-terminal domains of 
the human BRCA2 protein (exons 15–25, codons 
2479–3191) are of particular interest with respect 
to cancer susceptibility because: 1) they are the 
most evolutionarily conserved region of the protein 
[21], 2) they are important for the role of BRCA2 
in DNA repair and homologous recombination [21, 
22]; 3) in vitro assays have shown that this region 
binds molecules critical for BRCA2 function 
(single-stranded DNA and the protein DSS1) [21, 
23] and 4) although there is no high-quality X-ray 
crystal structure of the human BRCA2 C-terminal 
DNA-binding domains, it is possible to build a good 
quality protein structure model from X-ray crystal 
structures of these domains from two species 
closely related to human (rat and mouse) [21].

Machine learning requires that predictive fea-
tures are calculated for all examples in the training 
set and also for all examples whose class we want 
to predict. Thus, we require protein structures and 
multiple sequence alignments for both the core 
DNA-binding domain of TP53 and the C-terminal 
domains of BRCA2. We now describe how the 
protein structure coordinates and multiple sequence 
alignments for TP53 and BRCA2 were obtained.

Protein structures
We downloaded an X-ray crystal structure of the 
TP53 core DNA-binding domain from the Protein 
Data Bank [24] (1kzy chain A in complex with the 
53BP1 BRCT domains [25]). Currently there is no 
X-ray crystal or NMR tertiary structure data for the 
human BRCA2 protein. Therefore, we built a homol-
ogy model of human BRCA2, in complex with the 
small acidic protein DSS1, using MODELLER 9.1 
[26] (Fig. 2). We employed three hand-aligned mouse Ta
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Figure 1. Protein likelihood ratio algorithm. In the fi rst phase, a support vector machine learns a decision surface that separates deleterious 
(red) and (blue) neutral missense changes in TP53, based on predictive properties from protein sequence and structure. The discriminant 
scores of TP53 missense changes are fi t to a mixture of Generalized Extreme Value (GEV) probability densities (Red = deleterious scores, 
Blue = neutral scores). In the second phase, a BRCA2 missense variant is classifi ed as deleterious or neutral using equivalent predictive 
properties. The discriminant score is transformed into a likelihood ratio that quantifi es the odds that the score refl ects a deleterious (D) or 
neutral (N) missense variant.
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and rat structures of the BRCA2-DSS1 complex as 
templates (PDB codes 1mje, 1miu, 1iyj [21]), built 
an ensemble of 50 models and selected the model 
with best MODELLER objective function. This 
model was examined for poor quality regions with 
the DOPE statistical potential [27] and two loops 
were subjected to further refi nement with MOD-
ELLER’s loop modeling routines. For both TP53 
and BRCA2, each missense change was simulated 
using MODELLER’s mutate_model protocol as 
described previously [19]. Model coordinates are 
available on request.

Protein sequence alignments
Protein sequences of human TP53 (P04637) and 
BRCA2 (P51587) were downloaded from UNI-
PROT [28]. We extracted the sequence of the 
TP53 core DNA-binding domain and the BRCA2 
DNA-binding domains by hand. The domain-
specific sequences were used as input to the 
SAM-T2K iterative multiple sequence alignment-
building algorithm [29]. We use the multiple 
sequence alignments to compute two predictive 
properties that quantify the evolutionary impor-
tance of each amino acid residue position where 

Figure 2. Homology model of human BRCA2 C-terminal DNA binding domains with positions of Variants of Undetermined Signifi cance (VUS) 
in the Breast Information Core database (BIC) (http://research.nhgri.nih.gov/bic/ January 31, 2007 update). The VUS are colored by their 
protein likelihood ratio scores with lowest (predicted neutral) in blue, uncertain in white, and highest (predicted deleterious) in red. The OB1 
domain shows enrichment of predicted deleterious near its binding site of the small acidic protein DSS1.

Cancer Informatics 2008:6
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a missense mutant occurs, as described previously 
[19]. The TP53 and BRCA2 alignments are avail-
able upon request.

Support vector machine predictions
The support vector machine uses the training set 
and predictive features to learn a “decision sur-
face” that separates deleterious (or loss of func-
tion) amino acid changes from those that are 
biologically neutral (Fig. 1). In general, this learn-
ing algorithm fi nds a unique decision surface, 
which maximally separates the two classes. In the 
second phase, the decision surface is used to 
assign a discriminant score to each BRCA2 VUS. 
Discriminant scores less than zero predict that the 
VUS will induce loss of BRCA2 function. How-
ever, these scores are not in a form we can directly 
incorporate into an odds-of-causality ratio.

Protein likelihood ratios
To incorporate our method into the combined 
odds of causality model that has gained much 
acceptance in the genetic epidemiology 
community [1,8] requires the likelihood ratio 
P(S | D)/P(S | N) for each variant of interest, where 
S is the discriminant score. Standard machine 
learning methods can yield posterior probabilities 
of the form P(D | S) and P(N | S) and thus posterior 
likelihood ratios P(D | S)/P(N | S). If the prior 
probability that a variant is deleterious or neutral 
were known, we could infer this likelihood ratio 
from the posterior, using Bayes’ Rule. However, 
these priors are not currently known. Here we 
use an alternative method to transform discrimi-
nant scores into our desired likelihood ratios. We 
first express the distribution of discriminant 
scores for deleterious TP53 missense changes as 
a parameterized probability distribution of known 
functional form P(S | D,θD) that quantifi es the 
probability of seeing a particular discriminant 
score S when the mutant induces loss of function. 
Likewise, we express the distribution of neutral 
scores in a known functional form P(S | D,θN). 
The protein likelihood ratio is then calculated as 
P(S | D,θD)/P(S | N,θN), yielding an odds ratio in 
favor of loss of function. Histograms of “delete-
rious” and “neutral” TP53 discriminant scores 
(Fig. 1) suggest that the scores are distributed as 
Generalized Extreme Value (GEV) distributions. 
We use maximum likelihood to fi t GEV parameters 
for deleterious and neutral mutants using the 

ismev R package [18]. This approach yields GEV 
parameters for deleterious mutants (θD) −1.5 
(location), 0.66 (scale), 0.015 (shape) and GEV 
parameters for neutral mutants (θN) 0.7 (location), 
0.78 (scale), −0.51 (shape). We assign thresholds 
for prediction confi dence based on available data 
from medical genetics studies. Confident 
predictions are those whose likelihood ratios 
are either 1) larger than the variant with the 
smallest likelihood ratio but greater than 1.0 
that has been reclassifi ed as “Deleterious” or 
“Suspected Deleterious” by Myriad Genetics or 
been shown to have an Integrated Likelihood 
Ratio �1,000; or 2) smaller than the ratio of the 
variant with the largest likelihood but less than 
1.0 that has been reclassified as neutral or 
“Polymorphism” by Myriad (Fig. 3a, 3b, 
Supplementary Table 1). Predictions for VUS 
that lie between the thresholds are not considered 
reliable. These thresholds can be modifi ed as new 
information becomes available.

Model fi t
We measured model goodness of fi t for our param-
eterizations of P(S | D,θD) and P(S | N,θN) with 
Fisher’s Exact test (two-sided). There was no sig-
nifi cant difference between the score distributions 
and their expected frequencies indicating that the 
parameterizations are a good fi t to the scores. (for 
P(S | D,θD) n = 398, P = 0.8122, for P(S | N,θN) 
n = 220, P = 0.7647, alpha = 0.05 for both tests).

Validation set
We evaluated the Protein Likelihood Ratios with 
a validation set consisting of ten variants that have 
Myriad Genetics reclassifications (all those 
available to us in the C-terminal domains of 
BRCA2) and sixteen available C-terminal domain 
variants that have been classifi ed by the medical 
genetics “integrated likelihood ratio” method 
[1, 8]. We removed the variant R2659K from the 
validation set because it has been shown to cause 
defective pre-mRNA splicing [35] and here we 
are evaluating methods based on ability to predict 
the functional impact of a variant only on the 
protein level (Discussion).

Method comparison
We compared the sensitivity and the specifi city of 
the protein likelihood ratios [30, 31] with four other 
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Figure 3a, 3b. Protein Likelihood Ratios for 223 BIC VUS in the C-terminal DNA binding domains of BRCA2. Protein likelihood ratios are shown 
on a Log10 scale with classifi cations of Deleterious, Neutral, or Not Predicted. Variants are classifi ed as Neutral when Protein Likelihood Ratio 
<= 0.61 (blue dotted line at -0.21 Log scale) and Deleterious when Protein Likelihood Ratio >= 6.8 (red dotted line at 0.8 Log scale). Icons 
shown above each variant indicate the Protein Likelihood Ratio classifi cation (red, blue, and white circles), Myriad Genetics classifi cation (red 
and blue M’s), functional data from a Homology Directed Repair Assay [42] (Supplementary Table 2, red and blue test tubes), and the Integrated 
Likelihood model [1, 8] High Stringency (Deleterious classifi cation requires odds of 1000:1) and Low Stringency (Deleterious classifi cation 
requires odds of 100:1).

a

b
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computational biology methods:  SIFT (http://blocks.
fhcrc.org/sift/SIFT.html), POLYPHEN (http://genet-
ics.bwh.harvard.edu/pph/), AGVGD (http://agvgd.
iarc.fr/), and PMUT (http://mmb2.pcb.ub.es:8080/
PMut/) using default parameters [9, 32–34]. To 
enable direct comparison of methods, we have 
reduced the multiple classes of Polyphen (“Probably 
Damaging”, “Possibly Damaging”, “Benign”) and 
AGVGD (“Enriched Deleterious 1”, “Enriched 
Deleterious 2”, “Enriched Neutral 1”, “Enriched 
Neutral 2”) to “Deleterious” or “Neutral.”

Results
Out of the 229 variants in the C-terminal domains 
of BRCA2, 127 have protein likelihood ratios below 
1.0 (favors neutral) and 102 have protein likelihood 
ratios above 1.0 (favors deleterious) (Fig. 3a, 3b, 
Supplementary Table 1). Literature references, 
population frequencies, and results of a functional 
assay are available for 22 of the 229 variants 
(Supplementary Tables 1 and 2). The range of pro-
tein likelihood ratios is 0.032 to 202. A likelihood 
ratio close to 1.0 implies low prediction confi dence, 
because the probabilities of being deleterious and 
neutral are close to equal. To estimate how far a 
ratio must be from 1.0 to confidently predict 
whether deleterious or neutral classifi cations are 
favored, we set thresholds based on Myriad Genet-
ics reclassifi cation data. Protein likelihood ratios 
above ~6.8 or below ~0.6 signify confi dent predic-
tions. Predictions between these values are consid-
ered uncertain. This approach yields 70 predicted 
deleterious variants, 49 predicted neutral, and 60 
with insuffi cient confi dence to predict (Fig. 3a, 3b, 
Supplementary Table 1). Importantly, the thresholds 
chosen are based on current data and can be adjusted 
as new information becomes available.

Based on our current thresholds, 20 of the 26 
vari ants in a validation set were confi dently pre-
dicted as either neutral or deleterious by the Pro-
tein Likelihood Ratios. Of these 20 predictions, 
18 are in agreement with the validation set. The 
sensitivity of the Protein Likelihood Ratio was 
100% and the specifi city was 87% (N = 20) (Table 
2). The exact 95% binomial confi dence interval 
around the sensitivity is (48%, 100%). To estimate 
this sensitivity within a ±5% range would require 
a sample of 72 validated deleterious variants. The 
exact 95% binomial confi dence interval around 
the specifi city is (60%, 98%), with a sample of 
239 validated neutrals required for specifi city 

within ±5%. The coverage of the protein likeli-
hood ratios is 77% of the validation set. The six 
variants that were not classifi ed have likelihood 
ratios that lie between the current threshold values 
for confi dent deleterious and neutral predictions. 
As more validation data becomes available, we 
expect that the threshold values for confi dent 
predictions will narrow.

Although our coverage is lower than that of the 
four other computational biology methods evaluated 
here, we believe it is an advantage that our method 
is able to identify low confi dence predictions and 
thus avoid making possibly incorrect calls. Overall, 
Protein Likelihood Ratios and medical genetics 
methods disagree on only two of the variants in the 
validation set (Table 2). Four other computational 
biology methods tested on the validation set appear 
to be overcalling the number of deleterious variants 
(Table 2). While all methods have 100% “sensitiv-
ity” (agreement with medical genetic methods 
on fi ve deleterious variants), there is consider-
able variation between the “specificity” of our 
method (87%) and that of the other four methods 
(AGVGD = 52%, SIFT = 50%, PMUT = 46%, 
POLYPHEN = 36%). However, due to the small 
sample size of the validation set, two-sided exact 
binomial 95% confi dence intervals on all these 
statistics are wide, ranging from ±19% to ±26%. 
Statistical certainty (±5% confi dence estimate) about 
Protein Likelihood Ratio agreement with medical 
genetics would require a sample of 239 validated 
deleterious variants. For the other methods, it would 
require a sample of 404 validated deleterious vari-
ants (Table 2). Given the limited amount of BRCA2 
variants with suffi cient genetic evidence for a trusted 
classifi cation, we are not likely to see these sample 
sizes in the foreseeable future.

A structural map of all 229 variants in this study, 
based on our protein homology model, yields an 
overview of regions of the BRCA2 C-terminal 
domains that are most sensitive to amino acid 
changes (Fig. 2). The variants with the highest 
protein likelihood ratios are enriched in the fi rst 
oligonucleotide-oligosaccharide-binding (OB1) 
domain where BRCA2 interacts with the small acid 
protein DSS1. DSS1 is thought to be critical for 
the double-stranded DNA repair function of 
BRCA2 [21, 22, 36]. Importantly, DSS1 is disor-
dered prior to binding to BRCA2 and the stability 
of BRCA2 requires DSS1 binding [37]. Our clas-
sifi er was trained on extreme phenotype missense 
mutants in TP53, which we believe to represent 
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amino acid substitutions and associated local struc-
ture environments that destabilize protein structure. 
No information about the BRCA2-DSS1 interac-
tion was available to our classifi er, thus the pre-
dicted increased sensitivity to mutation in this 
region is based only on similarity between general 
features that impact protein stability seen in 1) 
deleterious and neutral mutations in our training 
set (Methods) and 2) variants in the BRCA2 
C-terminal domains, with respect to the predictive 
features used by our classifi er. Identifi cation of 
sensitive regions from a three-dimensional per-
spective can be helpful in setting a prior probabil-
ity on the cancer risk associated with variants, 
based on their structural location. To our knowl-
edge, this study presents the first supporting 
evidence that homology models, rather than X-ray 
crystal structures [19, 38–40], can be used to ana-
lyze variants in cancer susceptibility genes.

Discussion
We have presented a new computational approach 
for analyzing the impact of missense changes in the 
DNA-binding domains of the cancer susceptibility 
protein BRCA2 that uses information from protein 
sequence, structure, and sequence conservation. 
The raw output of a support vector machine clas-
sifi er is transformed into a likelihood ratio that can 
be readily used in a clinical setting and can be 
combined with likelihood ratios from epidemiol-
ogy, sequencing and tumor pathology studies to 
produce an overall odds of causality for a VUS of 
interest [8]. Although we do not have a gold stan-
dard to evaluate our predictions, the approach 
yielded substantial agreement with classifi cations 
from Myriad Genetics and with classifi cations from 
a medical genetics integrated likelihood ratio model 
[1]. The agreement of these independent informa-
tion sources on a VUS of interest strengthens the 
inference about its associated cancer risk.

Previous work using structure to predict the 
impact of VUS in cancer susceptibility genes has 
relied on the availability of protein X-ray crystal 
structures [19, 38–40]. Here we show that 
homology models are useful in this setting, a result 
that signifi cantly increases the number of genes 
open to structure-based, bioinformatics VUS 
analysis, including MLH1, MSH2, (hereditary 
non-polyposis colorectal cancer) ELAC2 (prostate 
cancer), PALB2 (breast cancer), and NBS1 (breast 
and prostate cancer).

Bioinformatics methods can provide fast clas-
sifi cations that do not require pedigree collection, 
tissue samples, or functional assays. However, we 
do not expect these methods to be as accurate as 
results based on medical genetics for an individual 
VUS of interest. Our results are in general agree-
ment with results of Myriad reclassifications, 
functional assays, and previously published stud-
ies, with a few exceptions (Fig. 3a, 3b, Supplemen-
tary Table 1). V2728I, in the likelihood ratio range 
we have identified as “deleterious”, has been 
reclassifi ed as a Polymorphism by Myriad Genetics. 
R2973C, also in our deleterious likelihood range 
was shown to be competent at homology directed 
repair in an in vitro assay [41] and is predicted 
neutral in the integrated likelihood model [1]. 
S2670L, which has one of the highest likelihood 
ratios in our study has impaired homology directed 
repair in vitro [41], but a histopathology study 
found loss of heterozygosity (involving loss of the 
allele carrying the VUS) in breast tumor tissue of 
a individual with this VUS, a result that has been 
associated with increased probability of neutrality 
[38]. We are also in disagreement with the inte-
grated likelihood model for: 1) Y3092C (we clas-
sify it as deleterious and they classify it as neutral); 
2) R2502C (we classify as neutral and they report 
21:1 odds in favor of cancer causality) [1].

A limitation of protein likelihood ratios, and the 
other computational biology methods referenced 
in this study, is that we only consider the impact 
of a change in DNA sequence on protein. These 
changes may also impact mRNA processing to 
produce aberrant splice variants and other effects 
that are not yet understood. To our knowledge, 
computational tools are not yet able to confi dently 
predict such changes, but efforts in this direction 
are of great interest to us.

Future directions for our group include studying 
more VUS in BRCA2 and in other cancer-
susceptibility genes. We are assessing whether we 
can extend our methods to regions of these genes 
where we lack information about the protein’s 
three-dimensional shape, using properties of 
predicted local structure in conjunction with amino 
acid residue physiochemistry and the evolutionary 
history of mutated sites.

Because VUS genetic test results are some of 
the most difficult to understand for both the 
provider and the individual, this work represents 
a fi rst step towards the ability to reclassify VUS 
in “real time.” Currently, many individuals wait 
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years or longer to learn whether their particular 
VUS was likely neutral or deleterious. Because 
individuals use genetic test results to make clinical 
decisions in “real time,” many individuals are 
unable to fully utilize genetic test results showing 
variants of undetermined signifi cance. In Figure 
4, we depict a potential fl ow chart to use clinically, 
in “real time,” with VUS results. For high 
confi dence predictions that agree with predictions 
from other methods of VUS reclassifi cation (such 
as whether it tracks with cancer in tested family 
members, whether it has been seen with a known 
deleterious mutation, whether the tumor shows 

loss of heterozygosity of the wild-type BRCA2 
allele, and predictions from cellular functional 
studies [1, 8, 38]), the protein likelihood ratio 
(PLR) can aid clinical decision making. VUS 
predicted deleterious by the PLR, which show 
consistency with predictions from other VUS 
reclassifi cation methods can be treated as if the 
individual tested positive for a BRCA2 deleterious 
mutation. VUS predicted neutral by the PLR, 
which show consistency with predictions from 
other VUS reclassifi cation methods, can be treated 
as if the individual tested negative for a BRCA2 
deleterious mutation. Perhaps the most important 

Figure 4. Flowchart suggesting clinical use for Protein Likelihood Ratio (PLR). “Variant of Undetermined Signifi cance” (VUS) is one 
of 3 possible results in BRCA genetic testing [43]. The PLR, when it is a high confi dence prediction, and when it agrees with other data 
predicting whether a VUS is deleterious or neutral, can classify VUS as neutral or deleterious. Neutral VUS can be treated as if BRCA testing 
was negative, and deleterious VUS can be treated as if BRCA testing was positive. Other data potentially available to compare with VUS 
predictions include: whether it tracks with cancer in tested family members, whether it has been seen with a known deleterious mutation, 
whether the tumor shows loss of heterozygosity of the wild-type BRCA2 allele, and predictions from cellular functional studies [1, 8, 38].
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issue for future work in this area is rigorous 
analysis of how to combine and weight predictions 
from different methods in medical decision 
making.

In the future, we hope that this research will 
contribute to quick and accurate classifi cation of 
genetic results, as a component of predictive algo-
rithms that also include medical genetics informa-
tion and functional tests, hence bypassing the need 
to ever have anything labeled as a VUS. Using 
bioinformatics approaches in the rapidly growing 
genetic testing arena will require multidisciplinary 
teams and investigators who can bridge the gap 
between computational medicine and clinical 
medicine.
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Supplementary Table 1.  Protein likelihood ratios for 223 VUS in C-terminal DNA binding 
domain of BRCA2 from BIC. Protein LR = likelihood ratio in favor of protein loss of function.  


†Seen in one individual in a healthy control population of 180 (Australian Breast Cancer Family 
Study).  **HDR = homology directed repair assay [1] (Supplementary Table 2)  ††LOH (loss of 
heterozygosity) in tumor tissue of variant allele increases probability that the variant is neutral. 
χOdds of causality from the Goldgar integrated likelihood method [2]. ***Myriad Genetics 
classifications provided by Amie Deffenbaugh. 
 
Variants Protein 


LR 
Protein LR 
Prediction 


      Myriad*** Integrated Model 
Odds of Causalityχ


Functional References 


L2480V 0.034 Neutral         
S2483G 0.038 Neutral         
S2483N 0.035 Neutral         
R2488S 2.705 Uncertain         
R2488K 0.131 Neutral         
D2489G 0.119 Neutral         
I2490T 0.033 Neutral Polymorphism     High BIC frequency 


R2494Q 24.867 
Likely 


deleterious         
K2496T 0.499 Neutral         
R2500T 0.451 Neutral         
R2502C 0.175 Neutral   21     
R2502P 0.099 Neutral         
R2502H 0.095 Neutral         
F2504L 0.038 Neutral         
G2508S 0.273 Neutral         
L2510P 1.497 Uncertain         
L2512F 0.055 Neutral         
T2515I 0.074 Neutral Polymorphism     High BIC frequency 
R2520Q 1.216 Uncertain         
I2521T 0.040 Neutral         
I2521V 0.033 Neutral         


S2522F 23.905 
Likely 


deleterious         
G2528E 0.106 Neutral         
S2533C 1.292 Uncertain         
A2534V 2.446 Uncertain         
H2537R 0.033 Neutral         
T2542R 0.035 Neutral         
V2545I 1.336 Uncertain         
K2547E 0.535 Neutral         
H2548R 0.032 Neutral         
F2562L 0.054 Neutral         
D2566Y 0.074 Neutral         
E2571G 0.086 Neutral         
L2581W 1.269 Uncertain         
G2584D 6.239 Uncertain         
G2585R 4.722 Uncertain         
P2589H 2.873 Uncertain         
N2591S 0.035 Neutral         
A2595S 0.113 Neutral         


T2607P 11.912 
Likely 


deleterious         


G2609D 33.476 
Likely 


deleterious         
D2611G 0.085 Neutral         


H2623R 17.554 
Likely 


deleterious         







Variants Protein 
LR 


Protein LR 
Prediction 


      Myriad*** Integrated Model 
Odds of Causalityχ


Functional References 


W2626C 100.037 
Likely 


deleterious   48     


I2627F 17.940 
Likely 


deleterious   1046     
P2639A 1.901 Uncertain         
A2643V 0.101 Neutral         
A2643G 0.070 Neutral         
N2644S 0.057 Neutral         


L2647P 8.778 
Likely 


deleterious         


L2653P 69.681 
Likely 


deleterious   24     


L2654P 9.634 
Likely 


deleterious         


Q2655R 14.769 
Likely 


deleterious         


R2659G 186.215 
Likely 


deleterious         


R2659T 160.838 
Likely 


deleterious Suspected Deleterious 3339   Predicted as deleterious in [1]
R2659K 4.629 Uncertain       Produces aberrant splicing [3] 


Y2660D 49.121 
Likely 


deleterious         


E2663V 70.926 
Likely 


deleterious   233     


E2663K 18.055 
Likely 


deleterious         


D2665G 0.168 Neutral Polymorphism 0.002   


Enriched in a healthy control 
population† and LOH in 


variant allele†† [4] 
R2666T 0.216 Neutral         


S2670L 191.227 
Likely 


deleterious     impaired HDR** LOH in variant allele†† [4] 
I2672V 0.246 Neutral         
M2676T 0.044 Neutral     competent HDR**   


R2678G 18.113 
Likely 


deleterious         


D2679Y 52.441 
Likely 


deleterious         


D2679G 41.704 
Likely 


deleterious         
D2680G 0.096 Neutral         
K2684R 0.145 Neutral         


L2686P 42.616 
Likely 


deleterious         


V2687F 170.909 
Likely 


deleterious         


L2688P 191.184 
Likely 


deleterious         


S2691F 25.395 
Likely 


deleterious         
S2695L 1.007 Uncertain         
S2697N 0.043 Neutral         
I2700L 0.032 Neutral         
S2704F 0.053 Neutral         
N2706S 0.048 Neutral         
D2712N 0.056 Neutral         
D2712V 0.043 Neutral         
Q2714R 0.038 Neutral         
A2717S 0.045 Neutral Polymorphism     High BIC frequency 
I2718T 0.251 Neutral         


L2721H 98.117 
Likely 


deleterious     impaired HDR**   


2 







Variants Protein 
LR 


Protein LR 
Prediction 


      Myriad*** Integrated Model 
Odds of Causalityχ


Functional References 


T2722R 35.193 
Likely 


deleterious   93     


D2723G 65.119 
Likely 


deleterious         


D2723A 55.652 
Likely 


deleterious   121 impaired HDR**   


D2723H 13.116 
Likely 


deleterious Deleterious   impaired HDR** 
Predicted as likely deleterous 


in [2] 


G2724V 26.336 
Likely 


deleterious         


Y2726C 31.697 
Likely 


deleterious         
V2728I 0.615 Neutral Polymorphism     High BIC frequency 
V2728L 0.123 Neutral         
K2729N 3.040 Uncertain   0.002     


A2730P 178.756 
Likely 


deleterious         


A2730V 28.610 
Likely 


deleterious         
V2739I 0.033 Neutral     competent HDR**   


G2748D 6.830 
Likely 


deleterious   2494     
I2752F 0.231 Neutral         
M2775R 0.120 Neutral         
M2775T 0.047 Neutral         


R2784W 118.033 
Likely 


deleterious         


R2784Q 7.243 
Likely 


deleterious         


A2786P 95.379 
Likely 


deleterious         


R2787C 115.727 
Likely 


deleterious         
R2787H 0.342 Neutral         


W2788S 45.999 
Likely 


deleterious         


W2788R 21.840 
Likely 


deleterious         
T2790S 1.870 Uncertain         


L2792P 201.610 
Likely 


deleterious         


G2793E 9.375 
Likely 


deleterious         


G2793R 7.648 
Likely 


deleterious         
F2794L 0.116 Neutral         
P2800R 0.501 Neutral         
P2800S 0.188 Neutral         
S2807L 0.996 Uncertain         
S2810G 0.042 Neutral         
D2811G 0.033 Neutral         


G2812E 7.139 
Likely 


deleterious         


G2813E 79.102 
Likely 


deleterious         
V2815I 0.617 Uncertain         
V2818I 0.103 Neutral         


V2820L 26.066 
Likely 


deleterious         
I2821T 0.978 Uncertain         
I2828V 0.050 Neutral         
Q2829L 0.074 Neutral         
S2835P 0.033 Neutral Polymorphism   competent HDR**   
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I2840V 0.035 Neutral         


R2842C 184.961 
Likely 


deleterious         


R2842L 39.694 
Likely 


deleterious   6.35E-04     
R2842H 1.148 Uncertain         
N2843S 0.103 Neutral         
E2847K 3.239 Uncertain         
K2849E 1.854 Uncertain         
E2850K 0.383 Neutral         


E2856A 0.073 Neutral Polymorphism     


Enriched in a healthy control 
population† and LOH in 


variant allele†† [4]. High BIC 
frequency. 


Q2858K 0.660 Uncertain         
Q2858R 0.036 Neutral         
A2864V 0.128 Neutral         
L2865V 0.230 Neutral         
T2867P 0.397 Neutral         
F2873C 0.977 Uncertain         
P2883S 0.032 Neutral         
R2888L 1.112 Uncertain   8.00E-04     
R2888C 0.447 Neutral         
R2888P 0.311 Neutral         
A2889S 0.040 Neutral         
L2890I 0.073 Neutral         
R2896H 0.086 Neutral     competent HDR**   
G2901D 5.954 Uncertain         
V2908G 1.879 Uncertain   0.004 competent HDR**   
A2911V 0.141 Neutral         
G2919V 0.034 Neutral         
S2922G 0.743 Uncertain         


Q2925R 6.931 
Likely 


deleterious         
Q2925H 5.282 Uncertain         
L2936M 0.111 Neutral         
L2936F 0.071 Neutral         
A2942T 0.087 Neutral         
I2944F 0.199 Neutral Polymorphism     High BIC frequency 
K2950N 0.537 Neutral   7.15E-10   High BIC frequency 
A2951T 0.074 Neutral         
D2965H 0.091 Neutral         


V2969M 17.047 
Likely 


deleterious         


L2972W 107.825 
Likely 


deleterious         


R2973C 70.762 
Likely 


deleterious   1.75E-04 competent HDR**   
R2973H 0.324 Neutral         
K2982Q 0.077 Neutral         


S2988G 14.558 
Likely 


deleterious         
R2991H 0.433 Neutral         


E3002D 84.493 
Likely 


deleterious         


E3002K 33.891 
Likely 


deleterious         


L3011P 118.966 
Likely 


deleterious         
T3013I 0.247 Neutral Polymorphism     High BIC frequency 
S3020C 0.042 Neutral         
Q3026E 0.727 Uncertain         
A3028P 0.034 Neutral         


4 







Variants Protein 
LR 


Protein LR 
Prediction 


      Myriad*** Integrated Model 
Odds of Causalityχ


Functional References 


A3029V 0.246 Neutral         
A3029T 0.133 Neutral         
Q3034R 0.035 Neutral         


Y3035S 165.485 
Likely 


deleterious         


Y3035C 164.959 
Likely 


deleterious         
P3039L 0.074 Neutral         
V3040I 0.320 Neutral         


R3052W 33.692 
Likely 


deleterious   0.003     
R3052Q 2.166 Uncertain         
P3054H 1.734 Uncertain         
S3058G 0.048 Neutral         
K3059E 3.937 Uncertain         
P3063S 0.035 Neutral         
D3064Y 0.062 Neutral         
D3064N 0.036 Neutral         
F3065L 0.032 Neutral         
Q3066E 0.059 Neutral         
E3071D 1.664 Uncertain         


V3072E 18.936 
Likely 


deleterious         


D3073G 12.265 
Likely 


deleterious         


G3076E 12.781 
Likely 


deleterious         
G3076V 5.000 Uncertain     impaired HDR**   
V3079I 0.069 Neutral   6.47E-04     
V3081A 0.400 Neutral         
K3083E 0.235 Neutral         
K3083N 0.072 Neutral         


A3088V 7.760 
Likely 


deleterious         


V3091S 9.047 
Likely 


deleterious         


Y3092C 110.954 
Likely 


deleterious   0.006     


Y3092S 22.321 
Likely 


deleterious         


D3095E 11.009 
Likely 


deleterious   23     
Y3098H 1.041 Uncertain Favor Polymorphism 3.46E-04     


L3101R 36.547 
Likely 


deleterious         
L3101V 0.119 Neutral         
I3103M 0.299 Neutral         
I3103V 0.053 Neutral         
H3117P 4.212 Uncertain         
M3118T 0.034 Neutral         
S3123G 5.272 Uncertain         


N3124I 83.538 
Likely 


deleterious         


L3125H 111.532 
Likely 


deleterious         
P3129A 0.043 Neutral         
G3134V 0.302 Neutral         
D3142G 0.059 Neutral         
P3150L 5.063 Uncertain         
E3152G 0.694 Neutral         
E3152K 0.084 Neutral         
G3153A 0.035 Neutral         
F3159L 0.051 Neutral         
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E3167A 0.069 Neutral         
D3170G 2.060 Uncertain   0.001     
M3181R 0.228 Neutral         
D3188N 0.034 Neutral         
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Supplementary Table 2.  Homology-directed repair assay results for eleven BRCA2 
variants using direct repeat (DR) green fluorescent protein (GFP). wt = wild-type.  Fold 
increase in GFP+ cells counted by Fluorescent-Activated Cell Sorting (FACS) 72 hours after 
transfection of VC8-DR-GRP cells. 3X = three repetitions of the experiment [1]. Impaired 
homologous recombination is defined as fold increase in GFP positive cells after 72 hours < 2.0.  
and competent homologous recombination as fold increase > 3.5.  
 
 


  


Fold increase 
in number of 
GFP+ cells 


Standard 
error (3X) 


Vector 1.0 0.1 
BRCA2-wt 5.4 0.2 
S2670L 1.9 0.1 
M2676T 3.9 0.6 
L2721H 1.7 0.1 
D2723G 1.3 0.1 
D2723H 1.4 0.1 
K2729N 4.4 0.5 
V2739I 3.8 0.2 
R2896H 5.2 0.7 
V2908G 5.3 0.1 
R2973C 4.2 0.4 
G3076V 1.8 0.1 
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