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Abstract
Precise axon growth is required for making proper connections in development and after injury. One
method of studying axon guidance and growth is through in vitro outgrowth assays that present
controlled microenvironments. In this study, we applied circular statistical methods to evaluate
directional neurite response. Visualization of data on a circular scale allows more accurate
representation of the data, as neurite angles are inherently expressed on a circle. Here, the direction
of neurite outgrowth from dorsal root ganglia derived neurons on different substrate types was
quantitatively measured. Further, simulations of datasets with known circular parameters reflecting
expected neurite angle distributions from different substrate types were also generated. Circular
statistical methods were utilized and compared to linear statistical models widely used in the
neuroscience literature. For small samples, Rao’s spacing test showed the smallest occurrence of
Type I errors (false positives) when tested against simulated uniform distributions. V-test and
Rayleigh’s test showed highest statistical power when tested against a unimodal distribution with
known and unknown mean direction, respectively. For bimodal samples, Watson’s U2 test showed
the highest statistical power. Overall, circular statistical uniformity tests showed higher statistical
power than linear non-parametric tests, particularly for small samples (n=5). Circular analysis
methods represent a useful tool for evaluation of directionality of neurite outgrowth with applications
including: (1) assessment of neurite outgrowth potential; (2) determination of isotropy of cellular
responses to single and multiple cues and (3) determination of the relative strengths of cues present
in a complex environment.
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Introduction
Axon guidance during development and after injury has been studied in traditional cell culture
and in increasingly complex in vitro environments generated with tissue engineering and other
biomedical engineering techniques. One approach has been to manipulate the cells’ local
microenvironment and observe neurite outgrowth in microenvironments containing cues of

Corresponding author: Diane Hoffman-Kim, Department of Molecular Pharmacology, Physiology, and Biotechnology and Center for
Biomedical Engineering, Brown University, Providence, RI 02912, USA, Tel.: +1401 863 9395; Fax: +1401 863 1753. E-mail address:
Diane_Hoffman-Kim@brown.edu.
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
J Neurosci Methods. Author manuscript; available in PMC 2009 September 30.

Published in final edited form as:
J Neurosci Methods. 2008 September 30; 174(2): 202–214. doi:10.1016/j.jneumeth.2008.07.001.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



interest. Studies of axon guidance often use in vitro neurite outgrowth assays (Ronn et al.,
2000; Smit et al., 2003; Thompson and Buettner, 2006; Weaver et al., 2003) as models to
elucidate the growth potential of neurons, the effects of the environment, and the mechanisms
underlying the axon growth process.

Quantitative assessment of neurite outgrowth in these assays represents a critical step in gaining
specific information on axon growth. Quantitative morphometric analyses depend heavily on
microscopy techniques (Meijering et al., 2004; Mitchell et al., 2007) and automated (Karlon
et al., 1998; Price et al., 2006; Weaver et al., 2003) or semi-automated (Bilsland et al., 1999;
Hynds and Snow, 2002; Thompson and Buettner, 2006) image analysis tools which allow
researchers to accurately assess neuronal and neurite growth. Parameters that provide
information on neuronal response may include the area of the neuron or neurite (Abosch and
Lagenaur, 1993), number of neurites (Abosch and Lagenaur, 1993; Le Roux and Reh, 1994),
neurite orientation, neurite length (Abosch and Lagenaur, 1993) and path of migration. One
widely used measure for the strength of a guidance cue is the direction of neurite outgrowth
following some underlying directional stimulus (Alexander et al., 2006; Bruder et al., 2007;
Deumens et al., 2004; Mahoney et al., 2005; Thompson and Buettner, 2006).

The geometry of neurite outgrowth is most meaningfully parameterized in a circular coordinate
system centered on the cell and rotationally aligned to the stimulus applied. The distribution
of neurite angles in culture can be described by circular statistical parameters, such as mean
direction and length of the mean vector, in an analogous manner to linear statistical parameters
mean and variance. For both linear and circular parameters, the mean refers to the expected
value of a random variable. Length of mean vector and variance are both measures of the spread
of the data, where the variance represents the average squared deviation from the mean, and
length of mean vector is an inverse analogue of the variance. Circular variables have values
that fall along a circle and hence have specific properties related to the cyclic nature of the
circular scale. The application of these methods to neurite direction is analogous to the
application of population biology measures to cellular function.

Statistical analysis of circular variables differs from analysis of linear variables as there are
several properties of circular variables that need to be taken into account. Because circular
variables are finite and closed when a circular data set comes back on itself (at 0° and 360°),
the zero direction, the designation of magnitude, and the number and size of groups (in the
case of grouped data) are arbitrary. In addition, the mean angle of orientation cannot be found
by the simple summation of measured values and division by the sample size. The sums of
circular variables must be taken either modulo 360° if the sample is circular, or taken modulo
180° if the sample is axial, i.e. where data occur as an undirected line as in the example of
geological fractures (Tran, 2007). For axial data in the present study, there is symmetry about
the y-axis hence there is no distinction between the north-south directions. Analysis for linear
variables approximates randomness by using a Poisson distribution; this distribution does not
translate to circular variables. In circular statistics, the null hypothesis describing a random
distribution is taken to be a uniform distribution, where all directions may occur at equal
probability, approximating randomness and reflecting the finite closure of a circle (Fisher,
1993).

Neurite outgrowth angles are generally simple distributions, requiring display of data and
summary of a single random sample usually with single or bimodal groups. As such, a null
hypothesis of uniformity and randomness is generally appropriate, with the objective to assess
the uniformity of a given distribution of neurite angles cultured in different environmental
conditions. When the comparison of two or more samples of neurites cultured in different
conditions is of interest, regression analysis and statistical models may be useful for description
and prediction of cell response. Circular statistical methods complement traditional linear
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statistical methods to describe and draw inferences about the population of neurons and neurites
being studied (Batschelet, 1981; Fisher, 1993). We propose in this study that in many cases,
circular statistical methods allow us to more robustly describe the complexity of neurite
outgrowth phenomena.

In this work, we employed circular statistical models to evaluate directional growth in a variety
of representative in vitro neurite outgrowth assays. Multiple statistical methods were used to
evaluate in vitro neurite outgrowth ranging from Gaussian based models and nonparametric
methods to hypothesis testing for circular samples. Here we report a comparison of circular
and linear data presentation and statistical methods for evaluation of several types of neurite
outgrowth patterns.

Methods
2.1 Substrate preparation

Three types of substrates were used to evaluate the use of circular statistical methods on
directionality of neurite outgrowth: adsorbed uniform protein coating on glass, adsorbed
protein stripes and adsorbed protein gradients. Uniform protein coating was performed by
incubating protein solution for one hour on acid washed glass coverslips, washing twice with
sterile water and air drying.

Micropatterned laminin (LN, 50µg/mL) and chondroitin sulfate proteoglycans (CSPG, 10µg/
mL) stripes of 10 mm length, 50 µm width and 50 µm pitch were stamped onto glass coverslips
via micro-contact printing techniques as described in Bruder et al. (Bruder et al., 2006). Briefly,
grooved polydimethyl siloxane (PDMS) stamps fabricated using the method described in
Goldner et al. (Goldner et al., 2006), were submerged in 10% sodium dodecyl sulfate in
deionized water, rinsed in water, and incubated with 50µg/mL mouse LN in Hank’s balanced
salt solution without calcium or magnesium (HBSS-CMF) for 1 h. Glass coverslips were
plasma activated with a plasma cleaner/sterilizer (PDC-32 G, Medium RF level, 1min, in air),
and incubated in contact with stamps overnight to achieve adsorbed alternating stripes of either
LN or CSPG.

Protein gradients were generated with the use of a microfluidic gradient mixer, fabricated using
soft lithography techniques in a modification of the method of Dertinger et al. (Dertinger et
al., 2002), described in Li et al. (Li et al., 2008). Briefly, the gradient mixer pattern was designed
in AutoCAD and transferred to a silicon wafer using photolithography. Using the silicon wafer
as a template and PDMS as an elastomeric replica, soft lithography was used to fabricate the
gradient mixer. The polymeric gradient mixer and a glass slide were irreversibly bonded by
plasma activation of both surfaces for 1 min. Single cue gradients of LN or CSPG opposite
bovine serum albumin (BSA, 3%, a neutral molecule for neurite guidance), were generated as
substrates to evaluate neurite directionality. Protein solutions of LN or CSPG and BSA were
pumped through the gradient mixer, at 0.2µL/min and allowed to interdiffuse and adsorb
overnight. The glass substrates containing the adsorbed protein gradients were used as the
substrates on which to culture dorsal root ganglia (DRG) neurons.

2.2 Cell culture
DRG were dissected from the spinal columns of postnatal (P0-P4) rat pups and cleaned of
axons, blood, and connective tissue. DRG were incubated in 0.05% trypsin-EDTA in HBSS-
CMF at 37°C for 60 min and dissociated by trituration. Cells were plated onto substrates in
Dulbecco’s modified eagle’s medium (DMEM) with 10% fetal bovine serum (FBS), 4 mM L-
glutamine, 100 U/ml penicillin, and 100 µg/ml streptomycin with 50 ng/ml nerve growth factor
(NGF). Cells were seeded at a density of 100,000 cells/mL, on uniformly coated glass or
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micropatterned substrates and 12,500 cells/mL on gradient substrates. Phase contrast
microscopy using a 10X objective was performed using a Nikon Eclipse TE2000-S, and images
were captured with Hamamatsu-ORCA outputting to Openlab v.4.05 after 24 hours in culture.

2.3 Image analysis
To evaluate direction of neurite outgrowth on uniform substrates and micropatterned protein
stripes, the angles of all neurites in at least 6 fields of view were measured as the angle between
the vector from the cell body to the tip of the neurite and the vertical axis (0°, Fig. 1d), using
the measure tool in OpenLab software on phase contrast images. To evaluate directional bias
of neurites on gradient substrates, the angles (θ) of the longest neurites of all neurons adhered
to the gradient channel were measured as described above.

2.4 Linear statistical analysis
Linear descriptive statistics such as mean and standard deviation were calculated by equations
described in Table I. Conventional statistical tests were performed using SPSS 14. Linear
probability density functions were tested against circular data as comparison (SPSS 14; listed
in Table II). For the χ2 test, the angle data was grouped into three groups: neurites growing
towards the left (210°–330°), right (30°–150°) and vertical (0°–30°, 150°–210°, 330°–360°).
For the KS test, the angles of neurite outgrowth were grouped into 10° bins.

2.5 Circular data presentation
Circular data was plotted as a frequency distribution with neurites binned in ten degree bins,
and “wrapped” around a circle. Circular histograms were plotted using circular statistical
software package Oriana v2.02.

2.6 Circular Statistics
A common aim for analysis of directional data is to estimate the preferred direction and
distribution of data. To describe circular distributions, measures have been developed such as
circular mean angle, the length of mean vector (R) and particularly for the case of the von
Mises (VM) distribution, commonly thought of as the circular analogue to the normal
distribution, the concentration parameter (κ) (Batschelet, 1981; Fisher, 1993). κ̣ is a shape
parameter (κ≥0) measuring the tendency of the data to cluster around the mean direction (µc).
As κ approaches 0, the distribution converges to a uniform distribution, and as κ approaches
infinity, the distribution tends to concentrate around the direction µc. These parameters take
into account the periodicity in angular data by using trigonometric functions, and the equations
describing the calculations are listed in Table I.

Six one-sample goodness-of-fit tests were compared in this paper to test against the null
hypothesis of uniformity of neurite angle distributions: Rao’s spacing test, Kuiper’s test,
Rayleigh’s test, Watson’s U2 test, chi-squared (χ2) test, and V-test, a modification of Rayleigh’s
test. The χ2 goodness of fit tests are not strictly circular, but are generally accepted to be
appropriate for circular variables under certain conditions (listed in Table 1, (Batschelet,
1981;Fisher, 1993;Zar, 1996)). Equations for each circular goodness-of-fit test are listed in
Table II. Each type of test was developed for different data distributions. These tests differ in
their alternate hypotheses, where Rao’s and Kuiper’s test for randomness in the sample against
any alternative, and Rayleigh’s and Watson’s test against a unimodal alternative. The V-test
tests against a specified mean direction and was only performed for alignment studies and
computer simulations as these were the only cases in which an external direction was applied.

Two multisample tests were performed in this study, to compare two datasets and determine
whether their distributions are different: Mardia-Watson-Wheeler test and Watson’s U2 test.
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Equations for each multisample test are listed in Table II. Both tests determine whether the
two samples differ significantly from each other in mean angle, angular variance or both
measures. Neurite angles on LN and CSPG striped substrates, LN striped and gradient
substrates, and LN and CSPG gradient substrates were compared against each other to test if
neurite outgrowth directions differed significantly on these substrates. Mardia-Watson-
Wheeler compares the resultant vector lengths (R), and Watson’s U2 test compares the
deviation between the cumulative density functions of the two populations (Batschelet,
1981). All circular data analysis was performed using Oriana v2.02c. Student t-test was
performed on the same datasets to compare circular methods to linear methods of comparing
means between two samples.

2.7 Simulations of circular distributions
Simulations approximating various circular distributions were performed using a custom
MATLAB program that generates circular random numbers from a specified distribution with
input parameters. Algorithms for simulation of data types (uniform, VM, and bimodal (BM)
distributions with corresponding probability density functions described in Table III) were
taken from Fisher (Fisher, 1993). In each simulation, random numbers were generated (n=5,
30, 100), input parameters included mean (µc=0°), and for VM and BM simulations,
concentration (κ=0.85, 1, 1.5, 3). Simulations of each distribution were run 100 times. Values
for κ were chosen to generate distributions with varying dispersions (angular variances between
20–70°). Simulated uniform data were generated by transforming linear random numbers in
the range of 0 to 1 into degrees by using the RAND function in MATLAB modulo 360. Random
numbers from VM and BM distributions were generated according to Fisher (Fisher, 1993).
BM distributions consisted of data drawn from two subsets of proportions p and (1-p), with
parameters (µc1, κ1) and (µc2, κ2) corresponding to each subset. In this case, bimodal
distributions were simulated as an equal mixture of two subpopulations with VM distribution
(p1=p2=0.5, µc1=0°, µc2=90°, κ1=κ2=0.85,1, 1,5, 3).

Two linear and four circular goodness-of-fit tests were performed on each experimental
condition similar to the experimental data described in section 2.5 to assess the probability
density function that would best describe the data. The percentage of significant simulations
(p<0.05) was determined for each experimental condition and Type I error was determined for
each experimental condition in the simulation (Table VII).

Results
Here we describe the evaluation of directional neurite outgrowth using linear and circular
statistics of two types of data: experimental data with unknown population parameters and
simulated data with known (user defined) population parameters.

3.1 Experimental Results for Live Neurons
Experimental data of three different types of DRG neurite behavior were elicited from three
differently micropatterned substrates and simulations of established uniform, unimodal and
bimodal datasets were performed. Experimental neurite angle data were presented in circular
histograms customary for circular data, and also in more conventional ways of presenting
alignment, by bar graphs of neurites categorized in aligned and unaligned groups.

Phase contrast images of neurons on uniformly coated LN (Fig. 2a) showed neurite outgrowth
in all directions. Mean neurite direction was not presented since as discussed previously, mean
direction of a uniform distribution has no physical relevance in describing the data as the
magnitude of the vector equals zero. All tests (circular and linear) showed no significant
difference between the data and a uniform distribution (p>0.05; Table V). Graphically, we
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compared several ways of presenting the data: a grouped bar graph poorly reflected the
uniformity of the dataset, where more neurites appeared to have grown in the “left” direction
than in all others (Fig. 2b). A linear histogram of neurite data appeared to show four modal
groups (0–80°, 90–170°, 190–290°, 300–360°) and revealed the poor fit of a normal distribution
(Fig. 2c). Data plotted on a circular axis reflected the variability of the angular data and most
clearly showed that angular data fell in even spacing around a circular scale (Fig. 2d).

When permissive LN and inhibitory CSPG were presented on substrates, DRG neurons adhered
to LN coated regions and avoided CSPG coated regions. DRG neurites extended and aligned
to LN stripes (Fig. 3a) and to uncoated regions between CSPG stripes (Fig. 3e). Qualitative
and quantitative analysis of the data showed a larger population and density of neurons and
aligned neurites on LN striped substrates, as compared to CSPG striped substrates, but the
mean neurite outgrowth direction (the parameter of interest) was similar for DRG neurons on
both LN and CSPG striped substrates. Grouped bar graphs, with groups defined as left: 210–
330°, right: 30–150°, and aligned: 330-30° and 150–210°) showed that data clustered around
the vertical direction, which was set to correspond to alignment to the underlying pattern (Fig.
3b, f). Linear histograms split the data clusters, failed to recognize the relationship between 0–
10° and 350–360°, and revealed a poor fit to a normal distribution around the linear mean of
180° (Fig. 3c, g). Data plotted on circular axes showed that the majority of the data fell within
a 30° interval around the vertical 0° direction (Fig. 3d, h). This clustering around the vertical
axis (0–180° axis) was reflected in all circular mean angles (µc=1.90° on LN and µc=178.61°
on CSPG substrates). The linear mean angle of neurites on LN stripes showed the largest
discrepancy from the graphed data, (µ=135.01°), most likely due to the high frequency of
angles in the 0–10° bin (Figure 3c).

Analysis of neurite growth on gradient substrates illustrated how circular statistics can be used
to analyze neurite outgrowth patterns that are more complex. Phase contrast images of DRGs
plated on a LN gradient (Fig. 4a) and a CSPG gradient (Fig. 4e) showed an overall trend of
neurite growth toward the permissive LN and away from the inhibitory CSPG, but the neurite
response to the underlying substrate was not nearly as obvious as that of DRGs cultured on
protein stripes in Fig. 3. Each method used to present the data graphically highlighted different
features of the data. Grouped bar graphs (Figure 5b, f) showed the bias towards the “left” edge
of the channel, which was the more permissive or the less inhibitory direction. Linear
histograms appeared to show three modal groups (0–70°, 70–250°, 250–360°) for neurite
growth on LN gradients (Fig. 4c). For DRG neurites on a CSPG gradient however, the neurite
angle distribution was flattened and appeared more uniform (Fig 5g). Data plotted on circular
axes showed a similar trend to the grouped bar graphs, where growth appeared to be towards
the more permissive or less inhibitory regions (Figs. 5d, h). Similar to DRG response on protein
stripes, the permissiveness of the substrate is reflected by the number of neurons and neurites
present, whereas the directional guidance potential of the substrate is reflected by the angles
at which the neurites extend. Circular uniformity tests determined that the neurite angles were
directed on LN and on CSPG gradients (p < 0.05; Table V). The circular standard deviations
of neurite angles were larger for neurites on gradients than on stripes, reflecting the complexity
of the responses (Table IV).

To compare the different available statistical tests for uniformity, varied protein micropatterns
were presented in culture (uniform, striped, gradient) to direct neurite outgrowth towards
different directions and yield corresponding different distributions of neurite angles.
Comparison of mean neurite angles and deviations from the vertical axis calculated both with
linear and with circular methods revealed differences in the abilities of linear and circular
approaches to accurately reflect the complex distributions of neurites. The large linear standard
deviations of neurite angles under all experimental conditions reflected how linear methods
fail to account for data clustering around 0°. Deviation from the vertical axis 0° or 180°, on a

Li and Hoffman-Kim Page 6

J Neurosci Methods. Author manuscript; available in PMC 2009 September 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



circular or angular scale, (Fig. 1b,c; Table IV), showed that the circular mean angle avoided
the convergence to 180°, providing a better estimate of mean angle.

For samples presenting stripes aligned to the vertical axis, perfect guidance would result in a
µc of 0° or 180°. Linear analysis of the experimental data yielded means of 135.01° and 182.93°
for LN and CSPG respectively, while circular statistical methods yielded means of 1.90° and
178.61° for striped substrates of LN and CSPG, respectively. For samples presenting
concentration gradients, the direction of highest change in concentration is 270°. A larger
dispersion would be expected as compared to the dispersion for neurite outgrowth on striped
substrates. On gradient substrates, circular mean angles showed directed growth toward
substrate regions that were more permissive and less inhibitory (293.89° on LN and 300.90°
on CSPG). Corresponding linear mean angles converged towards 180°, showing little
directionality (197.58° on LN and 183.09° on CSPG).

Several circular and linear goodness-of-fit tests were performed for all experimental data
conditions with the null hypothesis of uniformity (Table V). For neurites cultured on uniform
LN substrates, patterned LN and CSPG stripes, and LN gradients, circular and linear tests
exhibited similar results. On uniform substrates, all circular and linear tests showed no
significant difference from a uniform distribution. On striped substrates and LN gradients, all
circular and linear tests showed significant difference from a uniform distribution. However,
on CSPG gradients, a common linear test, KS, showed no significant difference from
uniformity whereas Rayleigh’s, Watson’s, Rao’s and Kuiper’s circular tests showed significant
difference from uniformity. Surprisingly, χ2 tests for grouped data with 3 groups were in better
agreement with other circular tests than χ2 tests for grouped data with 36 groups.

Multisample analysis showed no difference in neurite angles between LN striped and CSPG
striped samples. It also showed no difference in angles between LN gradient and CSPG gradient
samples. Both Mardia-Watson-Wheeler and Watson’s U2 test showed no significant
differences with p-values greater than 0.49 (Table VI). Student t-test was performed as a
comparison and also found neurite angles to be not significantly different on these substrates
at p<0.05 significance level, but p-values were much lower (p<0.1). Further examination of
data shows similar mean angles on LN and CSPG striped substrates and on LN and CSPG
gradient substrates (Table IV). Multisample analysis with Mardia-Watson-Wheeler and
Watson’s U2 test showed that neurites on striped LN and LN gradient substrates were
significantly different from each other. Comparison with Student t-test shows that linear
methods also show significant difference between neurite angles on LN stripe and gradient
substrates (Table VI). Further examination of data shows differences in both mean angles and
circular standard deviation (Table IV). For CSPG striped versus CSPG gradient substrates,
Student t-test comparison shows no significant difference in neurite growth. However, circular
analysis does show significant differences in neurite angles (Table IV). Further examination
of the data shows that this distinction is due to the convergence of the linear mean towards
180° (Table IV).

3.2 Simulation Results
Simulations of circular data were performed to compare the results of circular and linear
goodness-of-fit tests for one sample statistical analysis of known distributions. Simulations of
neurite angles were drawn from established circular statistical models such as uniform
distribution to model the experimental condition of applying no directional cue, VM
distribution to model the condition of applying one unidirectional cue and BM distribution to
model the condition of applying two cues from two different directions. Because the sample
size of neurite angles obtained from experimental data is variable based on the permissiveness
of the substrate, the sample size in simulated data was varied from n=5 to n=100 to cover a
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range of sample sizes used in neurite outgrowth analysis. Simulated circular data was only
presented in circular histograms.

For uniform distributions, all directions between 0° and 360° are equally likely to occur, and
µc is undefined as R=0. VM distribution is the most commonly used model for unimodal
samples of circular data. As κ approaches 0, the distribution converges to a uniform distribution,
and as κ approaches infinity, the distribution tends to concentrate around the direction µc.
Sample means of VM based data approached the population means (user-defined µc=0).
Circular means were better approximated for simulated samples with tighter distributions,
µc=11° where κ=0.85 and µc=5° where κ=3 (Fig. 5b, c). Circular histograms of BM data
highlight the difficulty in graphically assessing multimodality in data (Fig. 5d, e). The means
calculated for a BM distribution of (µ1=0°, µ2=90°) were 79° and 61°. For BM distributions,
histograms do not show a clear distinction between the two subpopulations of data.

Table VII shows the number of statistically significant (non-uniform) simulations out of 100
trials, from each type of uniformity test listed in rows (Rayleigh, Rao’s spacing, Watson’s
U2, Kuiper’s and V-test). Watson’s U2 test was unavailable for n=5 samples as the test’s
assumptions require n=10 for analysis using this method. Simulated data is listed in columns,
with the type of distribution (uniform, VM and BM) described by its parameters (µ, κ).

For uniform distributions, the number presented in Table VII when taken as a percentage
corresponds to the Type I error of the given test. Type I error occurs when the null hypothesis
(in this case, distribution is uniform) is rejected by the test when the null hypothesis is in fact
true. Hence this column records the number of times the uniformity test incorrectly finds the
distribution directed. A lower Type I error value indicates a better test for this type of data, as
the test is wrong less often. As expected, for all tests, as n increases, Type I error decreases.
Linear goodness-of-fit tests showed low Type I error for uniform distributions, indicating that
nonparametric tests against a null hypothesis of uniformity such as KS tests are effective for
determining uniformity. For circular tests, where n is small, Rao’s spacing test has the lowest
Type I error, which is consistent with other studies comparing one sample statistical tests
(Bergin, 1991). For VM and BM distributions, the number of significant trials out of 100
corresponded to the power of the statistical test of interest. The expectation was that the tests
would find the data significantly different from the null hypothesis of uniformity. Power is
defined as the probability that the null hypothesis will be rejected if it is false, or the probability
that the test will not produce a Type II error or false negative. In this case, power is the
probability that the test rejects uniformity (or indicates directedness) if the distribution is known
to be unimodal or bimodal. As expected, increasing sample size corresponded to increasing
power of each test.

For VM and BM distributions with large sample sizes (approaching n=100) KS tests found
VM and BM distributions to be significantly different from a Gaussian distribution. Overall
circular tests performed similarly for VM distributions, although Rao’s Spacing test was less
powerful than other circular statistical one-sample tests. V-test had the highest power for VM
datasets with small sample size and higher dispersion. For simulated data, the hypothesized
mean direction was known as it was user defined. It is important to note that this hypothesized
direction (θ0=0°) must be assigned in advance of experimentation and if the null hypothesis is
not rejected by the V-test, it is unknown whether the population is distributed uniformly or
whether the distribution has a mean direction other than θ0. For one-sample data with an
unknown external directional component, the Rayleigh test is usually recommended for
unimodal data (Batschelet, 1981; Fisher, 1993). Both the Rayleigh test and Kuiper’s test yielded
similar power levels for unimodal VM distributions, even for distributions with relatively high
angular dispersion (corresponding to a lower κ value). The power of all circular statistical tests
were higher than the corresponding linear KS test against uniformity for simulated VM and
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BM distributions, except in the case where n=100. However, the power of the same test against
a null hypothesis of a normal distribution is very low, such that most simulations showed that
a KS test did not find the simulated uniform distribution to be significantly different from a
normal distribution.

As expected, one-sample uniformity tests exhibited low power when tested on BM
distributions, as the cluster of data around two peaks began to resemble uniform data when
both distributions had low concentration values. V-test showed the highest power when testing
BM data against a null hypothesis. When the BM distribution was relatively clustered (at the
highest concentration value tested κ=3), all tests showed higher power in detecting non-
uniformity.

Discussion
The present study demonstrates that circular statistical methods may be used to analyze
biological data containing directional biases and anisotropy, particularly to quantify neurite
outgrowth. To analyze the direct effects of the underlying substratum of the culture surface on
neuronal outgrowth, we plated and cultured neurons at low density for 24 hours and imaged
the cultures for analysis. In the absence of directional cues, on uniform substrates, neurites
were randomly oriented. The neurons on substrates with patterned protein stripes were highly
aligned to the underlying stripe geometry. The neurons on substrates with graded anisotropy
in protein concentration were directed towards the more permissive regions of the substrate.

We have shown that circular statistical methods show sufficient power and are a better model
than linear statistical methods to analyze directional neurite outgrowth on micropatterned
substrates. Circular histograms and categorization allow easy visualization of data clustering,
as demonstrated by histograms of neurite angles grouped around the direction of alignment.
Circular data presentation avoids observational and truncation biases which occur in linear
statistical analyses, for more accurate characterization of data. Circular statistical tests are more
sensitive for smaller sample sizes, as shown by higher power of circular tests for simulations
containing low n’s. Further, they are more sensitive to complex distributions, as shown by the
performance of multisample tests in comparing neurite angles on CSPG stripes versus CSPG
gradients. The approximate linearity of a small arc, in the case when data is clustered, is
sometimes used to justify the application of linear models to simplify data analysis; however,
different degrees of dispersion depending on the variability of the data can strongly affect the
validity of this assumption. If there is any appreciable variability of circular data, it has been
noted that the average of the dataset is better described by a resultant vector rather than the
arithmetic mean (Fisher, 1993).

Evaluation of neurite outgrowth in vitro have included qualitative scoring systems with
grouped categorical quantification (Dertinger et al., 2002; Sonigra et al., 1999; Sorensen et al.,
2007), and measurement of neurite characteristics such as neurite length, area, number and
branching patterns (Kim et al., 2006; Mann et al., 1998; Recknor et al., 2004). A number of
studies initially demonstrated the ability of patterned striped substrates to support directional
neurite outgrowth in vitro (Clark et al., 1993; Gomez and Letourneau, 1994) and the ability of
concentration gradients to direct neuronal growth up concentration gradients (Walsh et al.,
2005) by using traditional linear statistical methods. Categorization of circular data prior to
using linear statistical methods has been a common approach to analyzing directional data.
After the categorization of angular data into bins for plotting histograms (generally in bins of
10–20°), or into categories of “aligned” versus “unaligned,” linear statistical tests can be
applied to the groups of categorical data. ANOVAs are commonly used to test the differences
between the degrees of neurite alignment over different substrates or experimental conditions
(Macias et al., 2000; Sorensen et al., 2007). It is important to note that ANOVAs assume a
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Gaussian model for the distribution of angles which may not be accurate, depending on the
population. Previous studies of neurite growth and orientation have used nonparametric
statistical tests such as the χ2 test (Biran et al., 2003; Dertinger et al., 2002; Manwaring et al.,
2004; Smeal et al., 2005) and the Kolmogorov-Smirnov (KS) test (Ming et al., 2001; Thompson
and Buettner, 2006; Yuan et al., 2003). A rational for using nonparametric tests is that circular
data of neurite outgrowth angles are rarely expected to approach a normal distribution (in a
linear presentation) or a VM distribution (in a circular presentation). The χ2 and KS tests were
also performed in this study and shown in some cases to perform differently from circular tests.
One limitation of linear statistical methods for the application of directional neurite outgrowth
in culture systems is that there may be an overemphasis on the tails of the linear scale, in this
case 0° and 180° or 360°. This overemphasis can result in artificially inflating the calculated
variance of the data.

Other studies that analyze cellular phenomenon, particularly of cell migration, have recognized
the need to present data in a nonlinear fashion in order to most appropriately visualize and
analyze movement data which is usually highly complex, with cell trajectories tracing a
relatively noisy path. If the nature of the path in response to a directional stimulus is of interest,
the migration angle is usually an important aspect of analysis. Recent studies have utilized
circular visualizations for data presentation, most commonly using Rose diagrams, where the
frequency of migration angles are plotted around a circular axis with the area of each bar
corresponding to frequency (Frevert et al., 2006; Papakonstanti et al., 2007; Saadi et al.,
2006). In neuroscience literature, examples of visualization of angular data using circular
methods have included neuronal migration (Ward et al., 2003), neurite outgrowth (Tailby et
al., 2005), response to magnetic stimulation (Macias et al., 2000), and mitochondrial
organization in axonal transport (Miller and Sheetz, 2004).

In this report, we demonstrated the utility of a circular analysis approach for evaluating a wide
range of neurite outgrowth phenomena. Comparison of six, one-sample uniformity or
goodness-of-fit tests on simulated samples of three distributions (uniform, unimodal VM, BM)
revealed relative strengths: Rao’s spacing test performed best for small samples, V-test and
Rayleigh’s test performed best for unimodal samples and Watson’s U2 performed best for
bimodal samples. Comparison of circular tests versus linear tests on experimental angular data
of neurites grown on three types of micropatterned protein substrates (uniform, striped and
gradient) demonstrated the strengths of the circular approaches. Out of the linear goodness-of-
fit tests performed, only the χ2 test grouped into 3 bins gave results that were significantly
different from a uniform distribution. In contrast, all circular uniformity tests were consistent
in determining significance from a uniform distribution for all samples tested.

Conclusions
In conclusion, we have applied a statistical method for graphically representing and analyzing
directional data pertaining to neurite growth that can be used to investigate neuronal cultures
and their interactions with their microenvironment in vitro. Despite recent advances, current
approaches to nerve repair fall short of restoring complete function, and in vitro systems that
have been developed to more systematically study parameters affecting neurite growth have
become more specific and quantitative. The techniques described here are useful in identifying
directional neurite outgrowth patterns on in vitro platforms, allowing us to better evaluate
neurite growth trajectories that exhibit circular geometry. Statistical methods such as
uniformity tests provide a formal means to test hypotheses relating to neuronal responses to
complex microenvironments, and circular histograms provide a visualization tool to investigate
neuronal processes exhibiting circular geometries. This approach offers a more informative
and rigorous way to probe the mechanisms of neurite outgrowth and guidance.

Li and Hoffman-Kim Page 10

J Neurosci Methods. Author manuscript; available in PMC 2009 September 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Acknowledgements
The authors thank Elizabeth Deweerd for assistance with alignment and gradient experiments, and Michael Sherback
for assistance with MATLAB programming and for helpful discussion of the manuscript. This work was funded by
R21 EB004506-01, R01 EB005722-01, an NSF CAREER grant to DHK and a Robert and Susan Kaplan Fellowship
to GNL.

References
Abosch A, Lagenaur C. Sensitivity of neurite outgrowth to microfilament disruption varies with adhesion

molecule substrate. Journal of Neurobiology 1993;24:344–355. [PubMed: 8492111]
Alexander JK, Fuss B, Colello RJ. Electric field-induced astrocyte alignment directs neurite outgrowth.

Neuron Glia Biology 2006;2:93. [PubMed: 18458757]
Batschelet, E. Circular statistics in biology. London: Academic Press; 1981.
Bergin TM. A Comparison Of Goodness-Of-Fit Tests For Analysis Of Nest Orientation In Western

Kingbirds (Tyrannus-Verticalis). Condor 1991;93:164–171.
Bilsland J, Rigby M, Young L, Harper S. A rapid method for semi-quantitative analysis of neurite

outgrowth from chick DRG explants using image analysis. Journal of neuroscience methods
1999;92:75–85. [PubMed: 10595705]

Biran R, Noble MD, Tresco PA. Directed nerve outgrowth is enhanced by engineered glial substrates.
Experimental Neurology 2003;184:141–152. [PubMed: 14637087]

Bruder JM, Lee AP, Hoffman-Kim D. Biomimetic materials replicating Schwann cell topography
enhance neuronal adhesion and neurite alignment in vitro. J Biomater Sci Polym Ed 2007;18:967–
982. [PubMed: 17705993]

Bruder JM, Monu NC, Harrison MW, Hoffman-Kim D. Fabrication of Polymeric Replicas of Cell
Surfaces with Nanoscale Resolution. Langmuir 2006;22:8266–8270. [PubMed: 16981733]

Clark P, Britland S, Connolly P. Growth cone guidance and neuron morphology on micropatterned
laminin surfaces. J Cell Sci 1993;105:203–212. [PubMed: 8360274]

Dertinger SK, Jiang X, Li Z, Murthy VN, Whitesides GM. Gradients of substrate-bound laminin orient
axonal specification of neurons. Proc Natl Acad Sci U S A 2002;99:12542–12547. [PubMed:
12237407]

Deumens R, Koopmans GC, den Bakker CGJ, Maquet V, Blacher S, Honig WMM, Jerome R, Pirard JP,
Steinbusch HWM, Joosten EAJ. Alignment of glial cells stimulates directional neurite growth of
CNS neurons in vitro. Neuroscience 2004;125:591. [PubMed: 15099673]

Fisher, NI. Statistical Analysis of Circular Data. Cambridge, U.K: Cambridge University Press; 1993.
Frevert CW, Boggy G, Keenan TM, Folch A. Measurement of cell migration in response to an evolving

radial chemokine gradient triggered by a microvalve. Lab Chip 2006;6:849–856. [PubMed:
16804588]

Goldner JS, Bruder JM, Li G, Gazzola D, Hoffman-Kim D. Neurite bridging across micropatterned
grooves. Biomaterials 2006;27:460–472. [PubMed: 16115675]

Gomez TM, Letourneau PC. Filopodia initiate choices made by sensory neuron growth cones at laminin/
fibronectin borders in vitro. J. Neurosci 1994;14:5959–5972. [PubMed: 7931556]

Hynds DL, Snow DM. A semi-automated image analysis method to quantify neurite preference/axon
guidance on a patterned substratum. Journal of Neuroscience Methods 2002;121:53. [PubMed:
12393161]

Karlon WJ, Covell JW, McCulloch AD, Hunter JJ, Omens JH. Automated measurement of myofiber
disarray in transgenic mice with ventricular expression of ras. Anat Rec 1998;252:612–625.
[PubMed: 9845212]

Kim IA, Park SA, Kim YJ, Kim SH, Shin HJ, Lee YJ, Kang SG, Shin JW. Effects of mechanical stimuli
and microfiber-based substrate on neurite outgrowth and guidance. J Biosci Bioeng 2006;101:120–
126. [PubMed: 16569606]

Le Roux PD, Reh TA. Regional differences in glial-derived factors that promote dendritic outgrowth
from mouse cortical neurons in vitro. J. Neurosci 1994;14:4639–4655. [PubMed: 8046440]

Li and Hoffman-Kim Page 11

J Neurosci Methods. Author manuscript; available in PMC 2009 September 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Li G, Liu J, Hoffman-Kim D. Multi-Molecular Gradients of Permissive and Inhibitory Cues Direct
Neurite Outgrowth. Annals of Biomedical Engineering 2008;36:889–904. [PubMed: 18392680]

Macias MY, Battocletti JH, Sutton CH, Pintar FA, Maiman DJ. Directed and enhanced neurite growth
with pulsed magnetic field stimulation. Bioelectromagnetics 2000;21:272–286. [PubMed:
10797456]

Mahoney MJ, Chen RR, Tan J, Saltzman WM. The influence of microchannels on neurite growth and
architecture. Biomaterials 2005;26:771–778. [PubMed: 15350782]

Mann F, Zhukareva V, Pimenta A, Levitt P, Bolz J. Membrane-Associated Molecules Guide Limbic and
Nonlimbic Thalamocortical Projections. J. Neurosci 1998;18:9409–9419. [PubMed: 9801379]

Manwaring ME, Walsh JF, Tresco PA. Contact guidance induced organization of extracellular matrix.
Biomaterials 2004;25:3631–3638. [PubMed: 15020137]

Meijering E, Jacob M, Sarria JC, Steiner P, Hirling H, Unser M. Design and validation of a tool for neurite
tracing and analysis in fluorescence microscopy images. Cytometry A 2004;58:167–176. [PubMed:
15057970]

Miller KE, Sheetz MP. Axonal mitochondrial transport and potential are correlated. J Cell Sci
2004;117:2791–2804. [PubMed: 15150321]

Ming, G-l; Henley, J.; Tessier-Lavigne, M.; Song, H-j; Poo, M-m. Electrical Activity Modulates Growth
Cone Guidance by Diffusible Factors. Neuron 2001;29:441–452. [PubMed: 11239434]

Mitchell PJ, Hanson JC, Quets-Nguyen AT, Bergeron M, Smith RC. A quantitative method for analysis
of in vitro neurite outgrowth. Journal of neuroscience methods 2007;164:350–362. [PubMed:
17570533]

Papakonstanti EA, Ridley AJ, Vanhaesebroeck B. The p110delta isoform of PI 3-kinase negatively
controls RhoA and PTEN. EMBO J 2007;26:3050–3061. [PubMed: 17581634]

Price RD, Oe T, Yamaji T, Matsuoka N. A simple, flexible, nonfluorescent system for the automated
screening of neurite outgrowth. J Biomol Screen 2006;11:155–164. [PubMed: 16361696]

Recknor JB, Recknor JC, Sakaguchi DS, Mallapragada SK. Oriented astroglial cell growth on
micropatterned polystyrene substrates. Biomaterials 2004;25:2753–2767. [PubMed: 14962554]

Ronn LC, Ralets I, Hartz BP, Bech M, Berezin A, Berezin V, Moller A, Bock E. A simple procedure for
quantification of neurite outgrowth based on stereological principles. Journal of neuroscience
methods 2000;100:25–32. [PubMed: 11040363]

Saadi W, Wang S-J, Lin F, Jeon N. A parallel-gradient microfluidic chamber for quantitative analysis of
breast cancer cell chemotaxis. Biomedical Microdevices 2006;8:109–118. [PubMed: 16688570]

Smeal RM, Rabbitt R, Biran R, Tresco PA. Substrate Curvature Influences the Direction of Nerve
Outgrowth. Annals of Biomedical Engineering 2005;33:376. [PubMed: 15868728]

Smit M, Leng J, Klemke RL. Assay for neurite outgrowth quantification. BioTechniques 2003;35:254–
256. [PubMed: 12951763]

Sonigra RJ, Brighton PC, Jacoby J, Hall S, Wigley CB. Adult rat olfactory nerve ensheathing cells are
effective promoters of adult central nervous system neurite outgrowth in coculture. Glia
1999;25:256–269. [PubMed: 9932872]

Sorensen A, Alekseeva T, Katechia K, Robertson M, Riehle MO, Barnett SC. Long-term neurite
orientation on astrocyte monolayers aligned by microtopography. Biomaterials 2007;28:5498–5508.
[PubMed: 17905429]

Tailby C, Wright LL, Metha AB, Calford MB. Activity-dependent maintenance and growth of dendrites
in adult cortex. Proc Natl Acad Sci U S A 2005;102:4631–4636. [PubMed: 15767584]

Thompson DM, Buettner HM. Neurite outgrowth is directed by schwann cell alignment in the absence
of other guidance cues. Ann Biomed Eng 2006;34:161–168. [PubMed: 16453203]

Tran NH. Fracture orientation characterization: Minimizing statistical modelling errors. Computational
Statistics & Data Analysis 2007;51:3187–3196.

Walsh JF, Manwaring ME, Tresco PA. Directional Neurite Outgrowth Is Enhanced by Engineered
Meningeal Cell-Coated Substrates. Tissue Engineering 2005;11:1085–1094. [PubMed: 16144444]

Ward M, McCann C, DeWulf M, Wu JY, Rao Y. Distinguishing between directional guidance and
motility regulation in neuronal migration. J Neurosci 2003;23:5170–5177. [PubMed: 12832541]

Li and Hoffman-Kim Page 12

J Neurosci Methods. Author manuscript; available in PMC 2009 September 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Weaver CM, Pinezich JD, Lindquist WB, Vazquez ME. An algorithm for neurite outgrowth
reconstruction. Journal of neuroscience methods 2003;124:197–205. [PubMed: 12706850]

Yuan, X-b; Jin, M.; Xu, X.; Song, Y-q; Wu, C-p; Poo, M-m; Duan, S. Signalling and crosstalk of Rho
GTPases in mediating axon guidance. Nat Cell Biol 2003;5:38–45. [PubMed: 12510192]

Zar, JH. Biostatistical Analysis. Englewood Cliffs, NJ: Prentice-Hall; 1996.

Li and Hoffman-Kim Page 13

J Neurosci Methods. Author manuscript; available in PMC 2009 September 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1. Presentation and measurement of neurite angles
(a) Linear data fall in a straight line with values increasing along the axes, scale ranges between
0–360°. (b) Angular data is shown on a circular scale where 0–360° wraps around on a circle.
Scale used in this study for neurite angles on gradient substrates. (c) Axial data is shown on a
circular scale with an axis of symmetry about the y-axis such that the scale extends from 0–
180°. Scale used in this study for neurite angles on striped substrates. Note that for circular
histograms, concentric circles about the axes denote frequency of data. (d) Schematic shows
groupings of neurite angles into categories “left”, “vertical” and “right” performed prior to
plotting grouped bar graphs and performing statistical tests for categorical data. Angles are
θangular on gradient substrates, θaxial on striped substrates.
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Figure 2. Distribution of neurites after 24 hours in culture on uniformly coated LN substrates shows
uniformity in neurite outgrowth angles
(a) Phase contrast image of DRG neurons on uniform LN coated glass surface. Bar = 50µm.
Arrows show the vectors that were used to evaluate the neurites. (b) Bar graph shows the
corresponding grouped neurite outgrowth angle data. (c) Linear histogram shows
corresponding distribution of neurite angles where each angle presented is the angle of the
longest neurite per neuron. Normal curve is fitted to the linear histogram around the linear
sample mean and standard deviation. (d) Circular histogram shows the corresponding
distributions of neurite angles where each angle presented is the angle of the longest neurite
per neuron.
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Figure 3. Distribution of neurites after 24 hours in culture on micropatterned LN or CSPG stripes
shows clustered and directed neurite outgrowth angles
Phase contrast images of DRG neurons on micropatterned LN (a) and CSPG (e) stripes
respectively on glass surface. Bar = 50µm. Arrows show the vectors that were used to evaluate
the neurites. (b, f) Bar graphs show the corresponding grouped neurite outgrowth angle data.
(c, g) Linear histograms show corresponding distributions of neurite angles where each angle
presented is the angle of the longest neurite per neuron. Normal curve is fitted to the linear
histogram around the linear sample mean and standard deviation. Circular histograms show
the corresponding distributions of neurite angles on LN (d) and CSPG (h) striped substrates,
where each angle presented is the angle of the longest neurite per neuron. White arrows indicate
mean neurite angles for directed distributions.
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Figure 4. Distribution of neurites after 24 hours in culture on micropatterned LN or CSPG
gradients shows dispersed but directed neurite outgrowth angles
Phase contrast images of DRG neurons on micropatterned LN (a) and CSPG (e) gradients
respectively on glass surface. Bar = 50µm. Arrows show the vectors that were used to evaluate
the neurites. (b, f) Bar graphs show the corresponding grouped neurite outgrowth angle data.
(c, g) Linear histograms show corresponding distributions of neurite angles where each angle
presented is the angle of the longest neurite per neuron. Normal curve is fitted to the linear
histogram around the linear sample mean and standard deviation. Circular histograms show
the corresponding distributions of neurite angles on LN (d) and CSPG (h) gradient substrates,
where each angle presented is the angle of the longest neurite per neuron. White arrows indicate
mean neurite angles for directed distributions.
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Figure 5. Representative circular histograms of simulated data generated by MATLAB algorithm
Circular histograms of representative runs with n=100 angles generated from a (a) uniform
circular distribution, (b) dispersed VM distribution (κ=0.85) with a mean of 0°, (c) tight VM
distribution (κ =3) with a mean of 0°, (d) dispersed BM distribution (κ =0.85) with means 0°
and 30° and (e) tight BM distribution (κ =3) with means 0° and 30°.
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Table I
Equations of calculations of mean and standard deviation to determine
preferred direction and spread of data
Where θi = angular data for the ith observation as i= 1,…, n and n = number of
observations, S= x-component of mean vector, C = y-component of mean vector.
Variance calculations performed by Oriana, according to Zar (Zar, 1999).

Statistic Equation

CIRCULAR
Vector components S = ∑i=1

n sin (θi); C = ∑i=1
n cos (θi)

Mean direction(µc)

µc = (tan−1 (S /C), S > 0, C > 0

tan−1 (S /C) + π, C < 0

tan−1 (S /C) + 2π, S < 0, C > 0
Length of mean vector(R) R = C 2 + S 2
Variance(Varc) Varc = −2 ln R
Standard deviation(σc) σc = Varc

LINEAR
Mean direction(µ) µ = 1

n ∑i−1
n θi

Variance(Var) Var = 1
n ∑i−1

n (θi − µ)2

Standard deviation(σ) σ = Var
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