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Abstract
Many computational models in psychology predict how neural activation in specific brain regions
should change during certain cognitive tasks. The emergence of fMRI as a research tool provides an
ideal vehicle to test these predictions. Before such tests are possible, however, significant
methodological problems must be solved. These problems include transforming the neural
activations predicted by the model into predicted BOLD responses, identifying the voxels within
each region of interest against which to test the model, and comparing the observed and predicted
BOLD responses in each of these regions. Methods are described for solving each of these problems.

INTRODUCTION
Functional magnetic resonance imaging (fMRI) has revolutionized Psychology. The effects
have probably been greatest within Cognitive Psychology and Perception, but the influence of
fMRI has spread to almost every area of Psychology. For example, there are now emerging
new fields of Social Neuroscience, Developmental Neuroscience, and Neuroeconomics, all
largely due to fMRI. There is even a new field of Neuromarketing. By far, the great majority
of fMRI research in these fields uses fMRI as a tool for exploratory research. The most common
question in this approach is: Which brain areas are activated by the task I am studying? This
is clearly an important question that has had enormous benefit and will continue to do so in
the future.

On the other hand, we believe fMRI has significant untapped potential as a tool for confirmatory
research. In such an approach, the research question instead would be: Does a model or theory
correctly predict the results of an fMRI experiment? Or alternatively, which of two competing
models gives the best account of fMRI data? Requiring that a satisfactory model is consistent
not only with available behavioral data but also with fMRI data greatly constrains the class of
acceptable models. In most cognitive behavioral experiments, at best only two pieces of
behavioral data are available on each trial - which response was made and the response time.
Many models that postulate qualitatively different underlying psychological processes might
nevertheless give equally good accounts of such sparse data sets. In contrast, fMRI data is
incredibly rich, and the class of models that are consistent with both the behavioral and fMRI
data is likely to be quite small.

It is true that models potentially capable of making predictions about the outcome of fMRI
experiments must make neurobiological assumptions that may not be necessary if the goal is
to account simply for behavioral data. Even so, there are now many neurobiologically detailed
computational models in Psychology that make predictions (or could make predictions) about
how neural activity changes in specific brain regions as participants perform certain cognitive
tasks, and fMRI seems ideally suited to testing such predictions (e.g., Anderson & Qin, in
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press; Ashby, Ell, Valentin, & Casale, 2005; Brown & Braver, 2005; Chadderdon & Sporns,
2006; Frank & Claus, 2006; Mason & Just, 2006; Monchi, Taylor, & Dagher, 2000; O’Reilly,
2006).

Yet to test computational models in this way, several problems must be overcome. First,
psychological models might make predictions about neural activation, but they generally do
not make predictions about the blood-oxygen-level-dependent (BOLD) signal that is most
commonly measured in fMRI experiments. So the first problem is to generate predicted BOLD
responses from the model’s predicted neural activations.

Second, most models in Psychology that make neuroanatomical predictions typically do not
make predictions that are specific enough to identify a small set of voxels in the region of
interest (ROI) that could be used to test the model. For example, a model might specify that
during a certain period of a working memory task, a specific type of activation should occur
in dorsolateral prefrontal cortex (dlPFC). But such a model would generally not predict that
every voxel in dlPFC would show this activation pattern - only that some would. So a second
significant problem that must be solved is to identify exactly which voxels within dlPFC should
be used to test the model. Finally, the third problem is to compare the observed and predicted
BOLD responses in the selected voxels, and to decide on the basis of this comparison if the
model succeeds or fails at accounting for the results of the experiment.

This article proposes solutions to these three problems. The solutions are straightforward and
use standard fMRI statistical methods. There have been a few previous attempts to fit
computational models to fMRI data (e.g., Danker & Anderson, 2007), and these have used
some of the same methods proposed here (e.g., convolution with a hemodynamic response
function). However, we know of no attempts that used all of the methods described below, nor
do we know of any other articles that are devoted solely to this topic.

AN EXAMPLE
As an example of a model that could be tested against fMRI data, we will consider a recent
computational model, called SPEED (Subcortical Pathways Enable Expertise Development),
which describes how automaticity develops in perceptual categorization tasks (Ashby, Ennis,
& Spiering, 2007). Briefly, the model assumes there are two neural pathways from the sensory
association area that mediates perception of the stimulus to the premotor region of cortex that
mediates response selection. A longer and slower path projects to the premotor area via the
striatum, globus pallidus, and thalamus. A faster, purely cortical path projects directly from
the sensory association area to the premotor area. SPEED assumes that the subcortical path,
although slower, has greater neural plasticity because of a dopamine-mediated learning signal
from the substantia nigra. In contrast, the faster cortical-cortical path learns more slowly via
(dopamine independent) classical two-factor Hebbian learning. Because of its greater
plasticity, early performance is dominated by the subcortical path, but the development of
automaticity is characterized by a transfer of control to the faster cortical-cortical projection.
The model includes differential equations that describe activation in each of the relevant brain
areas as well as a set of difference equations that describe the relevant two- and three-factor
learning.

Ashby et al. (2007) showed that SPEED accounts for some classic single-cell recording and
behavioral results, but the model has not yet been tested against fMRI data. Even so, it makes
detailed predictions about many of the brain regions that should show task-related activation
during category learning. For example, SPEED predicts how neural activation in a variety of
brain regions should change over the course of a single trial, and how these activations will
change after many days of practice on the task. So fMRI seems like an ideal tool for rigorously
testing the model.
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PROBLEM 1: GENERATE BOLD PREDICTIONS FROM THE MODEL
The fMRI BOLD response increases with the amount of oxygenated hemoglobin in a voxel
relative to the amount of de-oxygenated hemoglobin (Ogawa, Lee, Kay, & Tank, 1990).
Compared to the neural activation that presumably drives it, the BOLD response is highly
sluggish. It reaches a peak around 6 sec after the neural activation that induced it, and slowly
decays back to baseline 20 - 25 sec later. The first step in fitting a neurocomputational model
to fMRI data therefore, is to convert the predicted neural activations into predicted BOLD
responses.

Almost all current applications of fMRI assume that the transformation from neural activation
to BOLD response can be modeled as a linear, time-invariant system (e.g., Boynton, Engel,
Glover, & Heeger, 1996). In the linear systems approach, one can conceive of the vascular
system that responds to a sudden oxygen debt as a black box in which the input is neural
activation and the output is the BOLD response. Suppose we present a stimulus event Ei to a
subject at time 0. Let Ni(t) denote the neural activation induced by this event at time t, and let
B(t) denote the resulting BOLD response. A system of this type is linear if and only if

If the system is linear, then it is well known that the BOLD response to any neural activation
Ni(t) can be computed from

(1)

Equation 1 is the well-known convolution integral that completely characterizes the behavior
of any linear, time-invariant system (e.g., Chen, 1970). The function h(t) is traditionally called
the impulse response function because it describes the response of the system to an input that
is a perfect impulse. In the fMRI literature however, h(t) is known as the hemodynamic response
function, often abbreviated as the hrf. The hrf is the hypothetical BOLD response to an idealized
impulse of neural activation, often peaking at 6 sec and lasting for 30 secs or so.

To generate a predicted BOLD response from our model, we first use the model to generate a
predicted neural response N(t). For example, the top panel of Figure 1 shows the neural
activation predicted by SPEED (Ashby et al., 2007) in premotor cortex (i.e., either
supplementary motor area or pre-supplementary motor area) during one categorization trial
and after 50 trials of practice. In this example, the trial begins with a 1 sec fixation period.

The next step is to select a mathematical form for the hrf. These two functions are then
numerically convolved (via Eq. 1) to produce a predicted BOLD response. There are many
alternative models of the hrf. A common approach is to select a canonical form for the hrf that
is characterized by several free parameters that can be adjusted to account for differences in
the hrf across brain regions or subjects. Many alternative models of this type have been
proposed (Boynton et al., 1996;Clark, Maisog, & Haxby, 1998;Cohen, 1997;Dale & Buckner,
1997;Friston, Holmes, & Ashburner, 1999;Friston, Josephs, Ress, & Turner, 1998;Zarahn,
Aquirre, & D’Esposito, 1997). For example, Boynton et al. (1996) proposed a gamma function
of the type

(2)

where λ, T0, and n (an integer) are free parameters. The parameter T0 is the lag between stimulus
presentation and the initial rise in the BOLD response, whereas λ and n determine the shape
of the hrf. For example, the peak of the hrf occurs at time T0 + (n - 1)λ. The parameters can
either be estimated from the data or else just set to some typical values. Figure 2 shows an
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example of this model with the parameters set to T0 = 0, n = 4, and λ = 2. The bottom panel of
Figure 1 shows the result of convolving the Figure 1 neural activation predicted by SPEED
(top panel) with the hrf shown in Figure 2. This is the BOLD response predicted by SPEED
in this particular ROI for one categorization trial.

All models of the hrf have the same basic shape, in the sense that they all rise to a peak at
around 6 seconds and then slowly decay back to baseline. Some include a late negative dip
because empirical estimates of the BOLD response often show this property (e.g., Fransson,
Kruger, Merboldt, & Frahm, 1999; Glover, 1999). All models, however, that use an hrf to
predict a BOLD response via the Eq. 1 convolution integral, depend critically on the linearity
assumption. There is good evidence that linearity is approximately satisfied if the time between
stimulus events exceeds several seconds and if brief stimulus exposure durations are avoided
(Vazquez & Noll, 1998). However, if stimulus events quickly follow one another, or if brief
stimulus exposure durations are used, then it is well documented that the BOLD response
exhibits significant nonlinearities (Hinrichs et al., 2000; Huettel, & McCarthy, 2000; Ogawa
et al., 2000; Pfeuffer, McCullough, Van de Moortele, Ugurbil, & Hu, 2003). In this case, Eq.
1 is no longer valid. Some complex approaches directly model the physical processes that cause
these nonlinearities (e.g., the balloon model of Buxton, Wong, & Frank, 1998). Alternatively,
Friston et al. (1998) proposed a computationally simpler method that uses a second order
Volterra series for modeling nonlinearities that simply adds a correction term to Eq. 1.

In summary, there is a large literature on alternative methods for modeling the BOLD response
(for a review, see e.g., Henson & Friston, 2007). The simplest solution is to use a model of the
hrf with no free parameters. An intermediate choice is to use an hrf model that has free
parameters that must be estimated from the data. A third, more sophisticated choice, is to
replace the hrf with a second order Volterra series that models nonlinearities in the
transformation from neural activation to BOLD response. The decision about which of these
solutions to choose should depend on the experimental design, the amount of detail specified
by the computational model to be tested, and on the state of the field within which that model
resides. For example, the decision about whether to use linear (i.e., hrf) or nonlinear (e.g.,
Volterra series) methods should depend on whether the experiment used brief stimulus
exposures and short inter-stimulus intervals. As another example, a parameter-free model of
the hrf might suffice in research areas where there have been no previous attempts to fit
computational models to fMRI data.

PROBLEM 2: IDENTIFY VOXELS AGAINST WHICH TO TEST THE MODEL
Once predicted BOLD responses have been generated from the model, the second problem is
to identify exactly which voxels should be used to provide the data that the model will be tested
against. Our solution to this problem includes three steps. The first is to apply the general linear
model (GLM) to each voxel using the method of Ollinger, Shulman, and Corbetta (2001a,
2001b). The second step is to form a statistical parametric t-map (t-SPM) from these GLM
results, and the third step is to identify the set of candidate voxels within each ROI from this
SPM.

Step 1. Apply the GLM to each voxel using the method of Ollinger et al
Consider an fMRI experiment in which the time between onsets of successive whole brain
scans (i.e., the repetition time or TR) is 3 seconds, and the BOLD response to a stimulus onset
lasts for 12 seconds, or equivalently 5 TRs. This is an unrealistic value, since in most cases we
would expect the BOLD response to last at least twice this long. However, this shorter value
is sufficient to illustrate the computational method. Ollinger et al. (2001a,2001b) proposed that
in this case we define 5 different parameters that describe the BOLD response to the stimulus
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presentation at each of the ensuing 5 TRs. Call these 5 parameters β1, β2, β3, β4, and β5. Assume
also that every time the same stimulus is presented the exact same BOLD response occurs.

Now consider an event-related experimental design in which a stimulus event occurs on TRs
1, 3, 4, and 7. Then the stimulus events and their BOLD responses at each TR will be:

Therefore, if the system is linear then the observed BOLD response at each TR will equal:

These equations can be expressed in terms of the GLM as follows:

(3)

where B0 estimates the baseline activation and Δ measures the amount of linear drift in the
magnetic field strength. Jittering the stimulus events guarantees that X’X is nonsingular.
Therefore, uniformly minimum variance unbiased estimators of β (i.e., the gold standard of
parameter estimation) are computed from the solution of the GLM normal equations

(4)

This GLM analysis is performed separately in every voxel. The end result is a  vector for
every voxel. In the next step we will reduce each of these vectors to a single t statistic.

Step 2: Form the SPM

The SPM we will form compares the central  with the early and late . For example, if the
BOLD response to an event is assumed to persist for 25 seconds and the TR is 2.5 seconds,
then there will be 11 . In this case, we will construct the SPM that tests the null hypothesis

(5)

against the alternative
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Although SPMs based on other simpler hypotheses could be produced, this particular SPM has
several attractive advantages. Most importantly, it uses more data than SPMs based on simpler
hypotheses and it makes stronger structural assumptions. For example, the t-statistic produced
from the Eq. 5 null hypothesis will be large only if the BOLD response starts small, grows to
a large value between 2.5 and 7.5 seconds after the stimulus event, and then decays back to a
small value by 22.5 seconds after the event.

Note that the null hypothesis specified by Eq. 5 can be written in matrix form as

where w’ is the row vector

Note that the last two 0’s in this vector remove the influence of B0 and Δ on the SPM. If, as is
common, we assume homogeneity of variance and independence across TRs, then under this
null hypothesis, the statistic

(6)

has a t distribution with degrees of freedom equal to

The maximum likelihood estimator of σ2 is known to equal:

(7)

We now have a single t-statistic in every voxel. Large values will come from voxels that appear
to be task responsive.

Step 3: Select Voxels for Model Testing
The next step is to use the t-SPM to select the specific voxels within each ROI that will be used
in the model testing. There are a number of plausible methods for achieving this goal. One
possibility is to select the n voxels within each ROI that have the largest t-values. The value
of n should probably increase with the size of the ROI, but for purposes of discussion a value
of n = 10 is reasonable. One advantage of this method is that no statistical threshold is used to
identify voxels. Thus, the 10 largest t-statistics in an area might all fall below the statistical
threshold for significance. Presumably the model predicts that these t-values should all be
significant, so by excluding a significance criterion from our selection procedure we are
minimizing one important type of selection bias.

A disadvantage of this method is that the 10 voxels selected might not be contiguous. So another
approach might be to use a cluster-based selection procedure, where a cluster is defined as a
set of contiguous (supra-threshold) voxels. In this method, an intermediate threshold is set -
for example, at T = 2.5 - after the t-map is formed in Step 2. Next, voxels with t-values greater
than this threshold are used to identify all clusters in the ROI. Finally, within each ROI specified
by the model, one might identify the largest cluster, and use data from these voxels to test the
model.
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At this point, there is no empirical rationale for choosing one of these methods over the other.
Thus, the choice of which method is used should probably depend on the theoretical predictions
of the model. For example, SPEED predicts that in a task with two response alternatives, there
should be two separate task-sensitive striatal units. The model assumes that if the stimuli
associated with each response are similar, and the motor actions required to produce each
response are similar, then the two striatal units should be near each other in the striatum, but
SPEED does not assume that they must be contiguous. For this reason, the method that chooses
the n voxels with the largest t values is probably preferable to the method that chooses the
largest above-threshold cluster.

PROBLEM 3: COMPARE OBSERVED AND PREDICTED BOLD RESPONSES
IN SELECTED VOXELS

We are now in a position to address the last of our three problems. There are four steps to
complete.

Step 1. Prepare the Data
In each ROI specified by the model, we have identified 10 voxels that we will use for model
testing. In each voxel, a BOLD response was recorded at every TR of the experiment. Suppose
that the experiment included a total of N TRs. Then the data from each of the selected voxels
is an N × 1 vector. The first step is to compute the mean of the 10 selected data vectors in each
ROI. After this averaging process, there will be one N × 1 data vector in each ROI. Our task
is to generate a predicted vector from the model in each ROI and to compare the predicted
vector with this observed data vector.

Step 2. Prepare the Model
The goal of this step is to produce an N × 1 vector containing predicted BOLD responses at
each TR of the experiment. To begin, as described in the solution to Problem 1, the equations
of the model are used to generate predicted neural activation in each ROI during every TR of
the experiment. For example, the top panel of Figure 3 shows the neural activations predicted
by SPEED in premotor cortex during the first 30 seconds of a hypothetical event-related fMRI
experiment. In this example, the TR is 3 sec and a categorization stimulus is presented on TRs
1, 4, 5, 7, and 10. Each categorization TR begins with a 2 sec pause and ends with a 1 sec
stimulus presentation.

Next, these predicted neural activations are numerically convolved with an hrf to produce the
predicted BOLD response at each ROI throughout the experiment. The bottom panel of Figure
3 shows the results of convolving the Figure 2 hrf with the neural activations shown in the top
panel of Figure 3. This process is completed by filling an N × 1 vector (for every ROI) with
the values of this predicted BOLD response at each of the N TRs of the experiment. Let xi(1),
xi(2), ..., xi(N) denote these predicted values in the ith ROI. The bottom panel of Figure 3 shows
how the value xi(5) is defined.

Finally, we build the following GLM at each ROI:

(8)

where θM measures the correlation between the predictions of the model and the data. As before,
B0 is the baseline activation and Δ measures the linear drift in the magnetic field strength.
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If the model is correct then, of course, θM should be large. Equation 6 with

can be used to test the null and alternative hypotheses

and

Under this null hypothesis the Eq. 6 t-statistic has a t-distribution with dfE = N - 4. Thus,
rejecting this null hypothesis in each ROI specified by the model is evidence that the model
provides a good fit to the data from this experiment.

The use of the GLM to evaluate the fit of the model requires that no free parameters are
estimated during the fitting process. One possibility is to estimate the free parameters in the
model by first fitting to single-unit recording data (as in Ashby et al., 2005) or behavioral data.
If free parameters in the model must be estimated from the fMRI data, then a traditional iterative
minimization routine must be used instead of the GLM during this step (i.e., for parameter
estimation and model fitting).

In general, the same is true if a model of the hrf is chosen that has free parameters that must
be estimated from the data. Obviously, if a poor model of the hrf is chosen, the correlation
between predicted and observed BOLD responses will be low, even if the model accurately
predicts the neural activation. If an iterative estimation procedure is used to estimate parameters
of the hrf then the convolution integral of Eq. 1 must be computed numerically at each iteration.

Friston et al. (1998) had a clever idea that eliminates most of this numerical integration. Their
idea was to model the hrf as a weighted linear combination of basis functions:

(9)

where bi(t) is the ith basis function and θi is its weight. Friston et al. (1998) suggested gamma
probability density functions for the bi(t) with means and variances equal to 4, 8, and 16,
respectively. The key though is that none of the bi(t) have any free parameters. The only free
parameters are the weights θ1, θ2, and θ3.

The advantage of defining the hrf in terms of basis functions can be seen when Eq. 9 is
substituted into the convolution integral of Eq. 1:

Note that none of these integrals include any free parameters. As a result, if we define

(10)

then

where the only free parameters are the θi.

With this re-formulation of B(t), the iterative and time-consuming parameter estimation
process can be avoided. Instead, optimal parameter estimates can be computed in one step.
First, the three integrals specified in Eq. 10 are computed numerically. Each of these
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computations produces a vector of numerical values, y1(t), y2(t), and y3(t). The parameters
θi can now be determined using standard linear regression techniques. First, the vector x(t) in
column 1 of the Eq. 8 design matrix is replaced by the three columns y1(t), y2(t), and y3(t), and
the β vector becomes

Given this formulation, the θi can be estimated using the standard GLM estimator of Eq. 4.

Given this basis function approach to modeling the hrf, a good fit of our model to the data
occurs if any of the θi are large. This can be tested statistically via the null hypothesis

If this hypothesis is true, then the statistic

has an asymptotic χ2 distribution with 3 degrees of freedom. The matrix A is given by

Step 3: Construct a Comparison Model
We would have much more confidence in the model however, if we could verify that it fit
better than some other commonly applied model. By far the most widely applied fMRI model
is the so-called boxcar model, which assumes that neural activation equals 1 when the stimulus
is present and 0 otherwise. Thus, to construct a comparison model we begin by constructing a
boxcar function for the entire experiment. An example is shown in the top panel of Figure 4
for the same 30 seconds of the event-related design that was used to produce the model
predictions shown in Figure 3. Next, as before, this neural activation function is numerically
convolved with an hrf to produce the predicted BOLD response shown in the bottom panel of
Figure 4. The results are used to fill an N × 1 vector with the values of this predicted BOLD
response at each of the N TRs of the experiment. Let w(1), w(2), ..., w(N) denote these values.
Note that the BOLD response predicted by the boxcar model is the same in every ROI.

Finally, as before, at each ROI we build the GLM:

(11)

where θC measures the correlation between the predictions of the boxcar model and the data.

Step 4: Compare the Two Models
A strong test of our model is to ask whether it provides a better fit than the boxcar model. Both
models are the same except for the first column of the design matrix X. A poor fit of a model
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will mean larger residuals at each TR and consequently, a larger estimate of the error variance
. Therefore, the magnitude of the error variance can be used as a measure of goodness-of-

fit. In fact, at each ROI the goodness-of-fit measure BIC for model i (i = our model, or
comparison model) is equal to

(12)

Since N is the same for the two models, the model with the smaller error variance will have
the smaller BIC, and when comparing BIC scores for various models the model with the
smallest BIC score is chosen as the best. Therefore, we can conclude that our model gives a
better account of the data than the boxcar model if its BIC score is lower in each ROI. Note
that such a result is more impressive than it might first seem, because our model specifies the
ROIs a priori. In contrast, the boxcar model makes no predictions about which brain regions
should show task-related activation. In fact, in traditional exploratory fMRI data analyses, this
boxcar model is applied to the data from every voxel in the brain and those voxels for which
the null hypothesis

is rejected are classified as task-sensitive.

Although there is no statistical test to determine whether the BIC score of one model is
significantly better than the BIC score of another model, quantitative conclusions can
nevertheless be drawn. One possibility is to use the difference in BIC scores to compute the
Bayes factor, which estimates the probability that the better fitting model is the correct model
of the two (e.g., Raftery, 1995). For example, the approximate probability that our model is
correct, assuming that either our model or the boxcar model is correct equals

Thus, for example, if our model fits better by a BIC difference of 2, then the probability that
our model is correct is approximately .73, whereas if the BIC difference is 10, then this
probability is approximately .99.

QUALITATIVE TESTS
Another way to avoid problems caused by inaccurate models of the hrf is to test predictions of
the model in a more qualitative fashion. One attractive possibility in this domain is to compute
the coherence between the predictions of the model and the observed BOLD response in each
ROI (Sun, Miller, & D’Esposito, 2004). Coherence is a measure of correlation, but in the
frequency domain, rather than the time domain. Whereas the standard Pearson correlation
would be reduced if an inaccurate hrf was used to generate the model’s predictions, the
coherence would be unaffected. If superposition holds, then the coherence between two BOLD
responses equals the coherence between the neural activations that elicited those BOLD
responses. In addition, coherence at low frequencies is unaffected by the presence of (high
frequency) independent noise. Thus, coherence analysis avoids some of the most significant
problems that plague standard correlational techniques.

Coherence analysis can also be used to test quantitative predictions of our model about the
temporal delay between the onset of neural activations in two brain regions. This analysis uses
the phase spectrum of the cross-correlation function between the BOLD responses from the
two regions. Assuming that certain conditions are met, the temporal delay between the onset
of the neural activations in the two regions is proportional to the slope of this phase spectrum
(Sun, Miller, & D’Esposito, 2005).
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Qualitative predictions about causality can also be tested by computing the Granger causality
between BOLD responses in pairs of ROIs. For example, if a model predicts that activation in
region A causes activation in region B, the observed BOLD responses from regions A and B
can be used in a Granger causality analysis to test this prediction statistically (Geweke,
1982).

CONCLUSIONS
Functional MRI has revolutionized Psychology, but to date, almost all applications have been
exploratory in nature. We believe that fMRI has tremendous untapped potential to provide
rigorous and unique tests of computational models. As just one example, many computational
models of working memory assign a key role to the head of the caudate nucleus. However,
these models disagree as to whether the primary role of the caudate during working memory
tasks is to provide a phasic, gating input to thalamus (i.e., via the globus pallidus) (e.g., Beiser
& Houk, 1998; Frank, Loughry, & O’Reilly, 2001) or a tonic, sustained input (e.g., Ashby et
al., 2005; Monchi et al., 2000). Testing between these alternatives with behavioral or lesion
data would be extremely difficult, but the fMRI predictions of these two classes of models are
quite different. As a result, we believe the techniques proposed in this article could be used to
resolve this debate.

Some new problems must be solved when fMRI is used in this confirmatory manner, but for
the most part, the statistical methods required are straightforward extensions of currently
popular techniques. It is important to acknowledge that other solutions are possible. However,
since there is currently no accepted method for fitting models to fMRI data, we believe that
the methods described in this article represent a reasonable first solution. Most importantly,
we hope that this article encourages researchers to expand their use of fMRI into the
confirmatory domain.
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Figure 1.
The top panel shows activation predicted by the computational model SPEED (Ashby et al.,
2007) in premotor cortex during a single categorization trial. The bottom panel shows the
predicted BOLD response under these same conditions.
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Figure 2.
A typical hrf used in fMRI data analysis. This is the gamma function model of Eq. 2 that was
proposed by Boynton et al. (1996) with T0 = 0, n = 4, and λ = 2.
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Figure 3.
The top panel shows activation predicted by the computational model SPEED (Ashby et al.,
2007) in premotor cortex during 30 seconds of an event-related fMRI experiment. The bottom
panel shows the predicted BOLD response under these same conditions.
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Figure 4.
The top panel shows activation predicted by the boxcar model during 30 seconds of an event-
related fMRI experiment. The bottom panel shows the predicted BOLD response under these
same conditions.
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