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Individualization of cancer management requires prognostic mark-
ers and therapy-predictive markers. Prognostic markers assess risk
of disease progression independent of therapy, whereas therapy-
predictive markers identify patients whose disease is sensitive or
resistant to treatment. We show that an experimentally derived
IFN-related DNA damage resistance signature (IRDS) is associated
with resistance to chemotherapy and/or radiation across different
cancer cell lines. The IRDS genes STAT1, ISG15, and IFIT1 all mediate
experimental resistance. Clinical analyses reveal that IRDS(�) and
IRDS(�) states exist among common human cancers. In breast
cancer, a seven–gene-pair classifier predicts for efficacy of adju-
vant chemotherapy and for local-regional control after radiation.
By providing information on treatment sensitivity or resistance,
the IRDS improves outcome prediction when combined with stan-
dard markers, risk groups, or other genomic classifiers.

A fter surgical resection of breast cancer, reducing the risk
of death from metastasis with adjuvant chemotherapy

(ADCT) and radiation therapy (RT) is proven to result in an
absolute survival benefit of �5% to 10% (1, 2). For ADCT,
this benefit is modest primarily for two reasons. First, only 20%
to 30% of treated patients actually have occult metastases and
stand to benefit. Second, among the 20% to 30% of patients
with occult disease, only 30% have disease that is sensitive to
treatment (Fig. 1A). Therefore, the failure to identify patients
who do not have occult metastases and/or have disease that is
resistant to treatment results in the majority of patients
receiving adjuvant therapy without benefit. Furthermore, at-
tempts to intensify therapy to overcome treatment resistance
exacerbates the problem of over-treatment because treated
patients may either not need therapy or may have shown a
response to less intense regimens (Fig. 1 A). Thus, to optimally
tailor adjuvant therapy for a heterogeneous group of patients,
we need to identify a priori which patients are at risk for occult
metastasis before adjuvant therapy, and which at-risk patients
have disease that is sensitive to the treatment. The former is
measured by prognostic markers and the latter by predictive
markers, hereafter called therapy-predictive markers.

The majority of standard clinicopathologic factors, risk groups,
or genomics-based markers are principally prognostic markers.
Clinical and pathological factors such as estrogen receptor (ER)
status, tumor size, nodal status, and grade are imperfect but
commonly available prognostic markers. Combining these clinico-
pathological factors can improve estimates for prognosis, as is the
case for Adjuvant! Online (AOL), a validated and widely used
prognostic tool (3), or St. Gallen criteria, a risk stratification group
based on consensus recommendations (4). Further improvements
may be seen with genomics-based prognostic tools (5, 6) such as the
MammaPrint 70 gene signature (NKI 70), the wound signature, and
molecular subtypes, to name a few.

Unlike prognostic markers, few therapy-predictive markers
have been reported primarily because they are more difficult
to identify than prognostic markers (5). This challenge arises
because, if a better outcome is associated with a particular
marker in a treated population, it is difficult to determine
whether the marker is tracking with good prognosis (i.e., in
patients without occult disease) or sensitivity to the treatment
(i.e., in patients with occult disease cured by therapy). None-
theless, prognostic markers and therapy-predictive markers
are distinguishable and complementary. Consider patients
with occult metastases who are treated with ADCT and cured.
Although these patients may have been properly identified as
having a poor prognosis by a particular prognostic marker, the
accuracy of the prognostic marker is decreased because out-
come has been unknowingly altered by therapy. The integra-
tion of a therapy-predictive marker will identify these treat-
ment-sensitive patients as those with a better outcome than
predicted by the prognostic marker alone. Therefore, combin-
ing a therapy-predictive marker with prognostic markers has
the effect of increasing the accuracy of outcome prediction by
an amount approximately equal to the benefit of the treatment,
which for ADCT is approximately 5% to 10%. Importantly, the
association of a therapy-predictive marker with clinical out-
come principally occurs in the presence but not in the absence
of treatment. For prognostic markers, an association is typi-
cally seen regardless of treatment.

Previously, we described the IFN-related DNA damage resis-
tance signature (IRDS), an experimentally derived gene-expression
profile that is associated with an IFN signaling pathway and with
resistance to radiation-induced DNA damage (7). Here we report
the existence of an IRDS(�) and IRDS(�) state among a wide
variety of primary human cancers. Targeting of IRDS genes can
influence experimental resistance to chemotherapy, and a clinical
classifier for IRDS status is a therapy-predictive marker of adjuvant
therapy for breast cancer.

Results
IRDS Genes Are Associated with Resistance to DNA Damage Across
Multiple Cancer Cell Lines and Can Affect Experimental Resistance to
Chemotherapy. The parental SCC61 human squamous cell carci-
noma cancer cell line was selected in vivo for resistance to ionizing
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radiation, resulting in the Nu61 subline that differentially expresses
the 49 genes in the IRDS (7). To determine if IRDS genes are more
broadly associated with resistance to RT, we analyzed 34 cancer cell
lines from the NCI60 panel (8). Thirty-six IRDS genes were among
the top 25% of all genes ranked by their correlation with the
surviving fraction after 2 Gy of radiation (SF2), a result that is
statistically significant based on the enrichment score calculated
from gene set enrichment analysis (Fig. 1B). Of these 36 genes, 32
are a subset of the 40 genes up-regulated in the IRDS. Of the IRDS
genes, STAT1 showed the highest correlation to the SF2 and ranked
in the top 1% of all genes considered (Fig. 1 B and C).

Similar to RT, IRDS(�) Nu61 xenografts are more resistant to
doxorubicin chemotherapy compared with IRDS(�) SCC61 tu-
mors (Fig. 2A). Knockdown of STAT1 using stable shRNA led to
decreased expression of other IRDS genes (Fig. 2B) and a re-
sensitization of Nu61 tumors to doxorubicin in vivo (Fig. 2C) and
to RT (9). This re-sensitization was observed over a dose range of
doxorubicin (Fig. 2D). Conversely, not only does constitutive ex-
pression of STAT1 in parental SCC61 confer resistance to DNA
damaging agents as previously shown (7), resistance to doxorubicin
can also be transferred to the SKBR3 human breast cancer cell line
(Fig. 2E). To test whether other IRDS genes merely act as markers
for STAT1 activity or can themselves mediate resistance, we also
targeted ISG15 and IFIT1 by shRNA. ISG15 is a ubiquitin-like
protein involved in posttranslational modification (10), and IFIT1
has been shown to regulate translation initiation (11). To the best
of our knowledge, neither of these genes have been previously
implicated in DNA damage resistance, and both of these genes
appear to be regulated by STAT1 based on decreased expression
resulting from shRNA targeting of STAT1 (Fig. 2 B and F) and
induced expression after 5 h of IFN treatment (7). Although
knockdown of ISG15 and IFIT1 (�80% for ISG15 by protein and
90% for IFIT1 by quantitative RT-PCR) had no or only marginal
effects on STAT1 levels (Fig. 2F), decreased expression of either
gene re-sensitized Nu61 to doxorubicin (Fig. 2G). IRDS expression

was not associated with enhanced metastatic ability as determined
by lung metastasis assay in mice (Fig. 2H). In total, these results
suggest that IRDS genes primarily regulate experimental resistance
to DNA damage but not metastasis.

Expression of the IRDS Across Various Primary Human Cancers. Given
that IRDS genes can associate with resistance across cell lines of
different cancer types, we explored whether the expression profile
of IRDS genes found in different primary human tumors might
resemble either Nu61 or SCC61. Individual patient samples from
DNA microarray databases from a variety of different cancers
(breast, head and neck, prostate, lung, glioma) were directly
compared with the IRDS gene profiles from Nu61 and SCC61 by
using rank correlation analysis. For each primary cancer type, the
IRDS genes were able to divide the tumors into two groups that
show similarity to either the Nu61 or the SCC61 profile, which
define the IRDS(�) and IRDS(�) cell line states, respectively
[supporting information (SI) Fig. S1A]. Motivated by these results,
and to avoid the possibility of imposing idiosyncrasies of the cell line
data in the class assignment process, we also performed unsuper-
vised clustering using the IRDS genes to divide patient samples
from each tumor type into two groups (Fig. 3A). The groups with
positive correlation to the Nu61 centroid (r2 � 0.45 to 0.71) are
defined to be IRDS(�), which represents 37%, 48%, 29%, 46%,
and 50% of head and neck, lung, prostate, breast, and high-grade
glioma cases, respectively. The groups correlated with the SCC61
centroid (r2 � 0.41 to 0.65) are defined as IRDS(�). As expected,
class assignments made from the clustering approach are highly
similar to results from the rank analysis (r2 � 0.56 to 0.90).
Particularly high correlation is observed among the 78 patients with
breast cancer, with a correlation between the IRDS(�) centroid
and the Nu61 centroid of 0.71 and correlation between rank
correlation results and clustering results of 0.90 (Fig. 3B and Fig.
S1B). For all cancer types, many of the highly correlated genes are
known to be involved in the IFN pathway (Fig. 3B). In total, these
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Fig. 1. Therapy-predictive mark-
ers and the association of the IRDS
with resistance to DNA damage. (A)
The role of prognostic and therapy-
predictive markers in the manage-
mentofearly-stagebreastcanceraf-
ter surgical resection is illustrated.
Shown are the approximate per-
centages of patients expected to fall
into each category. (B) Thirty-four
cell lines were used in a gene set
enrichment analysis (GSEA) to mea-
surethecorrelationbetweenthe49-
gene IRDS and the SF2. The rank-
ordered list of Pearson correlations
for all 21,225 genes is shown on the
bottom half of the graph with zero
correlation marked (red line). The
position of the IRDS genes in this list
is marked in the top half of the
graph(blackvertical line)alongwith
thecorrespondingenrichmentscore
(green line) to reflect the degree to
which the IRDS genes are over-
represented. The false discovery
rate (FDR) is shown. The 36 of 49
IRDS genes that are among the top
25% of all genes and considered en-
riched from the GSEA are indicated
(blue bracket) and (C) displayed as
rows in the heat map. Gene rows are ordered by correlation to the SF2 with STAT1 having the highest correlation. Cell lines in each column are ordered according to
hierarchical clustering using Euclidean distance as a metric. The SF2 for each cell line is shown in the plot below the heat map. Gene expression shown in orange
represents high expression and blue low expression. Similar results were obtained by restricting GSEA to the 40 of 49 up-regulated IRDS genes, collapsing probe sets
to unique genes, or using the alternative gene set analysis method (P � 0.01, see SI Text).
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data demonstrate that IRDS genes can segregate a variety of
human cancers into groups resembling either Nu61 or SCC61 in
their IRDS profiles, representing IRDS(�) and IRDS(�) states,
respectively.

A Classifier for IRDS Status for Testing as a Therapy-Predictive Marker
for Breast Cancer. The clustering method used to define IRDS status
for the 78 patients with breast cancer (Fig. 3A) is not clinically
practical for the classification of new samples. Instead, we used this
data set to train a classifier to predict IRDS status using the top
scoring pairs (TSP) method (12) (see SI Text). This classifier,
denoted the TSP IRDS, uses simple non-parametric decision rules
by measuring pair-wise relative expression between only seven gene
pairs. Each pair contains an IRDS gene and a gene used for
comparison. The sum of the results from each pair-wise comparison
defines an eight-point ordinal scale from zero to seven, which we
denote the TSP IRDS score (Fig. S2A). Notably, STAT1, IFIT1,
and ISG15, which all affect experimental resistance to DNA
damage (Fig. 2 C–E and G), were selected to be among the seven
gene pairs in the classifier.

Given that IRDS genes can mediate experimental resistance to
DNA damaging agents but is insufficient for metastasis, this
provides a biological basis for testing the IRDS as a therapy-
predictive marker for ADCT. To investigate this clinically, the
following statistical expectations for a therapy-predictive marker
were tested (see Introduction): (i) there is an interaction between
the IRDS and whether patients receive ADCT (i.e., the effects of
IRDS status on patient outcome depends on use of ADCT), (ii) the
accuracy of outcome prediction for treated patients is improved
when prognostic markers are combined with the IRDS by an
amount approximately equal to the absolute benefit of treatment,
and (iii) the IRDS can integrate into commonly used prognostic
classifiers to identify patients with poor prognosis who are rendered
low risk with adjuvant therapy.

The IRDS Is a Therapy-Predictive Marker for ADCT. To statistically
examine the IRDS as a therapy-predictive marker, a data set of 295

patients with early-stage breast cancer (NKI295) was analyzed (6).
To test for an interaction between the IRDS and ADCT, a
multivariable Cox proportional-hazards model for metastatic risk
was used. This analysis reveals a hazard ratio of 1.2 (i.e., a 1.2-fold
increased risk of metastasis for each incremental increase in the
TSP IRDS score from 0 to 7) specifically when an interaction with
chemotherapy is considered (P � 0.05; Table S1). These results
suggest that an association of the IRDS with clinical outcome
depends on the use of ADCT.

A
N

u6
1/

SC
C

61
H

ea
d 

N
ec

k
B

re
as

t
Pr

os
ta

te
Lu

ng
 

G
lio

m
a 

A 
D

am
ag

e
e  

(IR
D

S)

IFI44L
ISG15
IFIT1

IFIT3
HERC6

IFI27
IFI44
MX1

B

ProstateBreast

Head and Neck Lung
In

te
rf

er
on

-R
el

at
ed

 D
N

A
R

es
is

ta
nc

e 
Si

gn
at

ur
e HERC6

OASL
OAS3
MX2

IFI35
HLA-G
IRF7

G1P3
IFITM1
OAS1
STAT1

High Grade Glioma

Fig. 3. The IRDS is expressed by primary breast cancer and a wide variety of
other human tumors in a manner resembling Nu61/SCC61. (A) The expression
pattern of the IRDS genes among primary human tumors of the indicated type is
presented using hierarchical clustering of microarray data. Each column repre-
sents a primary tumor and each row an IRDS gene. The red hatch below each
dendrogram indicates tumors classified as IRDS(�) based on K-means clustering
and comparison to the Nu61/SCC61 centroids (see text and SI Text). Orange
indicates high gene expression and blue low. (B) The heat map shows the ratio of
the IRDS(�) to IRDS(�) centroids for each of the indicated tumors compared with
the ratio of the Nu61 to SCC61 IRDS centroid. Each row is a gene with yellow
indicating high expression and blue low expression. Also see Fig. S1.

0.0

0.5

1.0

1.5

S
C

C
61

N
u6

1
S

C
C

61
N

u6
1

Day 4 Day 8

N
or

m
. U

nt
re

at
ed

 C
on

tro
l

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.3 1.0 3.0

Dox (μg/ml)

C
el

l V
ia

bi
lit

y

0.0

0.5

1.0

1.5

sh
C

O
N

T
sh

S
TA

T1
sh

C
O

N
T

sh
S

TA
T1

N
or

m
. U

nt
re

at
ed

 C
on

tro
l

0.0

0.1

0.2

0.3

0.4

C
O

N
T

S
TA

T1

C
el

l V
ia

bi
lit

y

1.0

0.1

0.5

IFI44

IFIT1

IFITM1

OAS1

ISG15

MX1

STAT1

IRF7

MCL1

sh
C

O
N

T
sh

S
TA

T1

N 61

A B C D E

HG

Day 4 Day 8

IR
D

S
(-)

IR
D

S(
+)

N
um

be
r o

f M
ic

e

Day 4 Day 8Nu61

P
er

ce
nt

 C
el

l D
ea

th

24 hrs 48 hrs

shCONT

shIFIT1

shISG15

shSTAT1

F

51gsI1tatS

CONT STAT1 IFIT1 1TATSTNOC51GSI ISG15

nitcAnitcA

R
el

at
iv

e 
E

xp
re

ss
io

n

R
el

at
iv

e 
E

xp
re

ss
io

n

0

5

10

15

20

:ANRhs:ANRhs 0

5

10

15

20

25

0.0

0.5

1.0

1.5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fig. 2. IRDS genes influence resistance to chemother-
apy. (A) The IRDS(�) SCC61 (blue) and IRDS(�) Nu61
(red) cell lines were xenografted into the flank of nude
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untreated controls. (B) STAT1 expression was inhibited
in Nu61 using stable shRNA, and resulting expression
levels of IRDS genes is indicated by the heat map and
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sion). (C) Nu61 with shRNA to STAT1 (yellow) or a control
shRNA (red) were xenografted into mice and treated
with doxorubicin as described in A (P � 0.001 for day 4
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assay at 72 h relative to non-treated control (P � 0.05 for
all doses by t test, n � 6 in each group). (E) STAT1 was
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The TSP IRDS shows moderate association with some standard
clinical prognostic markers and other genomic classifiers (Table S2
and Fig. S2B). If the TSP IRDS is a therapy-predictive marker, it
should add unique information when combined with prognostic
markers and improve prediction accuracy among treated patients.
How to test this hypothesis is not straightforward. The use of Cox
models has known limitations that include relying on restrictive
assumptions and concerns about the correct modeling of interac-
tions and non-linear effects. Furthermore, for judging the predictive
value of a new tumor marker, P values for calculated hazard ratios
derived from Cox regression are mathematically unrelated to
prediction (13). Our analysis method of choice is a multivariable
random survival forest (RSF) analysis (see SI Text). RSF is a
non-parametric ensemble partitioning tree method for survival
data that automatically estimates non-linear effects for variables
and multi-way interactions between variables, and is capable of
imputing missing data (14). To properly measure the effect of the
TSP IRDS and other variables on prediction accuracy, we calculate
an importance score, which is a metric of how much the error rate
of a model is improved by addition of each variable (more influ-
ential factors have higher scores). For comparison, results using Cox
regression modeling are also shown throughout the article.

Among patients who received ADCT (see Table S3 for patient
characteristics), a model that combines the TSP IRDS with stan-
dard clinicopathological factors reveals that the TSP IRDS has an
importance score of �0.05 (Fig. 4A, green bar plot and blue
crosses), meaning that the addition of the TSP IRDS to standard

clinicopathological factors decreases the prediction error by 5%.
This value for the importance score is within the expected range for
a therapy-predictive marker of ADCT for early-stage breast cancer
(i.e., approximately equal to the absolute benefit for ADCT). As
expected, even after adjusting for other covariates and interactions,
increasing TSP IRDS leads to a sharp increase in metastasis risk
(Fig. 4B, Left). In contrast, among patients who do not receive
ADCT, the TSP IRDS contributes significantly less to prediction
(Fig. 4A, orange) and demonstrates no relationship to metastatic
risk (Fig. 4B, Right). Standard clinicopathological factors contribute
to prediction accuracy and/or associate with metastasis risk in an
expected way regardless of treatment, confirming their primary role
as prognostic markers (Fig. 4A and Fig. S3A). Similar results for the
TSP IRDS are seen specifically among patients receiving ADCT
when the TPS IRDS is combined with genomics-based markers
(Fig. 4 C and D). The NKI 70, wound, and molecular subtypes are
best defined as prognostic markers given their association with risk
regardless of treatment (see Fig. S3B). In total, these results suggest
that the TSP IRDS is a unique genomic classifier that increases the
accuracy of outcome prediction not as a prognostic marker but as
a therapy-predictive marker.

The IRDS Can Integrate with Existing Prognostic Tools to Identify
High-Risk Patients Rendered Low Risk by ADCT. As a therapy-
predictive marker, the IRDS is expected to identify patients who
have outcomes better than predicted by prognostic markers as a
result of successful treatment. To test this, we used the 2005 St.
Gallen consensus criteria, the NKI 70 gene signature, or AOL to
identify poor prognosis patients. IRDS status was assigned using a
conservative TSP IRDS cut-off of �2 for IRDS(�) and �2 for
IRDS(�) (see partial plots for metastasis risk as a function of TSP
IRDS in Fig. 4 B and D and SI Text).

In the absence of ADCT, IRDS status is not prognostic among
patients with a poor prognosis according to NKI 70 (i.e., NKI
70(�)) or St. Gallen consensus criteria (Fig. 5 and Fig. S4).
However, patients at high risk who are IRDS(�) and receive
ADCT have an outcome better than their IRDS(�) counterparts
and similar to those patients at low risk. Similarly, in the absence of
ADCT, the estimated 10-year risk for metastasis is comparable to
the predicted AOL risk regardless of IRDS status. In contrast, risk
among patients with low TSP IRDS scores (either 0 or 1) who
received ADCT is markedly lower than predicted by AOL across a
wide range of AOL 10-year risk estimates. In total, these data
demonstrate that the IRDS can be integrated with available prog-
nostic tools to identify patients at risk for distant relapse who can
be rendered low risk by ADCT.

IRDS Predicts Recurrence After RT. Adjuvant RT reduces the risk of
local-regional failure (LRF) following breast conservation therapy
or mastectomy (1). As a mediator of DNA damage resistance, the
IRDS should predict LRF after adjuvant RT. In a multivariable Cox
model, the IRDS is independently associated with LRF (Table S4).
Analysis of importance scores using RSF or a Cox model reveals
that the IRDS significantly contributes to prediction accuracy for
LRF (Fig. 5B). IRDS(�) patients who received adjuvant RT exhibit
a high rate of LRF (Fig. 5C). Evaluation of patients not receiving
adjuvant RT was not possible in this cohort because there are few
events in the minority of patients who underwent mastectomy
without RT (but see metaanalysis described later). However, a 30%
to 40% LRF rate at 10 years, as seen with IRDS(�) patients, is
within the expected range for patients who exhibit complete
resistance to adjuvant RT (15).

Independent Validation of the IRDS and Metaanalysis. To validate the
properties of the IRDS, several independent breast cancer data sets
were assembled (see Table S5). Cohort A is comprised of 292
patients from the Radcliffe, University of California San Francisco,
and Stockholm data sets who all received ADCT and/or RT and was
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Fig. 4. The IRDS is a therapy-predictive marker for ADCT. The 110 patients
treated with ADCT (green) and the 185 patients not treated with ADCT
(orange) from the NKI295 data set were separately analyzed using either a RSF
analysis (see text) or Cox regression. The TSP IRDS was combined with (A and
B) standard clinicopathological factors or (C and D) clinical risk groups [St.
Gallen criteria (4)] and other gene expression signatures (NKI 70, wound, and
molecular subtype). (A and C) The contribution of each covariate to overall
prediction accuracy of each full model is measured by its importance score (see
text). Importance scores from RSF analysis are shown by the horizontal bar plot
(mean � SD) and mean importance scores from Cox regression are superim-
posed (blue cross). (B and D) The partial plots show expected relative fre-
quency of metastasis as a function of the TSP IRDS score after adjusting for all
other covariates and interactions. The estimated risk is shown (red dot) with
a Lowess regression (black dashes) � 2SE (red dashes). See Fig. S3 for partial
plots of other covariates. The prediction errors for the RSF models for A and
C in the absence of ADCT are 30.7% and 35.9%, respectively, and in the
presence of ADCT are 35.7% and 37.3%, respectively. The prediction errors for
the Cox models for A and C in the absence of ADCT are 32.5% and 31.5%,
respectively, and in the presence of ADCT are 34.5% and 32.5%, respectively.
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used to validate that the IRDS is a therapy-predictive marker for
DNA damaging agents. For each of the three data sets in cohort A,
a higher TSP IRDS is associated with a higher risk for distant failure
and/or LRF, which is similar to results from the NKI295 (Table S6).
Survival analysis of all patients from cohort A reveals that the
IRDS(�) group has a markedly better recurrence-free survival
compared with IRDS(�) patients (Fig. 6A). This improvement in
recurrence-free survival is a result of both fewer distant relapses

among the IRDS(�) patients treated with ADCT and lower LRF
among IRDS(�) patients treated with adjuvant RT (Fig. 6 B and
C). Analysis using cohort B, which consists of 277 patients who
received only endocrine therapy as adjuvant systemic treatment
(Fig. 6D), and cohort C, which is composed of 286 patients who did
not receive adjuvant systemic treatment (Fig. 6E), confirms that the
IRDS is neither a therapy-predictive marker for endocrine therapy
nor prognostic for distant failure in the absence of ADCT. A similar
lack of therapy-predictive effect with endocrine therapy or prog-
nostic effect was noted for two additional cohorts (Fig. S5).

The NKI295, Radcliffe, University of California San Francisco,
and Stockholm data sets were also used to validate the predictive-
ness of the IRDS by using each individual data set as a test set for
a model trained on the other three. The patients from these four
data sets differed in treatment regimens (e.g., cyclophosphamide/
methotrexate/5-fluorouracil vs. an anthracycline regimen; Table
S7) and patient characteristics. Nonetheless, for each of these data
sets, the TSP IRDS improves prediction accuracy for metastasis-
free survival and local-regional control for patients treated with
ADCT or RT, respectively (Fig. S6). Importantly, as the TSP IRDS
improves prediction in each test set, these results are unlikely a
result of a confounding latent variable because it would have to be
the same latent variable in all of the cohorts.

To provide best estimates of importance scores and their sam-
pling error, and to test for effects of cohort heterogeneity, all data
sets used in validation were combined with the NKI295, resulting in
1,573 patients. By using RSF we were able to perform a non-
stratified metaanalysis whereby all 1,573 patients were analyzed
simultaneously but the effects of treatment were extracted. Unlike
with Cox regression, this non-stratified analysis is possible because
of the ability of RSF to automatically model all possible interactions
between variables. Bootstrap means and SEs for variable impor-
tance scores for metastasis-free survival confirm high values for the
IRDS, specifically among patients treated with ADCT (Fig. 6F).
Well established prognostic factors show importance scores of
comparable magnitude regardless of treatment. Few or no cohort
effects were seen, indicating that an adequate level of homogeneity
across institutes was observed, and our analysis accounts for
differences in these cohorts (Fig. S7A). Confirmation that the IRDS
is a therapy-predictive marker is similarly seen with RT. Results
from Cox regression, which are necessarily stratified by treatment
and devoid of interaction effects between variables, are shown for
comparison. Notable are the 3% to 8% gains in prediction accuracy
for RSF over Cox regression (Fig. S7B). In total, these results
suggest that the IRDS is a therapy-predictive marker that performs
across patient populations that may differ in baseline characteristics
and treatment.

Discussion
We and others have shown that STAT1 and IFN genes can normally
be induced as part of the cellular response to DNA damage (9, 16).
In previous work, we demonstrated that sensitivity to DNA damage
is coupled with sensitivity to IFNs such that selection for resistance
to one leads to resistance to the other (9). These observations have
led to the proposal that, under most situations, the STAT1/IFN
pathway transmits a cytotoxic signal either in response to DNA
damage or to IFNs. In contrast, cells that are IRDS(�) show
constitutive activation of the STAT1/IFN pathway and may reflect
a history of chronic stimulation. This chronically activated state
might have selected for the failure to transmit a cytotoxic signal and
instead results in pro-survival signals mediated by STAT1 and other
IRDS genes. Here, we further strengthen the notion that IRDS(�)
tumors reflect this latter phenotype and demonstrate the impressive
frequency by which this pathway is distinguishable among the most
common human cancers.

The combined clinical and laboratory data strongly indicate that
the IRDS is principally a therapy-predictive marker for DNA
damaging agents. How might the IRDS contribute to clinical
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Fig. 5. The IRDS predicts sensitivity to ADCT among patients at risk for
metastasis and predicts local-regional failure after adjuvant RT. (A) Each of the
185 patients who did not receive ADCT (grouped beside the orange line) or the
110 patients who received ADCT (grouped beside the green line) were clas-
sified using the NKI 70 gene signature as having a good prognosis [NKI 70(�)]
or a poor prognosis [NKI 70(�)]. NKI 70(�) patients were further split by IRDS
status. TSP IRDS scores of �2 and �2 were used to define IRDS(�) and IRDS(�),
respectively. Shown on the left are the metastasis-free survival curves. The
log-rank P values compare the groups stratified by IRDS. Adjuvant! Online
(AOL) mortality score and the TSP IRDS were used in an RSF model. Shown on
the right are the predicted 10-year relative frequency of metastasis as a
function of AOL score. IRDS(�) patients are in red, patients with a TSP IRDS of
1 are in green, and patients with a TSP IRDS of 0 are in blue. Regression lines
through these points are displayed. The prediction errors of the RSF model are
37.9% for no ADCT and 39.2% for ADCT. (B) The 243 patients who received
adjuvant RT were analyzed using RSF for local-regional control (LRC). The
importance scores from an RSF model for the indicated covariates are shown
(mean � SD) and the mean importance scores from Cox regression are super-
imposed (blue cross). The error rate for the full RSF model is 38.7% and for the
Cox model is 30.8%. (C) Shown is LRC stratified by IRDS status for the patients
receiving adjuvant RT after breast conservation or mastectomy (any RT), or the
161 patients receiving RT after breast conservation therapy only.
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management? The decision to undergo adjuvant treatment is often
based on the risk for recurrence and how much therapy will reduce
this risk. Current methods to assess the reduction in risk from
adjuvant treatment are not individualized and generally based on
proportional risk reductions from metaanalysis (2). Fig. 5A high-
lights how the IRDS can influence decision making. For example,
assuming a patient has an estimated 10-year risk of breast cancer
mortality of 20%, knowing that chemotherapy effectively reduces
this to approximately 5% will make the decision to undergo
treatment easier for many. Furthermore, most patients identified by
the IRDS to be sensitive to ADCT were treated with cyclophos-
phamide/methotrexate/5-fluorouracil, suggesting that the IRDS
can help patients avoid the additional toxicities of anthracyclines
and taxanes. Conversely, knowledge that chemotherapy will be
ineffective may compel patients to accept more aggressive thera-
pies. Others may forego adjuvant treatment altogether.

Materials and Methods
Study Populations. See Tables S2 and S8 and SI Text for further details on all
clinical and microarray data.

Cell Line and Animal Experiments. Derivation of Nu61 from the SCC61 cell line,
analysis of the IRDS, and mouse xenografting have been described (7). For
additional information, including Tables S9 and S10, please see SI Text.

Statistical Analysis. See SI Text for full details.
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Fig. 6. Validation of the IRDS as a therapy-predictive marker for ADCT and/or radiation. Breast cancer patients from cohorts A, B, and C were used for validation of
the IRDS (see Table S5). (A) Recurrence-free survival from metastasis and/or LRF as a first event for cohort A. All patients received ADCT and/or RT. (B) Patients who
received ADCT and (C) patients who received adjuvant RT were separately analyzed for metastasis-free survival (MFS) or local-regional control, respectively. (D) MFS
for cohort B, which received only endocrine therapy for adjuvant systemic treatment, and (E) MFS for cohort C, which received no adjuvant systemic therapy. (F) A
merged set of 1,573 patients was used in a metaanalysis. Shown are bootstrap means � SEs for the importance scores of the indicated covariates using either RSF or
Cox regression models (see text and Fig. S7).
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