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Abstract

Background: Streptococcus pneumoniae, Streptococcus pyogenes and Haemophilus influenzae are bacteria present in the
nasopharynx as part of normal flora. The ecological equilibrium in the nasopharynx can be disrupted by the presence of
antibiotics.

Methodology/Principal Findings: A computerized two-compartment pharmacodynamic model was used to explore b-
lactam effects on the evolution over time of a bacterial load containing common pharyngeal isolates by simulating free
serum concentrations obtained with amoxicillin (AMX) 875 mg tid, amoxicillin/clavulanic acid (AMC) 875/125 mg tid and
cefditoren (CDN) 400 mg bid regimens over 24 h. Strains and MICs (mg/ml) of AMX, AMC and CDN were: S. pyogenes (0.03,
0.03 and 0.015), S. pneumoniae (2, 2 and 0.25), a b-lactamase positive H. influenzae (BL+; .16, 2 and 0.06) and a b-lactamase
positive AMC-resistant H. influenzae (BLPACR, .16, 8 and 0.06). Mixture of identical 1:1:1:1 volumes of each bacterial
suspension were prepared yielding an inocula of <46106 cfu/ml. Antibiotic concentrations were measured both in bacterial
and in bacteria-free antibiotic simulations. b-lactamase production decreased AMX concentrations and fT.MIC against S.
pneumoniae (from 43.2% to 17.7%) or S. pyogenes (from 99.9% to 24.9%), and eradication was precluded. The presence of
clavulanic acid countered this effect of co-pathogenicity, and S. pyogenes (but not BL+ and S. pneumoniae) was eradicated.
Resistance of CDN to TEM b-lactamase avoided this co-pathogenicity effect, and CDN eradicated S. pyogenes and H.
influenzae strains (fT.MIC .58%), and reduced in 94% S. pneumoniae counts (fT.MIC <25%).

Conclusions/Significance: Co-pathogenicity seems to be gradual since clavulanic acid countered this effect for strains very
susceptible to AMX as S. pyogenes but not for strains with AMX MIC values in the limit of susceptibility as S. pneumoniae.
There is a potential therapeutic advantage for b-lactamase resistant cephalosporins with high activity against streptococci.
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Introduction

Carriage of common respiratory isolates as Haemophilus

influenzae, Streptococcus pneumoniae and Streptococcus pyogenes depends

on multiple factors such as active or passive smoking, crowding or

age [1], strain fitness properties [2], specific vaccination [3], and

bacterial interference in antibiotic-free niches. H. influenzae and S.

pneumoniae are recovered exclusively from humans and find their

ecological niche in colonizing nasopharynx. Up to 80% of healthy

persons carry H. influenzae [4], with multiple strains in 50% positive

samples [5]. In the case of S. pneumoniae, carriage ranges from 10%

to 40% in an age dependent manner [6], with a lower percentage

of multiple strains in the same sample [7]. While higher turnover

of strains is found in H. influenzae [2], duration of nasopharyngeal

carriage of penicillin-resistant streptococci (PRSP) depends on age,

seasonality, carriage of PRSP by other family members [8], and

serotype, with higher transmission for 6A and 14 [9]. The carriage

of strains resistant to b-lactams is a source of concern in some

countries as Spain where penicillin non-susceptibility in S.

pneumoniae reaches 44% isolates in the community [10], and

ampicillin resistance in H. influenzae attains 25%, with 80% of these

isolates being resistant due to b-lactamase production and 20%

due to the BLNAR (b-lactamase negative ampicillin-resistant)

phenotype [10] caused by mutations in the ftsI gene [11]. Strains

exhibiting both resistant genotypes (TEM- b-lactamase and

mutation in the ftsI gene) constitute the BLPACR (b-lactamase

positive amoxicillin/clavulanate-resistant) phenotype and have

been recently reported as cause of concern [11].

No problems of resistance to b-lactams are found in S. pyogenes,

an ubiquitous microorganism that frequently colonizes throats of

asymptomatic persons, with carriage rates of 15–20% in infants

[12,13] and of 10% in adult smokers [1].

Mucosal surfaces may be simultaneously colonized by multiple

species, and there is an intrincate balance in the oropharynx
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between S. pyogenes, H. influenzae, S. pneumoniae and other

oropharyngeal flora [14]. It has been suggested that this

oropharyngeal flora is altered in S. pyogenes carriers with a decrease

in other streptococcal species (alpha-hemolytic streptococci) with

interfering capabilities [14,15]. On the other side the success of an

organism in colonizing, and maybe in establishing a subsequent

infection, might be determined by its ability to compete with co-

habitants of its niche, since replication/survival of biological

organisms serves to gain space and time [16], and to gain space is

dominance (versus other populations) and to gain time is success

[16]. Dynamics of different bacterial populations in antibiotic-free

niches are the baseline that antibiotic treatments can alter [17,18].

In this study we explored the effect of physiological concentra-

tions of three b-lactams (amoxicillin, amoxicillin plus a b-

lactamase inhibitor, and a third generation oral cephalosporin

resistant to TEM b-lactamases) on the evolution over time of a

bacterial load containing a beta-hemolytic streptococci (S. pyogenes),

an alpha-hemolytic streptococci (a serotype 14 penicillin-resistant

S. pneumoniae), and two b-lactamase positive H. influenzae strains

(one characterized as BLPACR) in the same niche.

Materials and Methods

Strains
Four clinical isolates were used throughout the study: one S.

pyogenes, one serotype 14 penicillin-resistant S. pneumoniae, one b-

lactamase TEM-1 producing H. influenzae (BL+), and one H. influenzae

TEM-1 positive strain presenting a N526K mutation in the ftsI gene

(BLPACR). BL+ was trimethoprim resistant (MIC .128 mg/ml) and

the BLPACR strain was trimethoprim susceptible (0.12 mg/ml); this

difference was used throughout the study to differentiate both strains.

Mutations in the ftsI and TEM-1 genes were determined by PCR

amplification and direct sequencing [19,20].

Culture media and preliminary studies
Different broth media were used in preliminary studies to

determine which media showed the best growth rate over 24 h for

all strains: a) Mueller-Hinton broth (Difco laboratories, Detroit,

Mich.) supplemented with 5% lysed sheep blood (Biomedics,

Madrid, Spain) (MHB) (as media recommended for streptococci)

[21], b) Mueller-Hinton broth supplemented with 15 mg/ml

nicotinamide adenine dinucleotide, 15 mg/ml haemin (Sigma-

Aldrich Chemical Co., St. Louis, USA), and 5 mg/ml of yeast

extract (Difco laboratories) (HTM) (as media recommended for H.

influenzae) [21], c) Todd-Hewitt broth supplemented with 5 mg/ml

of yeast extract, and d) Todd-Hewitt broth (Difco laboratories)

supplemented with 15 mg/ml nicotinamide adenine dinucleotide,

15 mg/ml haemin and 5 mg/ml of yeast extract (THSB). THSB

showed the best growth rate for all strains (data not shown) and

was the selected broth medium for pharmacodynamic simulations.

In vitro susceptibility
MICs of cefditoren, amoxicillin and amoxicillin/clavulanic acid

were determined by the microdilution method following NCCLS/

CLSI recommendations [21], and also using THSB as media

(broth media used in pharmacodynamic simulations). MICs were

determined in triplicate and the modal value of each determina-

tion was considered.

In vitro kinetic model (Figure 1)
A previously described two-compartment dynamic model was used

to expose bacteria to changing study drug concentrations avoiding

the dilution of the bacterial inoculum together with the drug [17,18].

The extra-capillary space and the intra-dialyser circulating tubing of

the second compartment (FX50 helixone dialyzer, Fresenius Medical

Care S.A., Barcelona, Spain), represented the colonisation site. The

central compartment, representing the systemic circulation, consisted

of a spinner flask with THSB, tubing and lumina of capillaries within

a dialyser unit. The exponential decay of concentrations was obtained

by a continuous dilution-elimination process using computerized

peristaltic pumps (Masterflex, Cole-Parmer Instrument Co., Chicago,

IL, USA) set to simulate half-lives of amoxicillin, clavulanic acid and

cefditoren. In control drug-free simulations the rate of peristaltic

pumps was fixed to 0.67 ml/min. Additional pumps circulated the

antimicrobial-medium mixture at 50 ml/min rate between the

central and peripheral compartments, and at 25 ml/min within the

extra-capillary space through external tubing. A computer-controlled

syringe pump (402 Dilutor Dispenser; Gilson S.A, Villiers-le-Bel,

France) allowed the simulation of drug concentrations by infusion of

the drug into the central compartment until the maximum

concentration achieved in serum (Cmax) was reached. Both

compartments were maintained at 37uC all over the simulation

process.

Preparation of individual and mixed cultures
The strains were grown overnight on Mueller-Hinton agar

(Difco laboratories) supplemented with 5% lysed sheep blood

(Biomedics) (MHA) in the case of S. pneumoniae and S. pyogenes, or on

GC agar (Difco laboratories) supplemented with 5% sheep blood

(added at 50uC) and VX growth factors (GCSA) in the case of H.

influenzae. Several colonies of each strain were suspended in THSB

to obtain a bacterial density of approx. 16108 cfu/ml. A 1:100

dilution was prepared to obtain an initial inoculum of approx.

16106 cfu/ml. For the mixed inoculum, a mixture of identical

1:1:1:1 volumes of each bacterial suspension was prepared,

yielding an inoculum of approx. 46106 cfu/ml.

Experiments
Sixty ml of each individual or of the mixed inoculum were

introduced into the peripheral compartment of the in vitro model

and pre-incubated 1 h. Experiments performed were:

a) Antibiotic-free simulations using each individual inoculum

(individual growth control)

b) Antibiotic-free simulations using the mixed inoculum (mixed

growth control)

c) Bacteria-free simulations with each antibiotic to set the

pharmacokinetic profile of each study drug

d) Simulations with each antibiotic using the mixed inoculum

In each experiment, samples (0.5 ml) from the peripheral

compartment were collected at 0, 2, 4, 6, 8, 10, 12, 24 h. Each

sample was serially ten-fold diluted in 0.9% sodium chloride, and

20 ml plated for bacterial counting onto plates containing different

media to allow species/strains differentiation: a) MHA: growth of

S. pneumoniae and S. pyogenes that were differentiated by their

different hemolytical properties (beta for S. pyogenes and alpha for S.

pneumoniae), b) GCSA: growth of both H. influenzae strains that were

differentiated from the other species by their morphological

properties, c) GCSA containing 4 mg/ml of trimethoprim: growth

of BL+, not allowing the growth of the BLPACR strain. Colony

counts of the BLPACR strain were calculated by the difference in

colony counts between both GCSA plates. The total population

was established as the accumulated colony counting of S.

pneumoniae and S. pyogenes on MHA and H. influenzae on GCSA

medium. All plates were incubated at 37uC 5% CO2 for 24 h. The

limit of detection was 50 cfu/ml. All experiments were performed

in triplicate.
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Kinetic simulations
Free-drug concentrations after oral amoxicillin 875 mg three-times

daily, amoxicillin/clavulanic acid 875/125 mg three-times daily and

cefditoren-pivoxil 400 mg twice daily administration, were simulated

over 24 h using the reported protein binding of 18% for amoxicillin

[22], 25% for clavulanic acid [22], and 88% for cefditoren [23]. The

target total pharmacokinetic parameters were: Cmax = 11.6 mg/ml

and t1/2 = 1.15 h for amoxicillin [22], Cmax = 2.20 mg/ml and t1/

2 = 1.15 h for clavulanic acid [22], and Cmax = 4.5 mg/ml and t1/

2 = 1.55 h for cefditoren [23]. Target free concentrations and

pharmacokinetic parameters are shown in Table 1.

Pharmacokinetic analysis
For the measurement of simulated antimicrobial concentrations,

aliquots (0.5 ml) were taken at 0, 2, 4, 6, 8, 10, 12 and 24 h and at

the time corresponding to Tmax, and stored at 250uC. To study

the influence of bacteria on the pharmacokinetic profile, samples

for measuring antibiotic concentrations were taken both in

bacteria-free antibiotic simulations (carried out to set the model)

and in experimental simulations with bacteria and antibiotic.

Concentrations were determined by bioassay using Morganella

morganii ATCC 8076H as indicator organism for cefditoren [24]

(linear concentrations from 0.0035 to 4 mg/ml; limit of detec-

tion = 0.0035 mg/ml), Micrococcus luteus ATCC 9341 for amoxicillin

(linear concentrations from 0.03 to 1 mg/ml; limit of detec-

tion = 0.06 mg/ml), and Klebsiella pneumoniae NCTC 11228 for

clavulanic acid concentrations [25] (linear concentrations from

0.06 to 4 mg/ml; limit of detection = 0.12 mg/ml). Plates were

inoculated with an even lawn of the indicator organism and

incubated for 18–24 h at 37uC. Intra- and inter-day coefficients of

variation were 2.54% and 2.25% for amoxicillin, 3.68% and

2.02% for clavulanic acid, and 1.97% and 1.97% for cefditoren,

respectively, for an internal control concentration of 0.75 mg/ml.

Antimicrobial concentrations were analysed by a non-compart-

mental approach using WinNonlin 5.2 Professional program

(Pharsight, Mountainview, CA, USA). Cmax and Tmax were

obtained directly from observed data and the area under the

concentration-time curve (AUC) was calculated by the trapezoidal

rule. The percentage of the dosing interval that the unbound

fraction of drug concentrations exceed the MIC, fT.MIC, was

calculated by a non-comportmental approach for pharmacody-

namic data using the model 220 of WinNonlin program.

Measurement of b-lactamase activity
b-lactamase activity was measured in antibiotic simulations with

the mixed inocula at 0, Tmax, 2, 4, 6, 8, 10, 12 and 24 h using a

modification of a previously described method [26,27]. In brief,

0.025 ml of a 500 mg/ml solution of Nitrocefin were added to

225 ml of samples collected at sampling times for colony counting,

and incubated for 30 min at 37uC. Afterwards, 0.75 ml of

phosphate buffer 0.05 M was added and absorbance at 486 nm

(A486) was spectrophotometrically read, using broth without

inoculum as baseline absorbance.

Statistical analysis
Unpaired t test or one-way ANOVA with Tukey post test was

used to compare the concentrations measured and the pharma-

cokinetic parameters calculated in bacteria-free simulations vs.

Figure 1. Pharmacodynamic computerized device. Diagram of the in vitro two-compartment computerized device used in the study.
doi:10.1371/journal.pone.0003846.g001
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simulations with the mixed inocula for each study drug, and of b-

lactamase production between simulations with the different study

drugs. A p#0.01 was considered statistically significant.

Results

Pharmacokinetics
Table 1 shows concentrations and pharmacokinetic parameters

experimentally measured in the peripheral compartment in

bacteria-free simulations and in those simulations performed with

the mixed inocula. For cefditoren and clavulanic acid, no significant

differences were found between target free concentrations, those

determined in bacteria-free simulations and those in mixed inocula

simulations. In contrast, for amoxicillin significant differences were

found between concentrations determined in simulations carried

out with the mixed inocula and those measured in bacteria-free

simulations. In amoxicillin simulations (where amoxicillin was not

protected by clavulanic acid) significant lower concentrations of

amoxicillin were found in simulations carried out with the mixed

inocula from Tmax to 8 h (end of the dosing interval), with non-

detectable amoxicillin concentrations from 4 h on. This resulted in

a significant decrease in amoxicillin pharmacokinetic parameters

calculated with amoxicillin concentrations measured in simulations

carried out with the mixed inocula (with its b-lactamase production)

vs. those calculated with concentrations measured in bacteria-free

simulations: Cmax decreased from 9.06 to 5.11 mg/ml, AUC from

20.13 to 5.61 mg/ml6h, and t1/2 from 1.08 to 0.40 h. In

amoxicillin/clavulanic acid simulations, regardless the presence of

clavulanic acid, significant lower concentrations of amoxicillin were

found in simulations carried out with the mixed inocula from 4 to

8 h, although differences in pharmacokinetic parameters were not

significant except for the half-life value (1.16 vs. 0.80 h).

In vitro susceptibility
Table 2 shows in vitro susceptibility (MICs determined following

CLSI recommendations) of study strains to the antibiotics used in

this study. MICs determined in THSB (the broth media used in the

simulations) exhibited equal values to those determined in the media

recommended by CLSI, except for the BLPACR strain and

cefditoren, and the BL+ strain and amoxicillin/clavulanic acid

where MICs in THSB showed one-dilution lower values. S. pyogenes

was susceptible to all antibiotics with MICs #0.03 mg/ml. S.

pneumoniae was susceptible to amoxicillin with or without clavulanic

acid (MIC = 2 mg/ml), and although there are not established CLSI

breakpoints for cefditoren, the strain would be classified as

intermediate resistant (MIC = 0.25 mg/ml) following the FDA

proposed breakpoints [23]. Both H. influenzae strains were inhibited

by cefditoren concentrations of 0.06 mg/ml, were resistant to

amoxicillin, and the BLPACR strain was also resistant to

amoxicillin/clavulanic acid according to CLSI breakpoints [28].

Pharmacodynamics
Table 2 shows fT.MIC calculated both with concentrations

determined in bacteria-free simulations and in those with the mixed

inocula. Similar values were obtained in both cases for cefditoren

with fT.MIC .55% for H. influenzae and S. pyogenes, and <25% for S.

pneumoniae. In the case of amoxicillin/clavulanic acid, negligible

values of amoxicillin fT.MIC were obtained against the BLPACR

strain, values for the BL+ and S. pneumoniae decreased from 40.8% to

32.8% when comparing bacteria-free vs. mixed inocula (with its b-

lactamase production), and were nearly 100% of the dosing interval

for S. pyogenes. Finally, in amoxicillin simulations, where clavulanic

acid was not present to protect amoxicillin, negligible values were

obtained for both b-lactamase producing strains, and fT.MIC

decreased when comparing bacteria-free vs. mixed inocula

simulations from 43.2% to 17.7% (S. pneumoniae) and from 99.9%

to 24.9% (S. pyogenes) in the case of the gram-positive strains.

Fitness in antibiotic-free simulations
Viability in THSB over time in individual and mixed simulations

without antibiotics is shown in Figure 2. In individual cultures mean

colony counts increased from time 0 to 12 and 24 h in $1 log10 cfu/

Table 1. Pharmacokinetics.

Cefditoren 400 mg Clavulanic acid 125 mg Amoxicillin 875 mg

AMX simulations AMC simulations

Time (h) Target SBF SMI Target SBF SMI Target SBF SMI SBF SMI

Tmaxa 0.50 0.5260.02 0.5260.03 1.65 1.7060.09 1.4660.11 9.51 9.0560.19 5.1161.27b 9.1760.24 9.2460.71

2 - 0.3660.00 0.4060.04 1.22 1.1560.13 1.0760.21 7.03 6.3060.51 2.4361.49b 6.1260.09 6.0460.91

4 0.29 0.2860.04 0.3060.02 0.36 0.2160.03 0.2160.03 2.11 1.7460.00 UDLb 1.5060.17 0.5960.39b

6 0.12 0.1260.01 0.1060.03 0.11 0.1360.00 0.1160.00 0.63 0.4560.03 UDLb 0.4160.05 0.0660.02b

8 0.04 0.0460.00 0.0560.01 0.03 UDL UDL 0.19 0.1360.03 UDLb 0.1760.02 0.0460.01b

10 0.02 0.0260.00 0.0160.01 - - - - - - - -

12 0.01 0.0160.00 0.0160.00 - - - - - - - -

Cmaxc 0.50 0.5260.02 0.5260.03 1.65 1.7060.09 1.4660.10 9.51 9.0660.19 5.1161.27b 9.1760.24 9.2460.71

AUCd 1.79 1.7660.05 1.7960.10 3.91 3.2660.09 2.8660.40 22.59 20.1360.52 5.6161.71b 19.7660.91 15.9061.59

t1/2 (h) 1.55 1.4960.06 1.4860.07 1.15 0.9960.31 1.0360.17 1.15 1.0860.09 0.4060.06b 1.1660.03 0.8060.03 b

Free concentrations (in beta-phase over the dosing interval) and pharmacokinetic parameters: target values and values determined in bacteria-free simulations (SBF) and
in simulations with the mixed inocula (SMI).
aTmax: 2.8 h for cefditoren, 1.5 h for clavulanic acid and amoxicillin.
bp,0.01 versus SBF.
cmg/ml.
dmg6h/L.
UDL = under detection limit.
doi:10.1371/journal.pone.0003846.t001
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ml for all strains except S. pyogenes where similar colony counts were

found at times 0, 12 and 24 h (<6.05 log10 cfu/ml).

The situation was completely different in simulations with the

mixed inocula. Mean log10 colony counts of the global mixed

inocula were maintained over time (6.55 log10 at time 0, 6.37 log10

at 12 h and 6.10 log10 at 24 h), but the distribution of the bacterial

population highly varied when considering the percentage of cfu/

ml of each strain over 24 h. At time 0 each strain accounted for

approx. 25% of the mixed inocula, and at 24 h up to 96.3% of the

population corresponded to S. pyogenes, with small populations of

the BLPACR strain (3.17%) and S. pneumoniae (0.50%), and colony

counts below the detection limit for the BL+ strain.

Simulations with antibiotics and mixed inocula
A reduction of 98.5% (<2 log10 cfu/ml) in the initial global

mixed inocula at 24 h was obtained with cefditoren, but no

reductions were obtained with amoxicillin and amoxicillin/

clavulanic acid.

The reduction provided by cefditoren was due to the

disappearance of the S. pyogenes population at 6 h (fT.MIC 79%),

of H. influenzae populations at 12 h (with fT.MIC 58%), and to

94% decrease in the initial S. pneumoniae population at 24 h (with

fT.MIC <25%).

In amoxicillin/clavulanic acid simulations the maintained

counts of BL+ (fT.MIC 32.8%), and the increase in 0.5 log10 of

the BLPACR population (fT.MIC of only 4.6%) were responsible

for the absence of reduction in the initial global mixed inocula. S.

pneumoniae decreased 0.94 log10 (fT.MIC 32.8%) and S. pyogenes was

not detectable from 10 h on (fT.MIC 99.9%).

In amoxicillin simulations, the maintenance or slight increase in

H. influenzae strains (fT.MIC 0%) produced the absence of reductions

in the initial global mixed inocula at 24 h. S. pneumoniae decreased

only 0.49 log10 and this could be related to the decrease in fT.MIC

from 43.2% in bacteria-free simulations to 17.7% in mixed inocula

simulations due to b-lactamase production and amoxicillin

inactivation as shown in Table 1 (significantly lower amoxicillin

concentrations in mixed inocula vs. bacteria-free simulations). This

inactivation also affected the activity against S. pyogenes, and the

amoxicillin regimen was the only one that was not able to eradicate

this strain (although producing 1.2 log10 reduction), due to the

reduction in fT.MIC from 99.9% to 24.9% when comparing

bacteria-free vs. mixed inocula simulations.

b-lactamase activity
Table 3 shows b-lactamase activity over 24 h in the simulations

carried out with the study drugs. No differences were found

between the three antibiotic regimens until 6 h when differences

between amoxicillin and amoxicillin/clavulanic acid simulations

were significant. At 10 and 12 h significant higher b-lactamase

activity was found in amoxicillin than in amoxicillin/clavulanic

acid simulations, and this could be related with the different

population of the b-lactamase producing strains found in both

simulations at these timepoints: approx. 7.5 log10 in amoxicillin

and approx. 4–5 log10 in amoxicillin/clavulanic acid simulations.

In cefditoren simulations, at 10 h and 12 h, the b-lactamase

activity determined was similar to the one in amoxicillin

simulations. Cefditoren was highly active against the two H.

influenzae strains, and the lysis of these organisms (colony counts

#100 colonies at these timepoints) probably produced release of

the enzyme responsible for the high b-lactamase activity

determined.

At 24 h significantly lower b-lactamase activity (0.05 absor-

bance units) was found in cefditoren simulations (H. influenzae

colony counts below the limit of detection) vs. amoxicillin with or

without clavulanic acid (0.20 absorbance units, a value similar to

time 0) simulations where colony counts were higher than the

initial inocula.

Discussion

Ecology and resistance in human microbiota are related

phenomena since there is some evidence that bacterial fitness

decreases, at least at short term, due to resistance [29]. In

compartment models the fitness of a bacterial strain is directly

proportional to its ability to compete with other strains and

inversely proportional to its clearance [30]. If there is heteroge-

neity in fitness, those strains with higher fitness are anticipated or

eventually prevailed [30]. Dynamics of the different subpopula-

tions in an antibiotic-free environment are the baseline that

antibiotic treatments can alter by interfering with bacterial fitness

(including colonisation and transmission), since resistance can be

associated with a decrease in fitness [31].

In this study we tried to simulate a nasopharyngeal niche by

means of a mixed inocula of common respiratory isolates showing

classical (b-lactamase production in H. influenzae and penicillin

resistance in S. pneumoniae) and emergent but increasing (concom-

itant ftsI gene mutation in the BLPACR strain) resistance

phenotypes. Despite up to 80% of healthy persons carry H.

influenzae [4], with multiple strains in 50% positive samples [5] and

although there is an increasing isolation rate of BLPACR [11], the

use of strains with different resistance phenotypes may be a

limitation of the study. However resistance was needed as a

marker to show differences between the three antibiotics used with

Table 2. Pharmacodynamics.

Cefditoren Amoxicillin Amoxicillin/clavulanic acid

MIC T.MIC MIC T.MIC MIC T.MICa

SBF SMI SBF SMI SBF SMI

S. pyogenes 0.015 84.3 79.0 0.03 99.9 24.9 0.03 99.9 99.9

S. pneumoniae 0.25 24.0 25.6 2 43.2 17.7 2 40.8 32.8

H. influenzae BL+ 0.06 57.4 58.0 .16 0.0 0.0 2 40.8 32.8

H. influenzae BLPACR 0.06 57.4 58.0 .16 0.0 0.0 8 4.5 4.6

In vitro susceptibility (MIC; mg/ml) of the strains used in the study, and T.MIC (% dosing interval) in bacteria-free simulations (SBF) and in simulations with the mixed
inocula (SMI) for bid 400 mg cefditoren, tid 875 mg amoxicillin, and tid 875/125 mg amoxicillin/clavulanic acid regimens.
aon amoxicillin basis.
doi:10.1371/journal.pone.0003846.t002
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different behaviour (susceptibility, protection by an inhibitor or

resistance) in the presence of b-lactamases. Another limitation of

the study may be the exposition to antibiotics of mixed inocula

with identical proportions of the different strains at time 0. In a

pathological situation, the inoculum of S. pyogenes may be higher

than that of the other microorganisms, as occurred in this study in

antibiotic-free simulations: S. pyogenes was the dominant population

at 24 h (accounting for 96.3%) together with a small population of

b-lactamase producing H. influenzae strain (3.17%). b-lactamase

producing bacteria are frequently found in patients with recurrent

tonsillitis, where the exposure to antibiotics in general and to b-

lactams in particular select them in nasopharyngeal flora [14].

This has lead to the concept of co-pathogenicity (protection of S.

pyogenes susceptible to penicillin by colocalized bacteria resistant to

penicillin due to b-lactamase production) [32–34]. Co-pathoge-

nicity has been hypothesised by some authors to be responsible of

penicillin treatment failures in the treatment of group A b-

hemolytic streptococci pharyngitis due to b-lactamase producing

organisms in the pharynx as H. influenzae or Moraxella catarrhalis

[34], but criticised by others [35,36] on the basis that if there is a

clinical difference (that may be dubious) between penicillin and

cephalosporins, the question of how important is this difference,

Figure 2. Evolution of inocula over time under experimental conditions. Colony counts over 24 h in antibiotic-free individual simulations,
antibiotic-free mixed simulations and in simulations with study drugs (grey: total population, blue: S. pneumoniae, green: S. pyogenes, orange: BL+,
purple: BLPACR).
doi:10.1371/journal.pone.0003846.g002
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together with cost issues, remains. On the other side, in addition to

the clinical goal of antimicrobial therapy that should be to

eradicate the infecting pathogen, minimization of resistance

selection in normal nasopharynx flora, and prevention of

transmission of resistant clones from nasopharynx should also be

taken into account.

Pharmacodynamic parameters as serum fT.MIC for b-lactams

can be related to bacterial eradication at the infection site, and the

subsequent therapeutic outcome together with prevention of

resistance [37] also in normal flora. This study explores the effects

of serum drug profiles over 24 h of different b-lactam regimens on

the natural evolution of the simulated niche. Although it may be

argued that serum concentrations do not resemble nasopharynx

concentrations, free-drug concentrations were used as an approx-

imation despite the fact that protein binding of the highly bound

cephalosporin may not highly influence bacterial killing [38]. In

addition, in order to know the effects of b-lactamase production on

antibiotic pharmacokinetics and its consequences on pharmaco-

dynamic parameters predicting antibacterial activity, pharmaco-

kinetic parameters were determined with concentrations measured

in bacterial mixed inocula simulations and in bacteria-free

simulations. The presence of the b-lactamase did not alter the

concentrations of cefditoren (TEM-1 b-lactamase resistant) but

highly modified those of amoxicillin over the entire dosing interval

in amoxicillin tid regimen simulations, and in a lesser extent (from

4 h on) in amoxicillin/clavulanic acid tid regimen simulations.

This led to pharmacokinetic parameters of amoxicillin significantly

lower in mixed inocula simulations, with fT.MIC values different if

b-lactamase activity is considered or not.

As a result, the activity of cefditoren was not influenced by the

presence of b-lactamase, and this cephalosporin eradicated S.

pyogenes and co-pathogens as H. influenzae, and decreased S.

pneumoniae population in 94%. In the case of the tid regimen of

amoxicillin/clavulanic acid, the b-lactamase production by the

BLPACR strain (resistant to amoxicillin/clavulanic acid: fT.MIC

of only 4.6%) protected the BL+ H. influenzae that although

susceptible to amoxicillin/clavulanic acid (MIC = 2 mg/ml;

fT.MIC 32.8%), was not eradicated or even diminished. The

same occurred with S. pneumoniae (MIC = 2 mg/ml; fT.MIC 32.8%)

that was only reduced in ,1 log10. However the presence of the b-

lactamase did not avoid eradication of S. pyogenes (MIC = 0.03 mg/

ml; fT.MIC 99.9%). On the contrary, in tid amoxicillin

simulations, the maintenance and even increase in b-lactamase

producing strains (fT.MIC 0%) were able to protect not only S.

pneumoniae (because a decrease in fT.MIC from 43.2% to 17.7% in

bacteria-free vs. mixed inocula simulations) but also S. pyogenes

(decrease in fT.MIC from 99.9% to 24.9%) from eradication.

The bacteriological failure rates of penicillins increased from 2

to 10% in the early 70’s, but beginning in the late 70’s, penicillin

bacteriological failure rates increased to 30% in 2000’s [39],

maybe as the prevalence of b-lactamase production increased.

Despite different causes for treatment failure (lack of compliance,

reexposure, eradication of pharyngeal flora, bacterial fitness), and

contradictory reports on the effects of co-pathogenicity [39,40],

the results of this study reinforces the concept of ‘‘indirect

pathogen’’ since b-lactamase production in mixed inocula

(resembling pharyngeal flora) decreased amoxicillin concentrations

and pharmacokinetic parameters against S. pneumoniae or S.

pyogenes, when clavulanic acid was not present, in such a magnitude

that adequate values were not obtained and eradication was

precluded. The presence of clavulanic acid along a tid regimen

countered this effect of indirect pathogenicity by protecting

amoxicillin from b-lactamase degradation, and a very susceptible

strain as S. pyogenes was eradicated. However since the b-lactamase

was produced by a strain resistant to amoxicillin/clavulanic acid

(as the BLPACR strain), clavulanic acid was not able to protect

amoxicillin from degradation in such an extent to allow its

bactericidal activity against strains with MICs in the limit of

susceptibility, as the H. influenzae BL+ and S. pneumoniae (MICs of

2 mg/ml) that were protected from eradication, thus selecting

them. The quality of TEM b-lactamase resistance of cefditoren

avoided this co-pathogenicity effect of H. influenzae b-lactamase

production.

Although this study is only an approach of what could occur in

the human nasopharynx, the results suggest that, at least in vitro,

the presence of b-lactamase producing microorganisms may

protect other microorganisms present in the niche. This effect of

‘‘indirect pathogen’’ or co-pathogenicity seems to be gradual since

b-lactamase inhibitors (as calvulanic acid in tid regimens)

countered it for strains very susceptible to amoxicillin as S. pyogenes

but not for susceptible strains with amoxicillin MICs values in the

limit of susceptibility as S. pneumoniae. These in vitro findings

indicate a potential therapeutic advantage for b-lactamase

resistant cephalosporins with high intrinsic activity against

streptococci.
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